
Med Image Comput Comput Assist Interv . Author manuscript

Page /1 7

Automated diffeomorphic registration of anatomical structures with rigid
parts: application to dynamic cervical MRI
Olivier Commowick 

1 * 
, Nicolas Wiest-Daessl  é

2 
, Sylvain Prima 

1 

VISAGES, VISAGES : Vision Action et Gestion d Informations en Sant     1 ' é INSERM : U746 , CNRS : UMR6074 , INRIA , Universit  de Rennesé
 1 , IRISA, Campus de Beaulieu F-35042 Rennes, FR

Service de Neurologie Rennes   2 [ ] Universit  de Rennes 1 é , H pital Pontchaillou 2 Rue Henri Le Guilloux 35033 Rennes, FRô
* Correspondence should be addressed to: Olivier Commowick <Olivier.Commowick@inria.fr >

Abstract

We propose an iterative two-step method to compute a diffeomorphic non-rigid transformation between images of anatomical

structures with rigid parts, without any user intervention or prior knowledge on the image intensities. First we compute spatially

sparse, locally optimal rigid transformations between the two images using a new block matching strategy and an efficient numerical

optimiser (BOBYQA). Then we derive a dense, regularised velocity field based on these local transformations using matrix logarithms

and M-smoothing. These two steps are iterated until convergence and the final diffeomorphic transformation is defined as the

exponential of the accumulated velocity field. We show our algorithm to outperform the state-of-the-art log-domain diffeomorphic

demons method on dynamic cervical MRI data.
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Introduction

In medical image analysis, one is often confronted with the problem of registering anatomical structures containing both hard, rigid

(typically, bones) and soft, non-rigid (most other tissues) parts. Such problems are met for instance when following-up spinal cord lesions

in MRI for the diagnosis of multiple sclerosis 1 , or when assessing cervical injuries using dynamic/kinematic MR imaging with positional[ ]
changes 2 . Many methods have been developed for both  global rigid registration and  local non-rigid registration separately 3 ,[ ] fully fully [ ]
but the literature on hybrid methods, allowing for adequate registration of the structures depending on the  of their components, isstiffness

still quite sparse.

The earliest work we know of is that of Little et al. 4 , who showed how to incorporate rigid structures into a deformation field, using[ ]
radial basis functions; this was later improved by others to make the field invertible and even diffeomorphic 5 7 . However, these methods[ – ]
require the user to specify which structures are rigid, which led to the development of semi-automated methods in which rigidity can be

locally favoured/enforced through a regularisation term in the criterion to be minimised 8 . This idea was later improved to allow for this[ ]
term to be adaptively tuned to the structures to register, through prior segmentation of the rigid parts or design of a stiffness map (typically

computed from the image intensities; e.g. bones have high intensities in CT) 9 11 . Instead of segmenting rigid parts, it was also proposed[ – ]
to define several , to which is attached an unknown polyaffine transformation, which can be subsequently estimated using aanchors

modified EM-ICP algorithm 12 .[ ]

In this paper, we propose an iterative two-step method to compute a diffeomorphic non-rigid transformation between images of

structures with rigid parts, without any user intervention or prior knowledge on the image intensities (to compute rigid parts or anchors).

First we compute spatially sparse, locally optimal rigid transformations between the two images by adopting a new (as opposed to

classical, translation-based) block matching strategy, made possible by the use of an efficient numerical optimiser (BOBYQA) (Sec. 2.1).

The rationale behind this original strategy is our hope to recover both large rotations and subvoxel displacements. Then we derive a dense,

regularised velocity field based on these local transformations using matrix logarithms and M-smoothing (Sec. 2.2). The floating image is

then resampled and the two steps are iterated until convergence; the final diffeomorphic transformation is defined as the exponential of the

accumulated velocity field. We finally compare our algorithm with the state-of-the-art log-domain diffeomorphic demons method 13  on[ ]
dynamic cervical and multiple sclerosis MR images (Sec. 3).

Material and Methods

To compute a diffeomorphism  between a reference image  and a floating image , we iterate between two steps: computation of aT I J

sparse set of locally optimal rigid transformations using block matching between  and    (Sec. 2.1) and computation of a denseI J ∘ T l 

velocity field  computed from these locally estimated transformations (Sec. 2.2). Given that the transformation  is initially set to theLTδ T

identity (   ), and that the initial velocity field is set to   log   0, the velocity field is then updated as     . ThisT 0 = Id LT 0 = T 0 = LT 1 + = LT + LTδ
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two-step algorithm stops at the iteration  when  is close to 0, and the final diffeomorphism is computed as     exp( ). Thel LTδ T = T = LT

complete algorithm is outlined in Sec. 2.3. For the sake of clarity, we detail the two steps using the simpler notations ,  and  (Sec. 2.1I J LTδ
and 2.2).

Computing a sparse set of locally optimal rigid transformations

Classical block matching algorithm

In this approach, that we  follow, one first defines a set of blocks in each image, before matching each block in the referencedo not

image  with the most similar block in the floating image . Similarity is typically computed using a measure on the voxel intensities, suchI J

as the sum of squared differences or the squared correlation coefficient in monomodal problems, or the mutual information or the

correlation ratio in multimodal problems. The most common approach to optimise the similarity measure (at least in medical image

analysis) is to perform an exhaustive search of the block with the highest similarity in , within a given neighbourhood of each block in .J I

This strategy implicitly assumes that the local motion between the images can be well recovered by a discrete translation (i.e. defined

on the discrete grid of the image). Subvoxel displacements and large rotations are thus likely to be missed. It is all the more true when

registering piecewise rigid structures, because in this case there exists no single, global rigid movement, that could be corrected before

non-rigid registration.

Modified block matching algorithm

Recent advances in nonlinear optimisation allow for testing another strategy. We first define a set of blocks in  (as in the standardI

strategy), and then we propose to directly compute the rigid transformation best superposing each of these blocks with , using a similarityJ

measure on the voxel intensities. As opposed to the standard, discrete translation-based strategy, the computation of the similarity measure

for a given block in  and a given tested transformation implies resampling to build the block in . Given that the solution space is noI J

longer finite, this leads to a potentially much more computationally expensive algorithm.

We propose to use the recent BOBYQA algorithm 14  to implement this idea. In essence, BOBYQA is a derivative-free, trust-region[ ]
method which uses successive approximations of the similarity measure by quadratic functions, whose maxima can be computed

analytically. It is very similar to the classical NEWUOA algorithm except that bounds must be specified on the variables. We thus end up

with a set of blockwise-estimated optimal rigid transformations between  and . In practice, however, we do not estimate a transformationI J

for the blocks in  having a low variance  . The set of estimated transformations (  , , ) is thus spatially sparse, due to these missingI σ 2 R 1 … R

transformations, and also due to the resolution of the grid of blocks in , which is different from that of . In addition, we weigh eachI I

estimated transformation  with a weight  set equal to the similarity measure; here we use the squared correlation coefficient, to beR w

insensitive to local intensity changes, thus 0    1.≤ w ≤

Estimating a dense velocity field

The set of estimated transformations (  , , ) is spatially sparse, but is also noisy and likely to contain outliers (due to the noise inR 1 … R

the images to be registered and the potential errors in local registrations). How to estimate a dense (   card( )) and smooth velocity field n = I δ
 from (  , , )? We propose to use the logarithms of these  transformations, defined in the space of 4  4 real matrices ( ( ))LT R 1 … R m × ℝ

restricted to those whose last row contains only zeros, and to estimate  intermediate matrices in the same space (that we name log  , ,n S 1 …

log  by analogy) as the minimisers of a criterion :S C

where:

:   is a robust error norm,ρ ℝ → ℝ  +

||.|| is the Frobenius norm in ( ), and |.| is the Euclidean norm in ,ℝ ℝ3 

 is the coordinate of the central voxel of the block where  was estimated,v R

 is the coordinate of the voxel where  is to be computed,v S

 is a neighbourhood around the position ; note that the sum over    must read: the sum over all the points  where a rigidV v j ∈ V “ v

transformation  was estimated, and which are inside ,R V”

 is the weight defined in Sec. 2.1,w

(.) :  is a (spatial) error norm.d ℝ3 → ℝ  +
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It must be clear that we  estimate  and then its logarithm; we  estimate log  directly; we use this notation here only as ado not S do S

convention for the sake of simplicity. Solving this minimisation problem is known as  15 , due to the use of a robustlocal M-smoothing [ ]
error norm and of spatial neighbourhoods to design  can be minimised using gradient descent, where each transformation can beC; C

estimated independently of the others. Using a particular adaptive, data-dependent step size leads to an easy-to-interpret update formula for

each log  15 :S [ ]

It can be seen from this formula that  acts as a  kernel, while  acts as a  kernel. After convergence, each finally estimatedρ′ tonal d spatial

log  is a linear combination of the logarithms of the rigid transformations ; following Arsigny et al. 5 , we define the final denseS R [ ]
velocity field  as  ( )  log( ). ,   1, , . In practice, we define  as the Welsch function, which leads to (  )  exp(  /2  LTδ LTδ v = S v ∀i = … n ρ ρ′ a 2 = −a 2 λ 2

), and we define  as (  )  exp(  /2  ); this leads to two similar expressions for the two kernels (with different bandwidths).  isd d b 2 = −b 2 θ 2 V

spherical with radius 2  (to achieve an approximate 95  confidence interval for a Gaussian law). To initialise the gradient descentθ %
algorithm,  is computed as the solution of the update formula by setting (  )  1 (i.e. no tonal kernel).ρ′ a 2 =

Complete algorithm

The final estimated transformation is a diffeomorphism 5 . We perform all the update calculations on the velocity field, whose[ ]
exponential is required only once per iteration to resample the floating image. This is the same approximation as that done by Vercauteren

et al., who showed experimentally that exp(  )  exp( ) could be approximated by exp(  ) for a small enough velocity fieldLT 1 − ∘ LTδ LT 1 − + LTδ
 13 .LTδ [ ]

Implementation details

For the : size of the blocks: 7 voxels; grid step size: 3 voxels; minimal intensity variance in the blocks: 1/4 of theblock matching 

maximum squared intensity; search radiuses within BOBYQA: 2 voxels (translation) and 5 degrees (rotation).
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Algorithm
1: Initialize  to identity:     exp(  ) and the velocity field to 0:   0T T ← Id = LT 0 LT 0 ←
2: each pyramid level of the multiresolution scheme, for do
3: repeat 
4:   Estimate local rigid transformations using block matching (Sec. 2.1):

  (  , , )  block-matching( ,    )R    = R 1 … R ← I J ∘ T 1 −

5:   Interpolate a dense velocity field using M-smoothing (Sec. 2.2):

  M-smooth( )LT   δ ← R

6:   Increment the velocity field:     LT = LT 1 − + LTδ
7:   Regularise (elastic-like) the velocity field:    LT ← G* LT

8:   Compute   exp( ) to resample T = LT J

9:  is sufficiently smalluntil   LTδ
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For the : kernel bandwidths:   med || log   log || /2 (tonal),   4 voxels (spatial);   4 voxels in theM-smoothing λ 2 =  ≠ R − R 2 θ = ν =

elastic-like regularisation. We use a 3-level multiresolution strategy, and the resampling of the floating image is done using trilinear

interpolation. Run-time of the algorithm (dual core Xeon 3.0 GHz PC): about 6 min (vs 2 min for the log-domain diffeomorphic demons [
13 ).]

Validation and Results

We propose to assess our algorithm quantitatively on ten patients with traumatic cervical cord injury, who got dynamic cervical MRI

(T2-w, size 384  384  14, voxel size 0.8  0.8  3 mm ) with two different positions each: either flexion/neutral, or extension/neutral 2 .× × × × 3 [ ]
For each patient, we manually defined landmarks on the cervical/thoracic vertebrae C1-C3-C6-T1 (and T4 when visible), the

pontomedullary junction, and the gnathion (lower border of the mandible) on each of the two MRI. We considered the neutral position as

the reference image in the extension/neutral setting, and the flexion as the reference image in the flexion/neutral setting. For a given

patient, the registration accuracy was evaluated as the root mean square error (RMSE) computed over the homologous landmarks after

registration using four different methods: global rigid registration (  ) 16 , log-domain diffeomorphic demons (  ) 13 , our algorithm (M 1 [ ] M 2 [ ]

 ), and  initialised using  (  ); both  and  are initialised using  . We also assessed our algorithm visually on twoM 3 M 2 M 3 M 4 M 2 M 3 M 1 

patients with MS lesions in the spinal cord, and two other patients with tumours in the spinal cord, with two time points each (T1-w, size

256  256  64, voxel size 1  1  1 mm ).× × × × 3 

The box-and-whisker plot in Fig. 1 computed from the ten patients shows our algorithm (  ) to significantly outperform both  M 3 M 1 

(paired t-test:   3 10 ) and  (paired t-test:   2  10 ), with much smaller error and much smaller error dispersal.  is alsop = × 4 − M 2 p = × 3 − M 3 

slightly better than  (paired t-test:   5  10 ). This suggests that the log-domain diffeomorphic demons performs worse than ourM 4 p = × 2 −

algorithm even when properly initialised (using  instead of  ). The results of  ,  and  on one of the ten patients are shown inM 3 M 1 M 1 M 2 M 3 

Fig. 2, and that of  and  are shown on one of the MS patients in Fig. 3.M 1 M 3 

Conclusion & Perspectives

It appears that our strategy for non-rigid registration, based on the computation of locally optimal rigid transformations in the first

place, allows us to recover displacements and deformations of piecewise rigid structures (as seen e.g. in dynamic cervical MRI) much

better than standard methods which are implicitly based on locally optimal translations, such as the log-domain diffeomorphic demons

algorithm. This original strategy was made possible by (i) the use of an up-to-date very efficient optimiser and (ii) the design of a specific

regularising procedure on the (sparse) set of locally estimated rigid transformations, based on robust estimation techniques. A future line of

research could be to combine our regularisation technique with those previously proposed in this context 9 11 . Our intuition is also that[ – ]
our algorithm could perform very well in more general problems, without necessarily rigid structures involved, and on other image

modalities; we will evaluate this in a near future.
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Fig. 1
Quantitative evaluation of registration accuracy
Box-and-whisker plot of registration errors (unit: millimetres) for the 4 compared methods (  to  ). The errors and the error dispersal areM 1 M 4 

much smaller for  compared to  and  ;  is also slightly worse than  , which suggests that  actually degrades the resultsM 3 M 1 M 2 M 4 M 3 M 4 

compared to  when initialised with  .M 3 M 3 

Fig. 2
Registration results on a patient with flexion/neutral positions
(a) reference image; (d,b,c) floating image registered to the reference image with  ,  ,  respectively; (e,f) same as (b,c) withM 1 M 2 M 3 

deformation grids overlaid. The intersection between the green and red lines shows the large error of  on the mandible; on the contrary,  M 2 M 3

correctly matches this point. The ability of  to recover the flexion is further illustrated by the deformation grid: the deformation visuallyM 3 

appears as near-rigid on the lower head and face, while it shows extension near the back of the neck and contraction near the front of the neck;

on the contrary, the deformation grid shows that  outputs near rigid movement everywhere.M 2 
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Fig. 3
Registration results on a patient with MS lesions in the spinal cord
(a) patient image at time point  ; (b) patient image at time point  registered with  and (e) with  ; (d,g) zoom on (b,e); (h) zoom ont 0 t 1 M 1 M 3 

(a); (c,f) zoom on the difference (registered minus reference) image. Note that in this case  (not displayed) performs as well as  . TheseM 2 M 3 

snapshots, and in particular the zoomed difference images, visually show that  gives a better result than a simple global rigid registration.M 3 


