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Automated diffeomorphic registration of anatomical structures with rigid parts: Application to dynamic cervical MRI

We propose an iterative two-step method to compute a diffeomorphic non-rigid transformation between images of anatomical structures with rigid parts, without any user intervention or prior knowledge on the image intensities. First we compute spatially sparse, locally optimal rigid transformations between the two images using a new block matching strategy and an efficient numerical optimiser (BOBYQA). Then we derive a dense, regularised velocity field based on these local transformations using matrix logarithms and M-smoothing. These two steps are iterated until convergence and the final diffeomorphic transformation is defined as the exponential of the accumulated velocity field. We show our algorithm to outperform the state-of-the-art log-domain diffeomorphic demons method on dynamic cervical MRI data.

Introduction

In medical image analysis, one is often confronted with the problem of registering anatomical structures containing both hard, rigid (typically, bones) and soft, non-rigid (most other tissues) parts. Such problems are met for instance when following-up spinal cord lesions in MRI for the diagnosis of multiple sclerosis [START_REF] Okuda | Asymptomatic spinal cord lesions predict disease progression in radiologically isolated syndrome[END_REF], or when assessing cervical injuries using dynamic/kinematic MR imaging with positional changes [START_REF] Abitbol | Dynamic MRI of the spine[END_REF]. Many methods have been developed for both fully global rigid registration and fully local non-rigid registration separately [START_REF] Maintz | A survey of medical image registration[END_REF], but the literature on hybrid methods, allowing for adequate registration of the structures depending on the stiffness of their components, is still quite sparse.

The earliest work we know of is that of Little et al. [START_REF] Little | Deformations Incorporating rigid structures[END_REF], who showed how to incorporate rigid structures into a deformation field, using radial basis functions; this was later improved by others to make the field invertible and even diffeomorphic [START_REF] Arsigny | A Fast and Log-Euclidean Polyaffine Framework for Locally Linear Registration[END_REF][START_REF] Commowick | An efficient locally affine framework for the smooth registration of anatomical structures[END_REF][START_REF] Seiler | Geometry-Aware Multiscale Image Registration via OBBTree-Based Polyaffine Log-Demons[END_REF]. However, these methods require the user to specify which structures are rigid, which led to the development of semi-automated methods in which rigidity can be locally favoured/enforced through a regularisation term in the criterion to be minimised [START_REF] Rohlfing | Intensity-based non-rigid registration using adaptive multilevel free-form deformation with an incompressibility constraint[END_REF]. This idea was later improved to allow for this term to be adaptively tuned to the structures to register, through prior segmentation of the rigid parts or design of a stiffness map (typically computed from the image intensities; e.g. bones have high intensities in CT) [START_REF] Loeckx | Nonrigid image registration using free-form deformations with a local rigidity constraint[END_REF][START_REF] Ruan | Nonrigid registration using regularization that accomodates local tissue rigidity[END_REF][START_REF] Staring | A rigidity penalty term for nonrigid registration[END_REF]. Instead of segmenting rigid parts, it was also proposed to define several anchors, to which is attached an unknown polyaffine transformation, which can be subsequently estimated using a modified EM-ICP algorithm [START_REF] Taquet | Spatially Adaptive Log-Euclidean Polyaffine Registration Based on Sparse Matches[END_REF].

In this paper, we propose an iterative two-step method to compute a diffeomorphic non-rigid transformation between images of structures with rigid parts, without any user intervention or prior knowledge on the image intensities (to compute rigid parts or anchors). First we compute spatially sparse, locally optimal rigid transformations between the two images by adopting a new (as opposed to classical, translation-based) block matching strategy, made possible by the use of an efficient numerical optimiser (BOBYQA) (Sec. 2.1). The rationale behind this original strategy is our hope to recover both large rotations and subvoxel displacements. Then we derive a dense, regularised velocity field based on these local transformations using matrix logarithms and M-smoothing (Sec. 2.2). The floating image is then resampled and the two steps are iterated until convergence; the final diffeomorphic transformation is defined as the exponential of the accumulated velocity field. We finally compare our algorithm with the state-ofthe-art log-domain diffeomorphic demons method [START_REF] Vercauteren | Symmetric log-domain diffeomorphic registration: A demons-based approach[END_REF] on dynamic cervical and multiple sclerosis MR images (Sec. 3).

Material and Methods

To compute a diffeomorphism T between a reference image I and a floating image J, we iterate between two steps: computation of a sparse set of locally optimal rigid transformations using block matching between I and J • T l (Sec. 2.1) and computation of a dense velocity field δLT l computed from these locally estimated transformations (Sec. 2.2). Given that the transformation T is initially set to the identity (T 0 = Id), and that the initial velocity field is set to LT 0 = log T 0 = 0, the velocity field is then updated as LT l+1 = LT l + δLT l . This two-step algorithm stops at the iteration l when δLT l is close to 0, and the final diffeomorphism is computed as T = T l = exp(LT l ). The complete algorithm is outlined in Sec. 2.3. For the sake of clarity, we detail the two steps using the simpler notations I, J and δLT (Sec. 2.1 and 2.2).

Computing a sparse set of locally optimal rigid transformations

Classical block matching algorithm. In this approach, that we do not follow, one first defines a set of blocks in each image, before matching each block in the reference image I with the most similar block in the floating image J. Similarity is typically computed using a measure on the voxel intensities, such as the sum of squared differences or the squared correlation coefficient in monomodal problems, or the mutual information or the correlation ratio in multimodal problems. The most common approach to optimise the similarity measure (at least in medical image analysis) is to perform an exhaustive search of the block with the highest similarity in J, within a given neighbourhood of each block in I.

This strategy implicitly assumes that the local motion between the images can be well recovered by a discrete translation (i.e. defined on the discrete grid of the image). Subvoxel displacements and large rotations are thus likely to be missed. It is all the more true when registering piecewise rigid structures, because in this case there exists no single, global rigid movement, that could be corrected before non-rigid registration.

Modified block matching algorithm. Recent advances in nonlinear optimisation allow for testing another strategy. We first define a set of blocks in I (as in the standard strategy), and then we propose to directly compute the rigid transformation best superposing each of these blocks with J, using a similarity measure on the voxel intensities. As opposed to the standard, discrete translation-based strategy, the computation of the similarity measure for a given block in I and a given tested transformation implies resampling to build the block in J. Given that the solution space is no longer finite, this leads to a potentially much more computationally expensive algorithm.

We propose to use the recent BOBYQA algorithm [START_REF] Powell | The BOBYQA algorithm for bound constrained optimization without derivatives[END_REF] to implement this idea. In essence, BOBYQA is a derivative-free, trust-region method which uses successive approximations of the similarity measure by quadratic functions, whose maxima can be computed analytically. It is very similar to the classical NEWUOA algorithm except that bounds must be specified on the variables. We thus end up with a set of blockwise-estimated optimal rigid transformations between I and J. In practice, however, we do not estimate a transformation for the blocks in I having a low variance σ 2 . The set of estimated transformations (R 1 , . . . , R m ) is thus spatially sparse, due to these missing transformations, and also due to the resolution of the grid of blocks in I, which is different from that of I. In addition, we weigh each estimated transformation R i with a weight w i set equal to the similarity measure; here we use the squared correlation coefficient, to be insensitive to local intensity changes, thus 0 ≤ w i ≤ 1.

Estimating a dense velocity field

The set of estimated transformations (R 1 , . . . , R m ) is spatially sparse, but is also noisy and likely to contain outliers (due to the noise in the images to be registered and the potential errors in local registrations). How to estimate a dense (n = card(I)) and smooth velocity field δLT from (R 1 , . . . , R m )? We propose to use the logarithms of these m transformations, defined in the space of 4 × 4 real matrices (M 4 (R)) restricted to those whose last row contains only zeros, and to estimate n intermediate matrices in the same space (that we name log S 1 , . . . , log S n by analogy) as the minimisers of a criterion C:

(log S 1 , . . . , log S n ) = arg min log S1,...,log Sn   n i=1 j∈Vi w j ρ(|| log S i -log R j || 2 )d(|v i -v j | 2 )   ,
where:

ρ : R → R + is a robust error norm, -||.|| is the Frobenius norm in M 4 (R), and |.| is the Euclidean norm in R 3 , -v j is the coordinate of the central voxel of the block where R j was estimated, -v i is the coordinate of the voxel where S i is to be computed, -V i is a neighbourhood around the position v i ; note that the sum over j ∈ V i must read: "the sum over all the points v j where a rigid transformation R j was estimated, and which are inside V i ", -w j is the weight defined in Sec. 2.1, -d(.) : R 3 → R + is a (spatial) error norm.

It must be clear that we do not estimate S i and then its logarithm; we do estimate log S i directly; we use this notation here only as a convention for the sake of simplicity. Solving this minimisation problem is known as local M-smoothing [START_REF] Mrazek | On robust estimation and smoothing with spatial and tonal kernels[END_REF], due to the use of a robust error norm and of spatial neighbourhoods to design C; C can be minimised using gradient descent, where each transformation can be estimated independently of the others. Using a particular adaptive, data-dependent step size leads to an easy-to-interpret update formula for each log S i [START_REF] Mrazek | On robust estimation and smoothing with spatial and tonal kernels[END_REF]:

log S k+1 i = j∈Vi w j ρ ′ (|| log S k i -log R j || 2 )d(|v i -v j | 2 ) log R j j∈Vi w j ρ ′ (|| log S k i -log R j || 2 )d(|v i -v j |
2 ) It can be seen from this formula that ρ ′ acts as a tonal kernel, while d acts as a spatial kernel. After convergence, each finally estimated log S i is a linear combination of the logarithms of the rigid transformations R j ; following Arsigny et al. [START_REF] Arsigny | A Fast and Log-Euclidean Polyaffine Framework for Locally Linear Registration[END_REF], we define the final dense velocity field δLT as δLT (v i ) = log(S i ).v i , ∀i = 1, . . . , n. In practice, we define ρ as the Welsch function, which leads to ρ ′ (a 2 ) = exp(-a 2 /2λ 2 ), and we define d as d(b 2 ) = exp(-b 2 /2θ 2 ); this leads to two similar expressions for the two kernels (with different bandwidths). V i is spherical with radius 2θ (to achieve an approximate 95% confidence interval for a Gaussian law). To initialise the gradient descent algorithm, S 0 i is computed as the solution of the update formula by setting ρ ′ (a 2 ) = 1 (i.e. no tonal kernel).

Complete algorithm

The final estimated transformation is a diffeomorphism [START_REF] Arsigny | A Fast and Log-Euclidean Polyaffine Framework for Locally Linear Registration[END_REF]. We perform all the update calculations on the velocity field, whose exponential is required only once per iteration to resample the floating image. This is the same approximation as that done by Vercauteren et al., who showed experimentally that exp(LT l-1 ) • exp(δLT ) could be approximated by exp(LT l-1 + δLT ) for a small enough velocity field δLT [START_REF] Vercauteren | Symmetric log-domain diffeomorphic registration: A demons-based approach[END_REF].

Implementation details

For the block matching: size of the blocks: 7 voxels; grid step size: 3 voxels; minimal intensity variance in the blocks: 1/4 of the maximum squared intensity; search radiuses within BOBYQA: 2 voxels (translation) and 5 degrees (rotation). Estimate local rigid transformations using block matching (Sec. 2.1): R = (R1, . . . , Rm) ← block-matching(I, J • T l-1 ) 5:

Interpolate a dense velocity field using M-smoothing (Sec. 2.2): δLT ← M-smooth(R) 6:

Increment the velocity field: LT l = LT l-1 + δLT 7:

Regularise (elastic-like) the velocity field: LT l ← Gν * LT l 8:

Compute T l = exp(LT l ) to resample J 9:

until δLT is sufficiently small

For the M-smoothing: kernel bandwidths:

λ 2 = med j =h || log R j -log R h || 2 /2 ( 
tonal), θ = 4 voxels (spatial); ν = 4 voxels in the elastic-like regularisation. We use a 3-level multiresolution strategy, and the resampling of the floating image is done using trilinear interpolation. Run-time of the algorithm (dual core Xeon 3.0 GHz PC): about 6 min (vs 2 min for the log-domain diffeomorphic demons [START_REF] Vercauteren | Symmetric log-domain diffeomorphic registration: A demons-based approach[END_REF]).

Validation and Results

We propose to assess our algorithm quantitatively on ten patients with traumatic cervical cord injury, who got dynamic cervical MRI (T2-w, size 384 × 384 × 14, voxel size 0.8 × 0.8 × 3 mm 3 ) with two different positions each: either flexion/neutral, or extension/neutral [START_REF] Abitbol | Dynamic MRI of the spine[END_REF]. For each patient, we manually defined landmarks on the cervical/thoracic vertebrae C1-C3-C6-T1 (and T4 when visible), the pontomedullary junction, and the gnathion (lower border of the mandible) on each of the two MRI. We considered the neutral position as the reference image in the extension/neutral setting, and the flexion as the reference image in the flexion/neutral setting. For a given patient, the registration accuracy was evaluated as the root mean square error (RMSE) computed over the homologous landmarks after registration using four different methods: global rigid registration (M 1 ) [START_REF] Ourselin | Block Matching: A General Framework to Improve Robustness of Rigid Registration of Medical Images[END_REF], log-domain diffeomorphic demons (M 2 ) [START_REF] Vercauteren | Symmetric log-domain diffeomorphic registration: A demons-based approach[END_REF], our algorithm (M 3 ), and M 2 initialised using M 3 (M 4 ); both M 2 and M 3 are initialised using M 1 .

We also assessed our algorithm visually on two patients with MS lesions in the spinal cord, and two other patients with tumours in the spinal cord, with two time points each (T1-w, size 256 × 256 × 64, voxel size 1 × 1 × 1 mm 3 ). The box-and-whisker plot in Fig. 1 computed from the ten patients shows our algorithm (M 3 ) to significantly outperform both M 1 (paired t-test: p = 3×10 -4 ) and M 2 (paired t-test: p = 2 × 10 -3 ), with much smaller error and much smaller error dispersal. M 3 is also slightly better than M 4 (paired t-test: p = 5 × 10 -2 ). This suggests that the log-domain diffeomorphic demons performs worse than our algorithm even when properly initialised (using M 3 instead of M 1 ). The results of M 1 , M 2 and M 3 on one of the ten patients are shown in Fig. 2, and that of M 1 and M 3 are shown on one of the MS patients in Fig. 3. 

Conclusion & Perspectives

It appears that our strategy for non-rigid registration, based on the computation of locally optimal rigid transformations in the first place, allows us to recover displacements and deformations of piecewise rigid structures (as seen e.g. in dynamic cervical MRI) much better than standard methods which are implicitly based on locally optimal translations, such as the log-domain diffeomorphic demons algorithm. This original strategy was made possible by (i) the use of an up-to-date very efficient optimiser and (ii) the design of a specific regularising procedure on the (sparse) set of locally estimated rigid transformations, based on robust estimation techniques. A future line of research could be to combine our regularisation technique with those previously proposed in this context [START_REF] Loeckx | Nonrigid image registration using free-form deformations with a local rigidity constraint[END_REF][START_REF] Ruan | Nonrigid registration using regularization that accomodates local tissue rigidity[END_REF][START_REF] Staring | A rigidity penalty term for nonrigid registration[END_REF].

Our intuition is also that our algorithm could perform very well in more general problems, without necessarily rigid structures involved, and on other image modalities; we will evaluate this in a near future.

Algorithm

  

1 :

 1 Initialize T to identity: T 0 ← Id = exp(LT 0 ) and the velocity field to 0: LT 0 ← 0 2: for each pyramid level of the multiresolution scheme, do 3: repeat 4:

Fig. 1 .Fig. 2 .

 12 Fig. 1. Quantitative evaluation of registration accuracy. Box-andwhisker plot of registration errors (unit: millimetres) for the 4 compared methods (M1 to M4). The errors and the error dispersal are much smaller for M3 compared to M1 and M2; M4 is also slightly worse than M3, which suggests that M4 actually degrades the results compared to M3 when initialised with M3.

Fig. 3 .

 3 Fig. 3. Registration results on a patient with MS lesions in the spinal cord. (a) patient image at time point t0; (b) patient image at time point t1 registered with M1 and (e) with M3; (d,g) zoom on (b,e); (h) zoom on (a); (c,f) zoom on the difference (registered minus reference) image. Note that in this case M2 (not displayed) performs as well as M3. These snapshots, and in particular the zoomed difference images, visually show that M3 gives a better result than a simple global rigid registration.

Acknowledgments. We thank Élise Bannier, Jean-Yves Gauvrit and Aurore Esquevin (CHU, University Hospital of Rennes, F-35043 Rennes, France) for discussions on the clinical protocol and for acquiring the MR images. We also thank Charles Kervrann (INRIA, SERPICO Project, F-35042 Rennes, France) for last-minute and life-saving reading suggestions.