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Abstract. Diffusion imaging, through the study of water diffusion, al-
lows for the characterization of brain white matter, both at the popula-
tion and individual level. In recent years, it has been employed to detect
brain abnormalities in patients suffering from a disease, e.g. from mul-
tiple sclerosis (MS). State-of-the-art methods usually utilize a database
of matched (age, sex, ...) controls, registered onto a template, to test for
differences in the patient white matter. Such approaches however suf-
fer from two main drawbacks. First, registration algorithms are prone
to local errors, thereby degrading the comparison results. Second, the
database needs to be large enough to obtain reliable results. However, in
medical imaging, such large databases are hardly available. In this paper,
we propose a new method that addresses these two issues. It relies on the
search for samples in a local neighborhood of each pixel to increase the
size of the database. Then, we propose a new test based on these samples
to perform a voxelwise comparison of a patient image with respect to a
population of controls. We demonstrate on simulated and real MS pa-
tient data how such a framework allows for an improved detection power
and a better robustness and reproducibility, even with a small database.

1 Introduction

Diffusion weighted imaging is an MRI modality that provides information about
water diffusion within tissues. It has therefore gained much interest for the study
of brain white matter architecture. In particular, it may be utilized for the de-
tection of structural differences related to a disease. Reported studies on diseases
usually fall within two categories: (i) group comparisons between a population
of healthy subjects and a group of patients suffering from the disease and (ii)
comparison of one patient to a set of healthy controls. The former aims at char-
acterizing the overall course of a disease while the latter focuses on detecting its
early signs and, possibly, its future evolution.

Both approaches are of great interest to understand a disease. In this work,
we are interested in diffusion imaging for multiple sclerosis (MS). MS is a de-
myelinating disease, causing both lesions visible on conventional MRI and diffuse
damage to the brain white matter architecture that may be visible in diffusion
imaging [1]. Having a robust detection of that diffuse damage for a specific pa-
tient is crucial as it could help to predict how the disease will evolve in time,
and potentially allow to adapt the treatment.
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Recent works on the comparison of diffusion images have first focused on
scalar values extracted from the diffusion tensor, such as mean diffusivity (MD)
or fractional anisotropy (FA). For example, Filippi et al. [2] presented a study
on manually defined regions of interest demonstrating an MD increase and an
FA decrease in specific regions for MS patients brains. However, utilizing only a
scalar value may discard a large part of the tensor information and decrease the
precision of the comparison. To overcome this problem, several groups have pro-
posed methods to utilize the full tensor either for population comparison (Lepore
et al. utilized the Hotelling’s T 2 test on tensors for HIV patients [3], Whitcher
et al. [4] the Cramers test on tensors), or for patient to group comparison (Com-
mowick et al. [5]). These works have demonstrated that a test based on the full
tensor information yields more precise comparisons. Finally, when high quality
data is available (HARDI acquisitions), one may now consider higher order mod-
els such as orientation distribution functions (ODFs) to get improved sensitivity
in crossing fibers regions where the diffusion tensor performs poorly [6].

Independently of their strengths and weaknesses, comparison methods usu-
ally rely on a parametric or permutation statistical test. Such approaches often
require large databases either to ensure that the distribution of the test statistic
matches the hypothesized one or to make the permutation test data indepen-
dent. However, in medical imaging studies, databases are usually small due to
the difficulty to recruit patients and volunteers, and they may be even smaller
when parameters such as age or sex must match between the control database
and the patients. In those cases, the chosen statistical test may become erroneous
and generate either false positive or false negative detections.

In addition, all automatic approaches need a common reference frame that is
often constructed from the healthy subjects by means of non linear registration
(so called atlas construction [7]). However, such registration methods are not
perfect and may be prone to errors due to noise and artifacts. Such errors may
further corrupt the comparison performance.

To tackle these issues, we propose a new methodology for the robust detec-
tion of white matter differences at a patient level. It is based on ideas recently
introduced for non-local means denoising [8] and segmentation [9], adapted for
a patient-to-group comparison of diffusion models that can be represented as
vectors in a vector space (e.g diffusion tensors or ODFs). We present in Section
2 the overall comparison method. We then apply this new method to simulated
data and real data of multiple sclerosis patients demonstrating higher accuracy
and reproducibility for differences detection over state-of-the-art methods.

2 Non-Local Means for the Comparison of Diffusion Data

In the following, we assume that a database ofM images Im has been constituted,
i.e. all these images have been non linearly registered to a common reference
system, and that we are interested in comparing voxel by voxel an image T to
the reference database. We propose an algorithm relying on the non-local means
framework [10] optimized by Coupé et al. for medical image denoising [8] and
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segmentation [9]. For each point x of T , we define a patch B(x) (half size h)
around it and follow these main steps:

– For each image Im, search for patches Bm(xj) similar to the patch B(x) of
T in a neighborhood N(x) around x

– Associate a weight wmj to each patch Bm(xj), depending of the similarity
between B(x) and Bm(xj) (Section 2.1)

– Keep the center voxel Dmj of each patch and associate it to its weight wmj

– Utilize the set of weighted samples to perform the comparison between T
and Im,m ∈ {0, ...,M} (Section 2.2)

This framework has several advantages: it may help to account for potential
registration errors onto the common template for comparison, and it may sig-
nificantly increase the number of samples to perform the voxelwise comparison
even though the database consists of a limited number of images.

2.1 Similarity Weights between Patches

The selection of patches is a crucial point as it will define the relative importance
of each patch in the final differences detection step. We consider that the model
chosen to describe the diffusion of water molecules may be represented as a
vector, e.g. tensors in the Log-Euclidean framework [11] or ODFs on a spherical
harmonics basis [6]. Before comparing patches, a preselection is performed for
speed reasons and to avoid the degeneracy of the patches weights wmj :
1. Compute the Log-Euclidean distance between the covariance matrices ΣB(x)

and ΣBm(xj): if it exceeds the average distance between any two covariance
matrices ΣBm(x) of the database, discard Bm(xj), otherwise proceed to the
next step;

2. Compute Hotelling’s T 2 statistic [12] to test for mean differences between
B(x) and Bm(xj) using the pooled covariance matrix: if it exceeds the aver-
age statistic computed from any two patches Bm(x), discard patch Bm(xj).
For the remaining patches, we then compute their weights. The weight wmj

between two patches B(x) and Bm(xj) is defined as a function of the sum of
squared differences between the two patches:

wmj = e−
1

2β|B(x)|

∑
i∈B(x) ∆

T
i Σ̂−1(x)∆i (1)

where ∆i = Im(i + xj − x) − T (i) are the differences between corresponding
voxels of the patches, |B(x)| is the number of voxels in B(x), β a user-defined
scale parameter and Σ̂(x) is the local noise covariance around x on T . These
weights characterize the similarity between patches and vary between 0 and 1: 1
is reached when the two patches are equal, 0 corresponds to a total disagreement.

Since structures with different orientations may occur, the noise covariance
Σ̂ is estimated locally. Computing it globally over the whole image could indeed
lead to an over-estimation and therefore to biased weights. Coupé et al. [8]
proposed a method to estimate such a local noise variance on scalar valued
images. Here, we extend it to vector-valued images. Σ̂(x) is estimated from
voxels in patch B(x):
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– For each voxel xi in B(x), consider a small neighborhood of N voxels around
it (e.g. the 26 neighbors of xi). Pseudo-residuals ǫxi

are computed as:

ǫxi
=

√

N

N + 1



T (xi)−
1

N

∑

xj∈N(xi)

T (xj)





– The local image noise covariance is defined from these pseudo-residuals:

Σ̂(x) =
1

|B(x)|

∑

xi∈B(x)

ǫxi
ǫTxi

2.2 Comparison of Weighted Data Samples

We have constituted a list of weighted samples S = {S1, . . . , SM} at each voxel x
of T , where Sm = {(Dm0, wm0), . . . , (DmJ , wmJ)}. We now utilize these samples
to confront the patient image to the healthy subjects database. We compute the
weighted mean µx and weighted covariance matrix Σx at each point x as:

µx =
1

∑

i,j wij

∑

i,j

wijDij (2)

Σx =

∑

i,j wij

(

∑

i,j wij

)2

−
∑

i,j w
2
ij

∑

i,j

wij(Dij − µ)(Dij − µ)T

These estimates are very interesting as they take into account the similarity
of each patch in the estimation of the mean and covariance. We then test for
voxelwise differences by computing the Mahalanobis distance at each point:

Z2(Dx, µx, Σx) = (Dx − µx)
TΣ−1

x (Dx − µx) (3)

where Dx is the vector value of the patient image at point x (e.g. log-tensor or
ODF value). Considering there are enough samples, this squared distance follows
a χ2 distribution with d degrees of freedom, where d is the vector dimension,
and a p-value is computed from Z2 as:

px = 1− Fχ2
d

(

Z2(Dx, µx, Σx)
)

(4)

where Fχ2
d
is the cumulative distribution function of a χ2 distribution with d

degrees of freedom.

3 Results

Our method has two main parameters: the patch size and the search neighbor-
hood. The smaller the sizes, the closer the method gets to [5]. On the contrary,
large sizes tend to increase the number of false negatives. We fixed the parame-
ters on the basis of qualitative results on several patients: patch size of 3× 3× 3
(h = 1) and a neighborhood for patch search of 4 voxels in every direction. In
addition, we have set β - Eq. (1) - to 1 as is suggested by Coupé et al. [8].
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3.1 Experiments on Simulated Data

We first present a quantitative study on simulated images. Starting from a refer-
ence diffusion tensor image (Fig. 1.a), 90 images were simulated by adding Rician
noise to the DWI. Then, a patient image was simulated by inserting lesions, i.e.
tensors swollen in the two non principal directions. To illustrate the detection
power of our method and its robustness to database size, we randomly selected
from the 90 images subgroups of 15 to 90 images and used them as the reference
database to compare to the simulated patient. Fig. 1 shows the average Dice
score results of our method (M2) and the one proposed in [5] (M1).

(a) (b)

(c) (d) (e)

Fig. 1. Quantitative Detection Power on Simulated Data. Left: Illustration of
one noisy reference database image (a) and the simulated lesions image (b), as well
as results of detection utilizing 15 images from the database with M1 (c) and M2 (d).
The right side (e) presents the dice scores obtained by each method as a function of
the number of samples in the database. Legend: blue - M1, red - M2.

This figure illustrates well the issues arising when using a small database for
differences detection. As the sample size decreases, M1 performs worse, mainly
due to a large number of false positives being detected (see Fig. 1.c). These
errors mainly stem from the small size of the database that weakens the power
of the test. Instead, M2 obtains much better and more steady scores, which
demonstrate its robustness. M2 performs better as we are able from a small
database to increase the number of samples used for the comparison.

3.2 Experiments on Multiple Sclerosis Data

We have utilized the LONI ICBM database of healthy control diffusion images 1.
This database is composed of 160 control images: T1-weighted images (isotropic

1 https://ida.loni.ucla.edu/login.jsp?project=ICBM
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1mm3) and diffusion images acquired on a 3T MRI scanner (b-value of 1000
s/mm2, 30 directions with a resolution of 2x2x2 mm3). This control subject
database was compared to a database of 10 MS patient images acquired following
a similar protocol with the same parameters. As a first step before processing,
the diffusion tensor images are first registered to the T1-w images using a global
affine transform [13] and a non linear free-form deformation [14] with few control
points to recover EPI distortions. Then, a DTI atlas is computed from the control
subjects DTI using Guimond’s et al. atlas construction method [7], combined to
a non linear tensor-based registration algorithm.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Qualitative Comparison on Real MS Patient Images. Comparison of
the score maps (Eq. (3)) and differences detected by the two methods M1 (b,c) and
M2 (d-f). (a): T1 image of a patient, (b,e): score maps for M1 and M2, (d): number
of patches kept for each voxel by M2 (from blue: low number, to red: large number),
(c,f): differences detected at the 95% level.

Each DTI patient image is then registered onto the atlas and compared voxel
by voxel to the database of controls either with the method proposed in [5] M1

or the proposed method M2. We present in Fig. 2 a representative qualitative
comparison of the results obtained by the two methods utilizing only a subgroup
of 40 images from the controls subjects database.

We can notice on this figure that M1 is affected by the small size of the
database and the registration errors, resulting in a large number of false positive
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detections in Fig. 2.b. On the contrary, adding additional patches as it is done
in M2 leads to many more patches being considered (see Fig. 2.d) and possibly
more accurate ones if the registration errors were in the bounds of the local
neighborhood. As a consequence, the detection results in Fig. 2.c reveal much
less false positives while keeping the detection power on the MS lesions.

Finally, we present a quantitative evaluation of the reproducibility of the
obtained score maps when the control subjects database changes. To do so, we
have, for each patient, repeatedly selected NDb images out of the 160 images of
the database. We have then computed for each of these sub-databases a score
map deriving either from M1 or M2. To evaluate the variability of the scores,
we have chosen to utilize the average of the voxelwise standard deviation of
these maps. We present in Table 1 the average over all images of these standard
deviation values for NDb = 20, 40 and 80 images.

Table 1. Reproducibility of Comparison Results with Changing Databases.
Average variation of z-scores over all voxels of all images for the compared methods.

NDb = 20 NDb = 40 NDb = 80

Method M1 0.737 0.373 0.164

Method M2 0.627 0.336 0.155

This table shows that the obtained standard deviations are significantly lower
for M2 (paired t-tests, p-value of 0.001). This indicates a better reproducibility
of the results when considering our non-local approach. This confirms the robust-
ness of the proposed method and the interest of utilizing neighboring patches,
especially when performing a comparison against a very small database.

4 Conclusion

We have presented a new method for the robust detection of differences be-
tween a patient diffusion image and a population of control subject diffusion
images. It relies on the search for additional patches in a local neighborhood of
each voxel utilizing the non-local means framework adapted to diffusion tensor
images in the Log-Euclidean space. We have demonstrated both on simulated
and real datasets that this allows to detect more accurately differences even if
the reference database is small, and to be more robust to potential registration
errors. Moreover, it may be applied to any type of diffusion data that can be
represented as vector values such as ODFs in a spherical harmonics basis, which
should further increase detection performance in regions with crossing fibers.

Future works will include an in-depth study of weights definition for oriented
structures. The weights may be erroneous in patches where different orienta-
tions are present, which could lead to decreased performance. Accounting for
these changes in orientations will therefore further improve comparison quality.
We will also investigate other approaches to use the selected patches to detect
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differences. For example, our method could be coupled with a robust compari-
son algorithm such as the one proposed by Commowick et al. for tensors [15].
Accounting for spatial correlation between the selected patches could also bring
further improvements to the comparison. Finally, we will also investigate how to
extend our approach to robust population comparison.
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