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Abstract

Nonsense Mediated Decay (NMD) degrades transcripts that contain a premature STOP codon resulting from
mistranscription or missplicing. However NMD’s surveillance of gene expression varies in efficiency both among and
within human genes. Previous work has shown that the intron content of human genes is influenced by missplicing events
invisible to NMD. Given the high rate of transcriptional errors in eukaryotes, we hypothesized that natural selection has
promoted a dual strategy of ‘‘prevention and cure’’ to alleviate the problem of nonsense transcriptional errors. A prediction
of this hypothesis is that NMD’s inefficiency should leave a signature of ‘‘transcriptional robustness’’ in human gene
sequences that reduces the frequency of nonsense transcriptional errors. For human genes we determined the usage of
‘‘fragile’’ codons, prone to mistranscription into STOP codons, relative to the usage of ‘‘robust’’ codons that do not generate
nonsense errors. We observe that single-exon genes have evolved to become robust to mistranscription, because they show
a significant tendency to avoid fragile codons relative to robust codons when compared to multi-exon genes. A similar
depletion is evident in last exons of multi-exon genes. Histone genes are particularly depleted of fragile codons and thus
highly robust to transcriptional errors. Finally, the protein products of single-exon genes show a strong tendency to avoid
those amino acids that can only be encoded using fragile codons. Each of these observations can be attributed to NMD
deficiency. Thus, in the human genome, wherever the ‘‘cure’’ for nonsense (i.e. NMD) is inefficient, there is increased reliance
on the strategy of nonsense ‘‘prevention’’ (i.e. transcriptional robustness). This study shows that human genes are exposed
to the deleterious influence of transcriptional errors. Moreover, it suggests that gene expression errors are an
underestimated phenomenon, in molecular evolution in general and in selection for genomic robustness in particular.
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Introduction

In mammalian transcripts, premature termination codons

(PTCs) are normally detected by one of two NMD pathways

[1]. The primary, and more efficient, NMD pathway is intron-

dependent and relies on the presence of exon junction complexes

(EJCs) deposited 20-24 nts upstream of the exon-exon junctions

created following splicing of the mRNA (EJC-dependent NMD). A

second, less efficient, intron-independent pathway operates in

mammals and requires the presence of polyA-binding protein

(PABP-dependent NMD). In contrast, in Drosophila melanogaster,

PABP-dependent NMD is the primary pathway in operation since

only a minority of spliced transcripts are under the surveillance of

EJC-dependent NMD [2,3]. The diversity of NMD mechanisms in

eukaryotes is further illustrated among yeast species. In Saccharo-

myces cerevisiae only the intron-independent NMD pathway is

known to operate. Finally, in Schizosaccharomyces pombe, although

intron-dependent NMD is active it is believed to be EJC-

independent [4].

PTCs may arise from heritable nonsense mutations in the

germline or they can be created by transient errors in transcription

and splicing. Previous attention has been paid to splicing errors as

a source of nonsense errors since introns retained in the mature

mRNA can either introduce an intron-encoded PTC or induce a

frameshift leading to the formation of an exon-derived PTC [5].

However, mistranscription is likely to be a significant source of

nonsense errors. Although few direct estimates are available,

assuming a transcriptional error rate of 1025 errors per nucleotide

[6,7] leads to the estimate that 0.05%-0.5% of transcripts of any

given gene are expected to contain PTCs due to mistranscription

[8]. Moreover, this is a highly conservative estimate since the

single measurement available for a metazoan suggests that the rate

of mistranscription may be as high as 1023 errors per nucleotide

[9].

The possible consequences of translating PTC-containing

transcripts include loss of functional molecules, dominant negative

interactions and gain-of-function activities. The deleterious effects

of these outcomes are highlighted by the fact that, in mammals,

knockouts of the core effectors of NMD have lethal effects [10].

NMD mitigates the negative effects of PTC-containing

transcripts and hence can be considered as providing a partial

‘‘cure’’ for transcriptional errors. In mammals, the efficiency of

NMD in detecting PTCs varies both among and within genes.

Single-exon genes appear insensitive to NMD [11,12] owing to the
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fact that these genes are served only by the inefficient PABP-

dependent pathway and are invisible to the more potent EJC-

dependent NMD pathway. As a result, PTC-bearing transcripts of

single-exon genes are more likely to be translated into truncated

protein species with toxic effects. Therefore, it follows that

transcriptional errors creating nonsense codons are likely to be

more deleterious in single-exon than in multi-exon genes. Equally,

in multi-exon genes, the EJC-dependent NMD pathway is thought

to only detect PTCs lying 50–55 nts upstream of the last exon-

exon junction [13]. Consequently, like single-exon genes, last

exons of multi-exon genes are invisible to EJC-dependent NMD in

the mammalian genome and are served only by the PABP-

dependent NMD pathway.

In this study we propose that natural selection has promoted a

dual–strategy of prevention and cure to deal with nonsense errors

in gene expression. Specifically we predict that selection

compensates for the partial efficiency of NMD through a

preventative approach of ‘‘transcriptional robustness’’ that mini-

mizes the consequences of transcriptional error. We investigated

whether human genes eschew codons that can be changed into a

stop codon by one mutation (‘fragile codons’ [14]) in favour of

codons robust to nonsense errors during mistranscription (‘robust

codons’). The standard genetic code comprises 18 fragile codons

and 43 robust codons (Figure 1). Of the 20 amino-acids, six are

encoded exclusively by fragile codons (‘‘fragile amino acids’’), ten

are encoded exclusively by robust codons (‘‘robust amino acids’’)

and four can be encoded by codons of either type (‘‘facultative

amino acids’’). This suggests two distinct mechanisms by which the

transcriptional robustness of a gene can be increased by natural

selection. First, at the level of synonymous codon usage fragile

codons can be avoided when a robust synonym exists. Second, at

the protein level fragile amino-acids can be counterselected.

Using comparisons between single and multi-exon genes

(intergenic) and between different exons of multi-exons genes

(intragenic), we show how each of these mechanisms is used to

increase transcriptional robustness of mammalian genes. Single-

exon genes should provide the clearest signal of transcriptional

robustness and thus provide a ‘‘litmus test’’ of this hypothesis.

Therefore, our first, intergenic, analysis contrasts fragile codon

usage and fragile amino-acid usage in single-exon genes and multi-

exon genes. We performed a second, intragenic, analysis at the

exon-level by taking advantage of the fact that, in mammals, last

exons of multi-exon genes, like single-exon genes, are invisible to

EJC-dependent NMD. Finally, we demonstrate that the two

hallmarks of transcriptional robustness detectable in mammals

(synonymous codon usage and amino-acid usage) can also be

detected in the genes of fission yeast (Schizosaccharomyces pombe) in

which a mechanistically distinct form of intron-dependent

Nonsense Mediated Decay appears to be active.

Results/Discussion

The inefficiency of NMD in single-exon genes is mitigated
through the mechanism of synonymous codon choice

We used an intergenic comparison to focus initially on the first

mechanism to achieving transcriptional robustness and quantified

it using a normalized fragile codon usage (NFCU) metric. Being

mutational neighbours of STOP codons, the 18 fragile codons are

relatively AT-rich. It is known that GC-content varies along

chromosomes and that these variations in base composition affect

both synonymous codon usage and amino-acid usage. These

variations are particularly strong within mammalian genomes (the

so-called isochore genome organization). To account for both this

compositional bias and the influence of amino acid content, we

used codon usage among facultative amino acids as the basis of the

NFCU metric. NFCU measures the relative usage of fragile and

robust codons among 5 groups of codons where all codons in a

given group (i) have the same GC-content and (ii) are synonymous.

We measured NFCU in 2422 single-exon genes and in 20563

multi-exon genes in the human genome. We observe a 8%

depletion of fragile codons in single-exon genes that is highly

significant (p,10215, Wilcoxon rank sum test; Table 1). Similarly,

in mouse, measuring NFCU in 3582 single-exon genes and 20263

multi-exon genes reveals a highly significant 11% depletion of

fragile codons in single-exon genes. Both results provide

preliminary support for our hypothesis. We performed a negative

control by repeating the analysis in D.melanogaster in which both

gene sets should on average be equally well served by NMD since

the intron-dependent NMD pathway shows much reduced activity

in fly [2,3]. In the fly genome, the depletion of fragile codons in

single-exon compared to multi-exon genes is almost null (2%)

(Table 1) and, in contrast to human and mouse, can be explained

by transcript length differences (see below).

Notably, repeating the analysis without controlling for amino

acid usage or nucleotide composition but with the benefit of higher

coverage of codons, yields essentially the same result (Text S1,

Result A; Table S1).

The invisibility of histone genes to NMD is mitigated by
synonymous codon choice

Interestingly, one group of genes falls entirely outside of the

range of NMD’s surveillance. Replication-dependent histones

contain neither introns in their coding sequences nor polyA-tail in

their mRNAs [15]. Therefore, histone genes represent a blind-spot

for both mammalian NMD pathways [12]. According to our

hypothesis histone genes should represent the most transcription-

ally robust genes in the mammalian genome since PTC-containing

transcripts of their genes will not be recognized and degraded

before translation. In agreement with this, in human we see that

Author Summary

In biological systems mistakes are made constantly
because the cellular machinery is complex and error-
prone. Mistakes are made in copying DNA for transmission
to offspring (‘‘genetic mutations’’) but are much more
frequent in the day-to-day task of gene expression.
Genetic mutations are heritable and therefore have long
been the almost exclusive focus of evolutionary genetics
research. In contrast, gene expression errors are not
inherited and have tended to be disregarded in evolu-
tionary studies. Here we show how human genes have
evolved a mechanism to reduce the occurrence of a
specific type of gene expression error—transcriptional
errors that create premature STOP codons (so-called
‘‘nonsense errors’’). Nonsense errors are potentially highly
toxic for the cell, so natural selection has evolved a
strategy called Nonsense Mediated Decay (NMD) to ‘‘cure’’
such errors. However this cure is inefficient. Here we
describe how a preventative strategy of ‘‘transcriptional
robustness’’ has evolved to decrease the frequency of
nonsense errors. Moreover, these ‘‘prevention and cure’’
strategies are used interchangeably—the most transcrip-
tionally robust genes are those for which NMD is most
inefficient. Our work implies that gene expression errors
play an important role as supporting actors to genetic
mutations in molecular evolution, particularly in the
evolution of robustness.

Preventing Dangerous Nonsense in Transcription
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NFCU in histone genes is 32% lower than that of multi-exon genes

(Table 1) and 26% lower than that of other single-exon genes.

Similarly, in mouse we see that NFCU in histone genes is 53%

lower than that of multi-exon genes (Table 1) and 47% lower than

that of other single-exon genes. Notably, we found that histone

genes in fly show a 30% depletion of NFCU compared to other

single exon genes in accordance with the fact that histone genes

are not served by NMD in fly (Table 1).

The inefficiency of NMD in single-exon genes is also
mitigated through the mechanism of amino-acid choice

The analysis of fragile codon usage controlling for GC and

amino-acid usage (NFCU) shows that the depletion of fragile

codons in human and mouse single-exon genes is not a

consequence of amino acid usage. Therefore, we can ask whether

there is evidence for usage of the second mechanism of

transcriptional robustness by testing whether the amino acid usage

of single-exon gene products reduces the frequency of nonsense

transcriptional errors. Accordingly, we observed that the usage of

fragile amino acids (FAU) among proteins encoded by single-exon

genes is 17% lower than those of multi-exon genes in human and

21% lower in mouse whereas no difference is observed in fly

(Table 2). Therefore the constraints on codon usage in human

genes imposed by the need for transcriptional robustness appear to

be strong enough to influence their amino-acid sequences.

We repeated this analysis to control for GC content differences

between single-exon and multi-exon genes. We used a normalized

fragile amino-acid usage metric (NFAU) that considers the relative

usage of fragile amino-acids among two groups of amino-acids that

are encoded by codons having the same GC-content. Once GC

content is controlled for we observe that the fragile amino acid

content of single-exon gene products is 12% lower than those of

multi-exon genes in human and 16% lower in mouse whereas a

2% enrichment is seen in fly (Table 3).

The correlation between both transcriptional robustness
mechanisms is dependent on selective constraint

Thus far our analysis has demonstrated that, in human and

mouse, single exon genes bear two hallmarks of transcriptional

robustness relative to multi-exon genes (i.e. depletion of fragile

Figure 1. Sense codons differ in their propensity for conversion to STOP codons. The Standard Genetic Code contains 18 fragile codons
(shaded) that can be changed into a STOP codon by a single point-mutation and whose mistranscription can therefore generate nonsense errors. The
remaining 43 sense codons are ‘‘robust’’ to such errors. Six amino acids are encoded exclusively by fragile codons (‘‘fragile amino acids’’, shaded), ten
amino acids are encoded exclusively by robust codons (‘‘robust amino acids’’, unshaded) and four amino acids can be encoded either by robust or
fragile codons (‘‘facultative amino acids’’, hatched shading).
doi:10.1371/journal.pgen.1002276.g001

Preventing Dangerous Nonsense in Transcription
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codons and amino acids). These hallmarks highlight two

mechanisms by which natural selection can prevent nonsense

transcriptional errors: at the level of gene sequence through

synonymous codon choice and at the level of protein sequence

through amino-acid choice. Provisionally, we can attribute this

observation to the inactivity of EJC-dependent NMD in single-

exon genes. However, since all biological processes are inherently

inefficient, EJC-dependent NMD is inevitably also suboptimal.

This raises the question whether there is a genome-wide

requirement for transcriptional robustness. One approach to

answering this question is to ask whether, among all human genes,

there is correlated usage of the two mechanisms (codon-level and

protein-level) to achieving transcriptional robustness.

However, for a given gene the nature of the correlation between

these two mechanisms is likely to depend on the relative level of

constraint on synonymous and non-synonymous sites as measured

by Ka/Ks (the ratio of non-synonymous to synonymous substitu-

tion rates). For the vast majority of human genes, estimates of Ka/

Ks lie in the range 0-1. Broadly, we might expect two different

patterns: (i) For genes with Ka/Ks close to 1, synonymous and

non-synonymous sites are equally modifiable. Therefore, where

nonsense errors are deleterious, natural selection can use both

mechanisms to increase transcriptional robustness (i.e. both fragile

codons and fragile amino-acids can be depleted) leading us to

expect an overall positive correlation between fragile codon usage

and fragile amino-acid usage. (ii) For genes with Ka/Ks close to 0

there is strong selective constraint on the protein sequence and

non-synonymous sites are much less modifiable than synonymous

sites. Here natural selection can use only one mechanism to

increase transcriptional robustness: that of synonymous codon

choice since transcriptional robustness can be less readily increased

through amino-acid choice. Notably, the protein products of many

such genes might be enriched in fragile amino acids due to

functional requirements e.g. proteins involved in signal-transduc-

tion tend to be tyrosine rich and zinc-finger proteins and proteins

enriched in disulfide bonds are cysteine rich. If nonsense errors are

deleterious in such genes then there should be strong counter-

selection of fragile codons to compensate for functionally-

Table 1. Normalized fragile codon content (NFCU) (controlling for GC-content and amino-acid usage) of multi-exon genes and
single-exon genes in the human, mouse, and fly genomes.

PABP-dependent
NMD

EJC-dependent
NMD Genes NFCU P-value Ratio

Human genes

Multi-exon + + 20563 0.47 1.00

(0.41–0.54)

Single-exon: All +/2 2 2422 0.43 ,10215 0.92

(0.34–0.51)

Non-histone + 2 2367 0.43 ,10215 0.92

(0.34–0.51)

Histone 2 2 55 0.32 ,1029 0.68

(0.23–0.45)

Mouse genes

Multi-exon + + 20263 0.47 1.00

(0.40–0.53)

Single-exon: All +/2 2 3582 0.42 ,10215 0.89

(0.33–0.51)

Non-histone + 2 3533 0.42 ,10215 0.89

(0.33–0.51)

Histone 2 2 49 0.22 ,10215 0.47

(0.14–0.33)

Fly genes

Multi-exon + 2 11643 0.54 1.00

(0.48–0.60)

Single-exon: All +/2 2 2498 0.53 0.0002 0.98

(0.45–0.62)

Non-histone + 2 2466 0.53 0.002 0.98

(0.45–0.62)

Histone 2 2 32 0.38 ,1029 0.69

(0.38–0.38)

Single-exon genes were first treated as a single group to determine the impact of EJC-dependent NMD on fragile codon content and subsequently subdivided into
histone and non-histone genes to consider the impact of PABP-dependent NMD on fragile codon content. NFCU, median (first and third quartiles) of fragile codon
content normalized for GC-content and amino acid usage; P-value, significance of the comparison with multi-exon genes determined by two-sided Wilcoxon-rank sum
test that tests for a linear shift in distribution locations; Ratio, median NFCU relative to the median NFCU for multi-exon genes.
doi:10.1371/journal.pgen.1002276.t001

Preventing Dangerous Nonsense in Transcription
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determined fragile amino-acid content. For genes under strong

selective constraint at the amino-acid level we would therefore

expect an overall negative correlation between fragile codon usage

and fragile amino-acid usage. Among genes with strong selective

constraint on protein sequence, the magnitude of this negative

correlation is likely to depend on the abundance of genes with

functions requiring high fragile amino-acid content.

Considering all human genes (single-exon and multi-exon genes)

we see a positive correlation between both transcriptional

robustness mechanisms (Spearman correlation for NFCU versus

NFAU: rho = 0.06, n = 22985, p,10215). More specifically, for

human genes having mouse orthologs we can determine how this

correlation depends on the strength of selective constraint. We

observe that the sign and magnitude of the correlation between

Table 2. Fragile amino acid usage (FAU) of proteins encoded by multi-exon genes and single-exon genes in the human, mouse,
and fly genomes.

PABP-dependent
NMD

EJC-dependent
NMD Genes FAU P-value Ratio

Human genes

Multi-exon + + 20573 0.23 1.00

(0.20–0.27)

Single-exon: +/2 2 2424 0.19 ,10215 0.83

(0.16–0.24)

Mouse genes

Multi-exon + + 20284 0.24 1.00

(0.21–0.27)

Single-exon: +/2 2 3589 0.19 ,10215 0.79

(0.16–0.24)

Fly genes

Multi-exon + 2 11643 0.23 1.00

(0.20–0.26)

Single-exon: +/2 2 2498 0.23 0.97 1.00

(0.20–0.26)

FAU, median (first and third quartiles) of fragile amino acid content of encoded proteins; P-value, significance of the comparison with multi-exon genes determined by
two-sided Wilcoxon-rank sum test that tests for a linear shift in distribution locations; Ratio, median FAU relative to the median FAU for multi-exon genes.
doi:10.1371/journal.pgen.1002276.t002

Table 3. Normalized fragile amino acid usage (NFAU) (controlling for GC-content) of proteins encoded by multi-exon genes and
single-exon genes in the human, mouse, and fly genomes.

PABP-dependent
NMD

EJC-dependent
NMD Genes NFAU P-value Ratio

Human genes

Multi-exon + + 20573 0.44 1.00

(0.39 – 0.48)

Single-exon +/2 - 2424 0.38 ,10215 0.88

(0.32 – 0.47)

Mouse genes

Multi-exon + + 20284 0.43 1.00

(0.39 – 0.48)

Single-exon +/2 - 3588 0.36 ,10215 0.84

(0.31 – 0.46)

Fly genes

Multi-exon + 2 11643 0.41 1.00

(0.37 – 0.46)

Single-exon +/2 2 2498 0.42 ,1024 1.02

(0.37 – 0.48)

NFAU, median (first and third quartiles) of normalized fragile amino acid content of encoded proteins; P-value, significance of the comparison with multi-exon genes
determined by two-sided Wilcoxon-rank sum test that tests for a linear shift in distribution locations; Ratio, median NFAU relative to the median NFAU for multi-exon
genes.
doi:10.1371/journal.pgen.1002276.t003
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both transcriptional robustness mechanisms (codon-level and

protein-level) is dependent on the strength of selective constraint

on protein sequence in agreement with our prediction (Figure 2).

First, for genes towards the upper end of the Ka/Ks range, our

first prediction holds. Thus among genes under weaker selective

constraint at the protein level (mean Ka/Ks for the fourth quartile

of selective constraint = 0.38), we observe a positive correlation

between normalized fragile codon usage (NFCU) and normalized

fragile amino-acid usage (NFAU) (Figure 2). In other words, for

genes in which non-synonymous sites are, on average, only 60%

less modifiable than synonymous sites, both transcriptional

robustness mechanisms are available to selection. Moreover, it is

striking that among the top three quartiles of Ka/Ks the positive

correlation between both mechanisms increases in magnitude with

weakening selective constraint (Spearman’s rho (p-values) for

NFCU versus NFAU in Ka/Ks quartiles 2-4: 0.050 (p = 0.001);

0.068 (p,1025); 0.076 (p,1026)). Therefore with increasing

‘flexibility’ of the protein sequence there is an increasing tendency

for transcriptional robustness to be realized not only through

synonymous codon choice but also through amino-acid choice.

However, for genes under strong selective constraint at the

protein level (mean Ka/Ks for the first quartile of selective

constraint = 0.03) the correlation between transcriptional

robustness mechanisms is negative (Spearman’s rho for NFCU

versus NFAU in Ka/Ks quartile 1: -0.025 (p = 0.09); Figure 2). For

such genes non-synonymous sites are, on average, 97% less

modifiable than synonymous sites and a requirement for

transcriptional robustness can only be accommodated at the level

of synonymous codon usage and not at the level of amino-acid

usage.

In summary, the fact that the genome-wide correlation between

usage of fragile codons and fragile amino-acids depends on

selective constraint points to a universal requirement for

transcriptional robustness to nonsense errors among human genes.

The absence of splicing constraints cannot explain the
lower fragile codon content of single-exon genes

A simple interpretation of the lower fragile codon content of

single-exon genes is that this observation may be due to differences

in splicing-related constraints between single and multi-exon

genes. Splicing requires regulatory sequences located in exons

known as exonic splicing enhancers (ESEs). Since these hexamer

sequences overlap codons, their presence imposes additional

constraints on the coding sequence of multi-exon genes [16] in

contrast to the coding sequence of single-exon genes that have no

such splicing constraints. Therefore, if the nucleotide composition

of ESEs is such that they tend to encode fragile codons then a

simple difference in ESE density between single and multi-exon

genes could provide a trivial explanation for the relative

enrichment of fragile codons in the latter group.

We found that ESEs indeed tend to encode fragile codons and

that ESEs are depleted in single-exon genes. However the

difference in fragile codon usage between single and multi-exon

genes persists when this is controlled for showing that our

Figure 2. The genome-wide correlation between transcriptional robustness strategies depends on selective constraint. Pairwise
correlation between normalized fragile codon usage (NFCU) and normalized fragile amino-acid usage (NFAU) for 17421 human genes with an
ortholog in mouse. Human genes were binned by selective constraint (Ka/Ks) estimated using the pairwise alignment with their mouse ortholog and
for each quartile of Ka/Ks (Q1, lowest, to Q4, highest), Spearman’s correlation between normalized fragile codon usage and normalized fragile amino-
acid usage (rNFCU.NFAU) was calculated. The vertical extent of the bar indicates the 95% confidence interval for each correlation.
doi:10.1371/journal.pgen.1002276.g002
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observation is not a side-effect of differences in splicing related

constraints (Text S1, Result B; Figure S1).

The lower fragile codon content of single-exon genes
cannot be explained by selection for translationally
optimal codons

The patterns of fragile codon usage in single-exon and multi-

exon genes could be due to a more familiar source of codon usage

bias that has nothing to do with their propensity for nonsense

errors. In fly, selection for translational efficiency or accuracy leads

to the preferential usage of optimal codons in highly expressed

genes [17]. Moreover, recent evidence suggests that such selection

might also operate on mammalian genes [18–20]. The possible

influence of selection for translational efficiency raises two

potential concerns for our analysis. First, in human, it might

create an artifactual difference in fragile codon usage of the

magnitude we observe between single and multi-exon genes

leading us to falsely infer a difference in transcriptional robustness

between these gene sets. Second, in fly, it might obscure a real

difference in transcriptional robustness by homogenizing fragile

codon usage between single and multi-exon genes and therefore

might invalidate the use of the Drosophila genome as a negative

control.

Among codons we see no association in either human or fly

between fragility with respect to nonsense errors and translational

optimality (see Text S1, Result C). Nevertheless, to account for the

possibility that there is an association among genes between

transcriptional robustness and selection for translational accuracy

we repeated the analysis of fragile codon content in human and fly

and controlled for the fraction of optimal codons per gene (Fop)

[17,21].

Comparing human single and multi-exon genes binned in this

way revealed that the difference in both FCU and NFCU persists

independently of their optimal codon usage (see Text S1, Result C;

Figure S2). Thus in human, the difference in fragile codon usage

between single and multi-exon genes is not an artifact of selection

for translationally optimal codon use. Additionally, in fly, the

control for optimal codon usage has no influence on the

magnitude of the difference between single and multi-exon genes

with respect to either FCU or NFCU (see Text S1, Result C;

Figure S3). Thus in fly, selection for translationally optimal codons

does not mute any signal for transcriptional robustness among

single-exon genes.

Intragenic comparison shows that fragile codons are
depleted in last exons of human multi-exon genes

The fact that only PTCs lying more than ,50–55 nts upstream

of the last Exon Junction Complex (EJC) are thought to be

detected by the EJC-dependent NMD pathway suggests that,

similarly to single-exon genes, last exons of multi-exon genes

constitute a blind-spot for EJC-dependent NMD and are served

only by PABP-dependent NMD. Although a mechanism for

detection of PTCs downstream of the last EJC has been described

(‘‘fail-safe’’ NMD), its activity is believed to be restricted to

exceptional targets [22]. We therefore hypothesized that last exons

of multi-exon genes should show a depletion of fragile codons

comparable to that seen in single-exon genes.

For human multi-exon genes whose coding sequence is

completely contained within the last exon we see a significant

8% depletion of fragile codons compared to multi-exon genes

having at least two coding exons (see Text S1, Result D). We next

used an intragenic comparison to ask whether the last exons of all

human multi-exon genes show a similar depletion of fragile

codons. To address this we performed an exon-based analysis of

human multi-exon genes that have a reliably annotated last exon

and at least one upstream coding exon. We created one group of

last exons and one group of upstream exons and compared these

with respect to NFCU. We found that fragile codons exhibited a

significant (p = 0.0002, Wilcoxon rank-sum test) 7% depletion

among last exons (n = 12390, median NFCU = 0.47) compared to

upstream exons (n = 112789, median NFCU = 0.50) (Table 4). We

repeated the analysis in mouse and observed a 8% depletion of

fragile codons (p = 0.002, Wilcoxon rank-sum test) among last

exons (n = 13265, median NFCU = 0.46) compared to upstream

exons (n = 132678, median NFCU = 0.50). As a control we

performed the same analysis on Drosophila multi-exon genes in

which NMD should be equally efficient in upstream and last

exons. In accordance with our expectation we saw no depletion of

fragile codons among last exons (n = 6304, median NFCU = 0.53)

compared to upstream exons (n = 25686, median NFCU = 0.53) of

Drosophila multi-exon genes.

These results were confirmed by an analysis based on matching

the last exon of each human multi-exon gene with the upstream

sequence of the same gene. There are 12324 human multi-exon

genes with reliably annotated last exons and for which NFCU is

defined in both the last exon and in the upstream sequence.

Among the 12265 genes for which NFCU differs between these

two regions, for 6599 (54%) fragile codon content is lower in the

last exon than in the upstream sequence whereas in 5666 genes

NFCU in the last exon is greater than in the upstream sequence

(p,10216, binomial test). Considering NFCU for all 12324 pairs of

upstream and last exons showed that their fragile codon content is

significantly different (p,10215, Wilcoxon signed-rank test).

Notably, we found that the depletion of fragile codons in last

exons of human multi-exon genes can not be explained by the

different splicing requirements for the final exon of transcripts [23]

(see Text S1, Result E).

Intragenic depletion of fragile codons commences
beyond the boundary of EJC–dependent NMD activity

The depletion of fragile codons in last exons is particularly

striking given the fact that a reduction in the selective costs of

premature peptide truncation in last exons might mute any signal

of transcriptional robustness caused by inefficient NMD in these

exons. In other words, if NMD was equally efficient in upstream

and last exons we would expect fragile codons to be enriched in

last exons because PTCs generated by mistranscription in last

exons are, on average, closer to the normal termination codon

(NTC). If these PTCs remain undetected by NMD, the resultant

short peptide truncations should have trivial fitness consequences

compared to longer peptide truncations caused by undetected

PTCs in upstream exons. Consistent with this, the fragile codon

content of last exons of human multi-exon genes (median

NFCU = 0.47) is greater than that of human single-exon genes

(median NFCU = 0.43) despite the fact that both are invisible to

EJC-mediated NMD.

We attempted to control for the effect of trivial peptide

truncation by analyzing NFCU in regions on either side of the

boundary of EJC-dependent NMD but located at least 50 codons

away from the normal termination codon. We focused on multi-

exon genes having reliably annotated last exons longer than 100

codons and having at least 50 codons in the NMD-competent

region of upstream exons (Figure 3). Specifically, for each multi-

exon gene we calculated NFCU in a 39 window comprising the

first 50 codons encoded by the last exon and contrasted this with

NFCU calculated from a neighbouring 50-codon 59 window

ending 50 nts upstream of the last exon-exon junction. For human
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multi-exon genes the 39 window lies in the NMD-compromised

region (invisible to EJC-dependent NMD) and the 59 window lies

in the NMD-competent region (visible to EJC-dependent NMD).

The boundary between NMD-competent and NMD-compro-

mised regions of human multi-exon genes is described as lying 50–

55 nts upstream of the last exon-exon junction (the ‘‘50- to 55- nts

rule’’) but the universality of this rule is unclear in the light of more

recent genome-wide observations [24] and individual gene studies

[25]. Consequently, the parameter settings for positioning these

windows were chosen to reflect the uncertainty in the position of

this boundary.

In this analysis we saw a 10% reduction in fragile codon density

in 39 (NMD-compromised) windows compared to 59 (NMD-

competent) windows (n = 2616; 59 windows, median NFCU =

0.50; 39 windows, median NFCU = 0.45; p = 0.016, Wilcoxon

rank-sum test). As a negative control we repeated this analysis on

Drosophila multi-exon genes in which EJC-dependent NMD shows

reduced activity implying that surveillance of nonsense errors

should be equally efficient in the 59 and 39 windows. As expected

we saw no difference in fragile codon density between these

window sets (n = 2420; 59 windows, median NFCU = 0.5; 39

windows, median NFCU = 0.5; p = 0.199, Wilcoxon rank-sum

test).

We repeated this test to account for the reduced density of ESEs

in human last exons by partitioning the codons in each window

into those that overlap ESEs and those external to ESEs and then

recalculating NFCU. Both analyses qualitatively agreed with the

full analysis considering all 50 codons in each window (data not

shown).

In summary, we see a consistent pattern of depletion of fragile

codons in the last exons of human multi-exon genes when

compared with upstream exons. This accords with their status as

NMD-compromised regions that are invisible to EJC-dependent

NMD and visible only to the PABP-dependent NMD pathway.

The selective pressure to avoid fragile codons in last exons

imposed by the requirement for transcriptional robustness is likely

to be partly offset by increased tolerance of PTCs lying close to the

NTC. Nevertheless, transcriptional robustness appears to be an

important determinant of codon choice in the last exons of human

multi-exon genes as well as in single-exon genes.

Depletion of fragile codons is due primarily to inactivity
of EJC–dependent NMD but also to reduced efficiency of
PABP–dependent NMD

Since transcriptional robustness is likely to be a consequence of

reduced NMD potency we can attempt to dissect the relative

contributions to this phenomenon of each of the two mammalian

NMD pathways. The large depletion of fragile codons in histone

genes relative to other single-exon genes (Table 1) suggests that

much of the variation in transcriptional robustness among and

within human genes might be explained by variation in the

efficiency of PABP-dependent NMD. Notably, the ability of this

pathway to detect PTCs increases with the distance between the

PTC and the polyA-binding protein (PABP) [1]. Single-exon genes

produce shorter mRNAs than multi-exon genes (the coding

sequences (CDS) of human single-exon genes and multi-exon

genes have a median length of 534 nts and 1203 nts, respectively).

Multi-exon genes may therefore be subject to more potent NMD

than single-exon genes owing simply to more efficient surveillance

by the PABP-dependent NMD pathway. This follows from the fact

that, in multi-exon genes, any PTCs formed by mistranscription

will be, on average, more distant from the PABP and thus will

elicit PABP-dependent NMD more efficiently.

We investigated whether decreased efficiency of PABP-depen-

dent NMD alone is responsible for the greater transcriptional

robustness of single-exon genes due to the shorter length of their

transcripts. We compared NFCU between single and multi-exon

genes binned by CDS length (Figure 4) and found that NFCU was

significantly lower in single exon genes than in multi-exon genes for

Table 4. Normalized fragile codon usage (NFCU) of last exons and upstream exons of multi-exon genes in the human, mouse, and
fly genomes.

PABP-dependent
NMD

EJC-dependent
NMD Exons NFCU P-value Ratio

Human multi-exon genes

Upstream exons + + 112789 0.50 1.00

(0.39 – 0.48)

Last exons + 2 12390 0.47 0.0002 0.93

(0.29 – 0.61)

Mouse multi-exon genes

Upstream exons + + 132678 0.50 1.00

(0.26 – 0.67)

Last exons + 2 13265 0.46 0.002 0.92

(0.30 – 0.60)

Fly multi-exon genes

Upstream exons + 2 25686 0.53 1.00

(0.41 – 0.67)

Last exons + 2 6304 0.53 0.21 1.00

(0.41 – 0.67)

NFCU, median (first and third quartiles) of fragile codon content normalized for GC-content and amino acid usage; P-value, significance of the comparison of upstream
and last exons determined by two-sided Wilcoxon-rank sum test that tests for a linear shift in distribution locations; Ratio, median NFCU relative to the median NFCU for
upstream exons.
doi:10.1371/journal.pgen.1002276.t004
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all length bins except the longest (Q4): the ratios (p-values;

Wilcoxon-rank sum test) of median NFCU in single-exon genes

relative to median NFCU in multi-exon genes for length bins Q1-

Q4 are 0.92 (p,10215), 0.90 (p,10215), 0.97 (p = 0.03), 0.99

(p = 0.91), respectively. Thus only the longest single-exon transcripts

have fragile codon content equal to that of multi-exon transcripts of

similar length. This result suggests that the increased transcriptional

robustness of single-exon genes is primarily due to the lack of

supplementary nonsense surveillance from EJC-dependent NMD.

However, the longest single-exon transcripts also benefit from an

increase in the efficiency of PABP-dependent NMD.

Repeating this procedure in our analysis of fly genes revealed no

difference in NFCU between single-exon and multi-exon genes

when length differences are controlled for (data not shown). Thus

the modest 2% depletion of fragile codons seen in fly single-exon

genes compared to multi-exon genes is entirely due to the

inefficiency of PABP-dependent NMD of shorter transcripts

(Table 1).

Transcriptional robustness is also a property of genes
that are invisible to splicing-dependent NMD in fission
yeast

It has recently been demonstrated that splicing enhances NMD

in Schizosaccharomyces pombe in a manner apparently independent of

the EJC [26]. This organism provides us with an independent test

of our hypothesis in a system of splicing-dependent NMD that is

mechanistically distinct from that in mammals. We measured

NFCU in S.pombe genes and found that single-exon genes (median

NFCU = 0.43) show a highly significant (p,10215; Wilcoxon-rank

sum test) 6% depletion of fragile codons relative to multi-exon

genes (median NFCU = 0.46) echoing our observations in human

and mouse. However, in contrast to the situation in mammals and

fly, the CDS of single-exon genes is longer than that of multi-exon

genes in S.pombe (the coding sequence (CDS) of S.pombe single-exon

genes and multi-exon genes have a median length of 1220 nts and

1053 nts, respectively). Therefore we tested for the possibility that

the signal of robustness in single-exon genes in S.pombe is muted by

the reduced efficiency of PABP-dependent NMD in the shorter

mRNAs of multi-exon genes. We compared single and multi-exon

genes in bins of equal CDS length and found that fragile codons

are significantly depleted in single-exon genes for all length bins

except the shortest: the ratios (p-values; Wilcoxon-rank sum test) of

median NFCU in single-exon genes relative to median NFCU in

multi-exon genes for length bins Q1-Q4 are 0.99 (p = 0.83), 0.92

(p,1027), 0.93 (p,1028), 0.95 (p,1028), respectively).

The signal associated with the second mechanism of transcrip-

tional robustness (amino-acid choice) is less strong in S.pombe.

Among fission yeast proteins we observe a 3% depletion (p,10214;

Figure 3. Intragenic depletion of fragile codons commences beyond the boundary of EJC–dependent NMD activity. Normalized
fragile codon usage (NFCU) in ‘‘NMD-competent’’ and ‘‘NMD-compromised’’ regions of multi-exon genes. The schematic depicts a generic
mammalian mature mRNA. The arrowhead shows the position of the last exon-exon junction. The relative efficiency of each mammalian NMD
pathway predicted in three distinct regions is shown using ‘+’ symbols. Predicted inactivity of NMD is shown using a ‘-’ symbol. EJC-dependent NMD
is expected to be active .50–55 nts 59 of the last exon-exon junction and inactive 39 of the last exon-exon junction. Its activity is uncertain in the
intervening 50–55 nts region (hatched shading). PABP-dependent NMD is expected to increase in efficiency with distance from the poly-A tail. Note
that the efficiency of PABP-dependent NMD is predicted to be much lower than that of EJC-dependent NMD. NFCU was determined in two windows
of 50 codons positioned on either side of the last exon-exon junction. The example shows the last intron in ‘‘phase 0’’ (i.e. the intron is positioned
between codons) and the depicted nucleotide coordinates for each window are specific to this case.
doi:10.1371/journal.pgen.1002276.g003
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Wilcoxon-rank sum test) of fragile amino-acids in the protein

products of single-exon genes (median NFAU = 0.397) compared

to multi-exon gene products (median NFAU = 0.410).

Conclusion
In this study we set out to investigate whether human genes

have evolved ‘‘transcriptional robustness’’ to reduce the frequency

of mistranscription events leading to nonsense errors. More

specifically we hypothesized that such a strategy of nonsense

prevention should complement the cure for nonsense errors

provided by Nonsense Mediated Decay (NMD). Indeed by

comparing single-exon genes (in which NMD is inefficient) and

multi-exon genes (in which NMD is much more efficient) we show

that intergenic variation in transcriptional robustness reflects

intergenic differences in NMD efficiency. Specifically, the primary

hallmark of this robustness is a depletion of ‘‘fragile’’ codons that

are susceptible to mistranscription into a STOP codon. We took

account of differences between single-exon and multi-exon genes

that, although unrelated to transcriptional robustness, might

nevertheless covary with fragile codon usage. Our result is not

explained by biologically confounding variables such as differences

in splicing constraints or transcription associated mutational biases

(see Text S1, Result F) nor by possible technical biases due to gene

annotation issues or phylogenetic dependencies (see Text S1,

Result G). Having excluded these alternatives we can conclude

that, in human, there is a real difference in transcriptional

robustness of single-exon and multi-exon genes.

Is there an alternative explanation for intergenic variation in

transcriptional robustness that is unrelated to the efficiency of

NMD? Before attributing our observation to intergenic differences

in NMD efficiency, other differences between single-exon and

multi-exon genes that could promote robustness need to be

considered. Notably our intergenic analysis makes two assump-

tions: all genes have (i) equal transcriptional error rates and (ii)

similar selective costs associated with the toxic effects of truncated

proteins. However, if either of these quantities was, on average,

greater in single-exon genes than in multi-exon genes then this

would promote increased transcriptional robustness of single-exon

genes even if NMD were equally potent in both groups.

Our analysis of intragenic patterns of fragile codon use

addresses both assumptions, by isolating the influence on

transcriptional robustness of variable NMD efficiency from the

influences of variable transcriptional fidelity and selective costs of

nonsense errors. First, although transcriptional fidelity might vary

between genes, it is not likely to vary within genes. In contrast, the

efficiency of NMD varies not only between genes but also within

genes since, like single-exon genes, last exons of multi-exon genes

are invisible to EJC-dependent NMD in mammals. Therefore if

Figure 4. Fragile codon depletion is not due to reduced efficiency of PABP–dependent NMD in shorter mRNAs. Normalized fragile
codon usage (NFCU) of human single- (S) and multi-exon (M) genes binned by transcript CDS length. For each quartile of transcript length (Q1,
shortest, to Q4, longest) NFCU for single and multi-exon genes is plotted separately. The width of each bin is proportional to the square root of the
number of genes it contains.
doi:10.1371/journal.pgen.1002276.g004
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selection for transcriptional robustness was mediated by transcrip-

tional fidelity then this could explain the intergenic but not the

intragenic patterns of fragile codon use that we see (i.e. depletion

of fragile codons in last exons). Second, although the selective costs

of nonsense errors might vary within genes this should result in an

enrichment of fragile codons in last exons rather than the

depletion observed.

Therefore the intragenic pattern of fragile codon usage in

mammalian genes, and in particular the depletion of fragile

codons in last exons, suggests that variable NMD-efficiency

underlies transcriptional robustness. Although these patterns do

not implicate variation in transcriptional fidelity or in the selective

costs of undetected nonsense errors as unique explanations of

transcriptional robustness these factors might also contribute to

intergenic differences in robustness. Importantly, the result of our

intragenic analysis strongly suggests that constraints on codon

usage imposed by the requirement for transcriptional robustness

are common to all mammalian genes and are not peculiar to the

minority of genes that are intronless in mammals (,11% and

,15% of genes in the human and mouse genomes, respectively).

We conclude therefore, that natural selection has promoted a

dual strategy of ‘‘prevention and cure’’ to deal with the problem of

nonsense transcriptional errors and that these strategies are used

interchangeably in mammals. This example of complementarity

between strategies for error-prevention and error-mitigation in

mammals echoes the recent demonstration in bacteria of

complementarity between cis and trans strategies in limiting protein

misfolding [27].

There is evidence that both the intron content [5] and the exon-

intron structure [24,28,29] of human genes are shaped by the

general mode of action and specific spatial requirements of NMD.

We show that variable NMD efficiency also leaves its signature in

the coding sequences of human genes and in the amino-acid

content of the proteins they encode. This signature can be

discerned in patterns of codon choice and amino-acid usage in

single-exon genes that together constitute two hallmarks of

transcriptional robustness. It is also evident in codon usage in

the last exons of multi-exon genes and thus constrains a substantial

fraction of sites in human genes. We suggest that fragile codons are

counterselected in human genes not because they pose a potential

future mutational hazard but because of the immediate hazard

associated with undetected nonsense errors during their transcrip-

tion. However, a notable side-effect of transcriptional robustness is

the creation of a ‘‘congruent robustness’’ [30] to future nonsense-

creating genetic mutations. The negative selection invoked here is

mediated by transcriptional errors and not by genetic mutations.

Indeed, transcriptional errors, together with splicing and transla-

tion errors, may exert a negative effect on fitness despite the

presence of a normal genotype. Such errors in gene expression

[31,32] may play a much more prominent role in molecular

evolution than is currently recognized [33]. One such role may be

to expose subtle fitness differences between otherwise equally-fit

genotypes, enabling positive selection to explore sequence space in

the vicinity of a given genotype by means of a so-called ‘‘look-

ahead effect’’ [33]. Equally, we suggest, the evolutionary foresight

gained from this effect may reveal pitfalls in sequence space and

enable negative selection to purge genotypes that lie close to these

pitfalls by providing a preview of their deleterious consequences.

This effect provides a rationale for the promotion of robustness by

natural selection even when the population genetic conditions of

high genetic mutation rate and large effective population size,

conventionally thought to be necessary for the evolution of

robustness [34], are not met. Together with the identification of

robustness to translational errors [18] and to splicing errors [5],

this study underscores the importance in molecular evolution of

the full spectrum of errors made in the decoding of phenotype

from genotype. Moreover, the patterns of fragile codon usage and

fragile amino-acid usage described for human genes suggest that

transcriptional errors are frequent and can be highly deleterious.

This raises the question of the past and present impact of such

errors on human disease.

Materials and Methods

Datasets
We used Ensembl release 49 gene annotations for human and

mouse and Flybase release 5.4 for Drosophila annotations [35].

For each gene prediction we retrieved its CDS from Ensembl. In

the case of multiple alternative transcript predictions, we

retained the transcript encoding the longest peptide and used

the total number of annotated coding and non-coding exons in

the transcript as the exon count for that gene. A dataset of

histone genes was constructed by retrieving 72 Genbank

accessions for human histone genes from [15] and mapping

these to unique Ensembl gene identifiers using the BioMart tool.

Fly orthologs of human histone genes were retrieved using

BioMart. We constructed a dataset of exonic splicing enhancers

(ESEs) consisting of 443 hexamer sequences by merging human

and mouse ESEs determined using the RESCUE-ESE approach

[36-38].

Fragile codon usage (FCU)
We defined two categories of codons using a classification

introduced by [14] : ‘‘fragile codons’’ are defined as sense codons

that can be converted into a STOP codon by a single point-

mutation whereas all other sense codons are defined as ‘‘robust’’

(Figure 1). The fragile codon usage (FCU) metric considers all 61

sense codons and was calculated by enumerating all fragile and

robust codons and expressing fragile codon density (FCU) as the

fraction of all sense codons that are fragile for each gene.

Normalized fragile codon usage (NFCU)
Normalized fragile codon usage (NFCU) was calculated by

considering only groups of codons that are synonymous and have

equal GC content but differ with respect to their fragility. These

groups were chosen from among codons encoding ‘‘facultative

amino acids’’ (Figure 1). Four such groups have two-members

that are respectively fragile and robust: TCA, TCT (encoding

Serine; 1/3 nts are G or C), TCG, TCC (encoding Serine; 2/3

nts are G or C), CGA, CGT (encoding Arginine; 2/3 nts are G or

C) and GGA, GGT (encoding Glycine; 2/3 nts are G or C). A

fifth, three membered, group encodes Lysine and consists of

TTG, CTT and CTA (fragile, robust and robust codons

respectively; 1/3 nts are G or C). For each CDS we computed

the fractional fragile codon usage for each of these five

synonymous groups (number of fragile codons/the total number

of codons in the group). Finally, for each gene we expressed the

normalized fragile codon usage (NFCU) of its CDS as the average

of all fractions that are defined (i.e. that have a denominator

greater than zero).

Fragile amino-acid usage (FAU)
For each gene we considered its encoded peptide (using the

longest in the case of alternative isoforms) and calculated the

fraction of all amino acids that are fragile (Cys, Gln, Glu, Lys, Trp,

Tyr) (Figure 1) considering all amino-acids for each protein (i.e.

FAU = count of fragile amino-acids/total count of amino-acids).
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Normalized fragile amino-acid usage (NFAU)
Normalized fragile amino-acid usage (NFAU) was calculated by

considering only groups of amino-acids that are encoded by

codons of equal GC content. For each gene we considered its

longest encoded peptide and, for two separate groups of amino-

acids, calculated the fraction of amino-acids that are fragile. The

first group consists of four amino-acids encoded by codons for

which 1/6 nts are G or C: Tyr (fragile), Lys (fragile), Asn (robust)

and Phe (robust). The second group consists of eight amino-acids

encoded by codons for which 1/2 nts are G or C: Gln (fragile), Glu

(fragile), Cys (fragile), Ser (facultative), His (robust), Thr (robust),

Val (robust), Asp (robust). For each protein we computed the

fractional fragile amino-acid usage for each of these two groups

(count of fragile amino-acids/total count of amino-acids in the

group). Finally, for each protein we expressed the normalized

fragile amino-acid usage (NFAU) as the average of defined

fractions.

Correlation between transcriptional robustness strategies
Human-mouse orthologs were retrieved using the BioMart tool.

In the case of human genes having multiple co-orthologs we

retained the longest mouse ortholog (choosing a random protein in

the case of length ties). We aligned human-mouse orthologous

pairs using CLUSTALW [39] and, using the corresponding CDS,

back-translated each alignment to create a codon-based align-

ment. These alignments were used as input for the yn00 program

in the PAML package [40] to estimate Ka/Ks i.e. the ratio of non-

synonymous substitutions per non-synonymous site (Ka) to

synonymous substitutions per synonymous site (Ks). Four groups

of human genes of similar selective constraint were constructed

based on quartiles of Ka/Ks for all human-mouse orthologs. For

each group we calculated the Spearman correlation between

normalized fragile codons usage (NFCU) and fragile amino-acid

usage (NFAU) metrics.

Exon-based analysis
We performed an exon-based analysis to compare NFCU in last

exons and upstream exons. We considered only genes for which

we could be sure that the annotated last exon is the true last exon.

Last exons were considered as reliably annotated if they (i) have a

CDS sequence that terminates with a STOP codon, (ii) do not

have a downstream non-coding exon (and therefore do not have a

downstream EJC) and (iii) have an annotated 39 UTR of at least

100 nts. For each gene having a reliably annotated last exon we

assigned the last exon to one group and each remaining exon to a

second group (‘‘upstream exons’’). We calculated NFCU for each

exon using only those codons completely encoded by the exon and

compared NFCU in the ‘‘last exon’’ and ‘‘upstream exon’’ groups.

Determining phylogenetic independence of histone
genes

Using the dataset of histone genes retrieved from Ensembl as

described above we constructed sequence alignments between all

pairs of histone proteins using CLUSTALW [39] and, using the

corresponding CDS, back-translated each alignment to create a

codon-based alignment. These alignments were used as input for

the yn00 program in the PAML package [40] and pairwise

sequence divergence was determined by calculating synonymous

site divergence (Ks).

Supporting Information

Figure S1 The absence of splicing constraints cannot explain the

lower fragile codon content of single-exon genes. Normalized

fragile codon usage (NFCU) of human single- (S) and multi-exon

(M) genes binned by ESE density within the CDS. For each

quartile of ESE density (Q1, lowest, to Q4, highest), NFCU for

single and multi-exon genes is plotted separately. The width of

each bin is proportional to the square root of the number of genes

it contains.

(TIF)

Figure S2 Fragile codon usage patterns among human genes are

not due to selection for translational accuracy. Normalized fragile

codon usage (NFCU) of human single- (S) and multi-exon (M)

genes binned by the fraction of translationally optimal codons per

gene controlling for GC content (FopGC). For each quartile of

FopGC (Q1, lowest, to Q4, highest), NFCU for single and multi-

exon genes is plotted separately. The width of each bin is

proportional to the square root of the number of genes it contains.

(TIF)

Figure S3 Fragile codon usage patterns among fly genes are not

due to selection for translational accuracy. Normalized fragile

codon usage (NFCU) of Drosophila single- (S) and multi-exon (M)

genes binned by the fraction of translationally optimal codons per

gene (Fop). For each quartile of Fop (Q1, lowest, to Q4, highest),

NFCU for single and multi-exon genes is plotted separately. The

width of each bin is proportional to the square root of the number

of genes it contains.

(TIF)

Table S1 Fragile codon usage (FCU) of multi-exon genes and

single-exon genes in the human, mouse, and fly genomes.

(DOC)

Text S1 Supporting results.

(DOC)
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