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Multiple imputation for estimating hazard ratios
and predictive abilities in case-cohort surveys
Helena Marti1*, Laure Carcaillon2 and Michel Chavance1

Abstract

Background: The weighted estimators generally used for analyzing case-cohort studies are not fully efficient and
naive estimates of the predictive ability of a model from case-cohort data depend on the subcohort size. However,
case-cohort studies represent a special type of incomplete data, and methods for analyzing incomplete data
should be appropriate, in particular multiple imputation (MI).

Methods: We performed simulations to validate the MI approach for estimating hazard ratios and the predictive
ability of a model or of an additional variable in case-cohort surveys. As an illustration, we analyzed a case-cohort
survey from the Three-City study to estimate the predictive ability of D-dimer plasma concentration on coronary
heart disease (CHD) and on vascular dementia (VaD) risks.

Results: When the imputation model of the phase-2 variable was correctly specified, MI estimates of hazard ratios
and predictive abilities were similar to those obtained with full data. When the imputation model was misspecified,
MI could provide biased estimates of hazard ratios and predictive abilities. In the Three-City case-cohort study,
elevated D-dimer levels increased the risk of VaD (hazard ratio for two consecutive tertiles = 1.69, 95%CI: 1.63-1.74).
However, D-dimer levels did not improve the predictive ability of the model.

Conclusions: MI is a simple approach for analyzing case-cohort data and provides an easy evaluation of the
predictive ability of a model or of an additional variable.

Background
Case-cohort surveys produce incomplete data by design.

A subcohort is selected by simple or stratified random

sampling, all subjects are followed up and the events of

interest are recorded. The phase-1 variables are

observed for the entire cohort, whilethe phase-2 vari-

ables are only known for the case-cohort sample, i.e.,

subjects belonging to the subcohort and all those pre-

senting the event of interest [1]. Thus, in case-cohort

studies, the non-cases who do not belong to the subco-

hort are incompletely observed by design, enabling cost

reduction with a small loss of efficiency.

Various approaches have been described to estimate

the proportional hazard model in case-cohort surveys:

Weighted estimators [2-6] are classically used in these

surveys, with analysis restricted to the completely

observed subsample, so the information collected for

incompletely observed non-cases is ignored and ineffi-

cient estimators for the effect of phase-1 variables are

obtained. One of the most popular is the Borgan II esti-

mator [4]. Scheike and Martinussen [7] proposed a max-

imum likelihood estimator based on proportional

hazards assumption, using the EM algorithm [8], there-

byincreasing efficiency as compared to weighted estima-

tors when the relative risk and disease incidence are

high. However, in general, the studied disease incidence

in case-cohort surveys is low. Breslow et al. [9] sug-

gested calibrating or estimating the weights a posteriori,

using all the phase-1 information, to improve precision

with respect to classical weighted estimators. Marti and

Chavance [10] showed that multiple imputation (MI) is

a good alternative to classical weighted methods for the

analysis of case-cohort data. When the imputation

model was correct, the MI approach provided unbiased

estimators of the log hazard ratios and correctly esti-

mated the variance of its estimators. As expected, the

MI approach was more precise than the usual weighted

estimators for the parameters associated with phase-1
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variables. The former was also slightly more precise than

the latter for the phase-2 variable. In Marti and Cha-

vance [10] the imputations were performed according to

a correctly specified imputation model. However, in

practise, the distribution of the phase-2 variable is

unknown and onemay wonder how MI compares to

weighted estimators when the imputation model is

misspecified.

No standard method exists for quantifying the useful-

ness or predictive ability of a model or an additional

variable in the framework of case-cohort surveys. The

predictive ability can be measured in terms of calibra-

tion, which refers to the ability of a model to match pre-

dicted and observed values, when we are interested in

individual predictions; or in terms of discrimination,

which refers to the ability of a model to distinguish

between subjects with or without a binary event, when

we are interested in identifying a group of high-risk sub-

jects. In the present work, we focus on discrimination.

As shown below, a naive measurement of predictive

ability from case-cohort data often leads to a biased esti-

mate of the predictive ability because it varies with the

censoring rate and thus depends on the subcohort size.

Alternatively, because MI reconstitutes whole cohorts,

any tool developed to estimate the predictive ability in

the framework of cohort surveys can be applied to case-

cohort data, so we propose using the MI approach to

estimate the predictive ability ofa model or of an addi-

tional variable and their standard errors.

The objectives of this study were 1) to evaluate MI for

estimating hazard ratios when the distribution of the

phase-2 variable is misspecified; and 2) to present an

adequate methodology for estimating the predictive abil-

ity of a model or of an additional variable in case-cohort

surveys. We performed a simulation study to validate

the MI approach for estimating the predictive ability of

a model or of an additional variable and to assess its

potential limits. As an illustration, we analyzed case-

cohort data from the Three-City study [11] to estimate

the predictive ability of the D-dimer plasma concentra-

tion, a marker of coagulation and fibrinolysis, on coron-

ary heart disease (CHD) and on vascular dementia

(VaD) risks.

Methods
Incomplete observations and multiple imputation

Case-cohort surveys are a particular type of incomplete

observations, in which data are missing at random [12]

by design, as the probability of being completely

observed depends only on the case status, with simple

random sampling, and on some phase-1 variables with

stratified sampling. MI is a simple and efficient method

for analyzing incomplete observations, while taking into

account all the levels of uncertainty regarding missing

values. This provides an approximation of the maxi-

mumlikelihood estimator and thus enables the potential

selection bias to be corrected. This method relies on the

generation of several plausibly completed data sets (M ≥

2), accounting for all levels of uncertainty concerning

the missing values. A prediction model must be built,

taking into consideration the relationships between the

incomplete variable and the other variables, as observed

in the complete part of the data. The missing data are

not replaced by their expectation but by a value drawn-

from the distribution posited by the model. To take into

account the uncertainty concerning the parameters of

the imputation model, several imputations are per-

formed with parameters drawn from the asymptotic dis-

tribution of their estimator. An estimate of the

parameter of interest, θ̂m, m = {1, . . . , M}, and an esti-

mate of the variance of the estimator, V̂(θ̂m), are

obtained from each completed data set. If the imputa-

tion model is correct, these estimators are not biased.

The MI estimate, also unbiased, is the mean of the M

estimates:

θ̂MI =
1

M

M∑

m=1

θ̂m (1)

where M is the number of completed data sets and

θ̂m, m = { 1, . . . ,M} is the estimate of the parameter of

interest provided by the mth completed data set. The

multiplicity of imputations enables correct estimation of

the variance of this single estimator, which is the sum of

2 components: the within-imputations component, WMI,

and the between-imputations component, BMI:

V̂(θ̂MI) = ŴMI + B̂MI

=
1

M

M∑

m=1

V̂(θ̂m) + (1 + M
−1)

∑
M

m=1 (θ̂m − θ̂MI)(θ̂m − θ̂MI)
′

M − 1

(2)

where the factor 1 + M-1 is an adjustment for using a

finite number of imputations [13].

MI requires a model correctly reflecting the relation-

ship between the incomplete variable and the outcome

of interest. In case-cohort surveys, we need to impute

phase-2 variable values for the non-cases who do not

belong to the subcohort. Under the rare disease assump-

tion, we have shown that a simple generalized linear

model, using all the complete data (cases and non-cases)

and including the case indicator among the explanatory

variables, has to be considered [10]. Practically, in addi-

tion to the case indicator and the stratification variables,

when the subcohort was selected by stratified sampling,

it is necessary to include in the imputation model all

the variables appearing in the proportional hazard

model. Because imputations are based on asymptotic
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distributions, caution is necessary, since if too few sub-

jects present the event of interest, the distribution of the

estimators can differ from the asymptotic one. As a con-

sequence, the maximum likelihood estimator of the

imputation model could be biased or not normally

distributed.

Predictive ability of a model and of a supplementary

variable

Harrell et al. [14] proposed the C index to measure the

predictive ability of a model in cohort studies as the

agreement between the order of the predicted and

observed survival times in any pair of subjects (the

event of interest is assumed to be death, leading to the

use of survival terminology). That is, the concordance

probability using all pairs of subjects in the population.

However, with censored data, it is not possible to con-

sider all the pairs of subjects because survival time is

not observed for censored subjects. Let Ti be the survi-

val time for subject i, i = 1,...,N, where N is the cohort

size, and Ci the censoring time for subject i. We observe

Xi = min(Ti, Ci). Usable pairs are those for which the

order of the predicted survival times can be compared

to the order of the true survival times, i.e., pairs formed

by 2 uncensored subjects or an uncensored subject and

a subject censored after the uncensored subject’s death.

A pair of censored subjects carries no information about

its agreement with the expected survival provided by the

model since the order of the survival times is not

known. Similarly a pair formed by a subject whose sur-

vival time is observed and a subject censored before this

survival time provides no information on this agreement

since the unknown survival time could be anterior or

posterior to the observed one. Harrell et al. [15] showed

that, in the common models used for survival analysis,

such as the proportional hazard model, the predicted

survival times and the predicted survival probabilities at

a fixed time t can be interchanged for the comparison.

The Harrell’s C index is defined as:

C =
πc

πc + πd

(3)

where πc is the probability of concordance for a pair

(i,j) and πd is the probability of discordance. We assume

continuous survival times and continuous predicted sur-

vival probabilities, so P(Xi = Xj) = P(Yi = Yj) = 0, thus πc
+ πd = 1. C is estimated by the proportion of concor-

dant pairs among the usable pairs. The estimated var-

iance was given by Kremers [16].

In practice, we are often interested in estimating the

predictive ability of an additional phase-2 variable. Let

M1 be a proportional hazard model including only

phase-1 variables, and C1 and SEC1 respectively the C

indexof M1 and its standard error. Let M2 be a propor-

tional hazard model adding the phase-2 variable to M1,

and C2 and SEC2, respectively, the C index of M2 and its

standard error. Harrell’s predictive ability ofthe added

phase-2 variable is ∆ = C2 - C1 . Complementary mea-

sures of predictive ability of a new variable, such as the

net reclassification improvement (NRI) and the inte-

grated discrimination index (IDI), were proposed by

Pencina [17]. NRI needs some a priori meaningful risk

categories. It quantifies the correct reclassification intro-

duced by using a model with the added variable as com-

pared to the classification obtained without this variable.

The IDI can be viewed as a continuous version of the

NRI with probabilities used instead of categories. It can

be defined as the discrimination-slope difference

between the models with and without a quantitative

variable. To estimate the predictive ability of a model or

of an additional variable, we reconstructed plausible

whole cohorts using MI. For each reconstructed whole

cohort, we could then directly obtain C1, SEC1, C2, SEC2,

∆, NRI, IDI and their respective variances. Using equa-

tions (1) and (2), we obtained the MI estimates of these

quantities. Concerning the variance of ∆, the between-

imputation component is estimated by the empirical

variance of the M estimates of ∆ provided by the M

completed data sets. However, for the within-imputation

component, the asymptotic variance of the estimator

provided by a complete data set, does not have an analy-

tical form. With a fully observed cohort, bootstrapping

is a way to estimate the variance of the corresponding

∆. Therefore, each whole cohort reconstructed by MI

has to be resampled. In the simulations as in the real

data analysis, we used 100 bootstrap samples.

Simulation study

Two phase-1 variables were simulated: a binary variable,

Z1, and a Gaussian variable, Z3, observed for the entire

cohort. For the phase-2 variable, Z2, we considered

three different distributions: normal, log-normal and

uniform, all of them with unit variance, independent of

Z1, but having a correlation coefficient of 0.2 with Z3.

The survival time had an exponential distribution, with

l = exp (b1Z1 + b2Z2 + b3Z3 ). b1, b2 and b3 were fixed

at the same value and set at 0 or log(2). The censoring

time followed a uniform distribution over the interval

[0,τ], where τ was chosen so that the probability of an

event was approximately 0.03 (τ= 0.025). The cohort

size was 10,000. We also simulated a phase-1 variable

predictive of Z2, Z̃2 ≡ Z2 + εwith ε ~ N (0, s2) indepen-

dent of Z2. The variance s
2 was fixed at 1 which corre-

sponds to a correlation between Z2 and Z̃2 of

approximately 0.7. We wanted to estimate the effect of

Z2 on survival time and its predictive ability. The cohort
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was divided into 9 strata based on the tertiles of

Z̃2 and Z3 , and the non-cases were chosen by stratified

sampling. Case-cohort sampling was simulated with

1,000 subjects in each subcohort. The phase-2 variable

was not available for non-cases not included in the sub-

cohort, so MI was used to complete the data set. Thus,

we built the same linear prediction model for each Z2

based on the stratification phase-1 variable and the case

indicator. Z3 was not directly included in the imputation

model to predict Z2, because it was a stratification vari-

able included in the model and because of the weak cor-

relation between Z2 and Z3. The imputation model was:

Z2 = a0 + a1 Icase + a2 Strata + ε , where a0 and a1 are

scalar, a2 is a vector coefficient, Icase is the case indica-

tor, Strata is the vector of stratum indicators and є is

the vector of errors independently and identically dis-

tributed ~ N (0, s). Thus, the imputation model was

correctly specified for Z2 normally distributed but mis-

specified for Z2 log-normally or uniformly distributed.

One thousand cohorts were simulated for each scenario.

Five imputations were performed and 5 complete data

sets were generated for each cohort. We estimated the

log hazard ratios using MI and the “Borgan II” weighted

estimator [4]. We used MI to estimate the predictive

ability of models with and without the phase-2 variable,

and the predictive ability of the phase-2 variable, NRI

and IDI. We also studied the consistency of the naive

estimator of Harrell’s C index in case-cohort surveys by

varying the subcohort size. Using the above simulation

conditions and, exceptionally, a scenario with b1 = b3 =

log(2) and b2 = log(1.5), we simulated case-cohort sam-

ples with the subcohort size set at 300 or 1,000 subjects.

We estimated the predictive ability in the case-cohort

samples and in the multiply imputed data sets.

Case-cohort survey from Three-City study

Briefly, the 3C-Study was designed to examine the rela-

tionship between vascular diseases and dementia in a

community housing 9,294 persons aged 65 years and

over between 1999 and 2001 in three French cities. The

detailed methodology has been previously described [11].

A case-cohort substudy was conducted [18], to investi-

gate the relationship between biomarkers, such as plasma

levels of D-dimer (a marker of coagulation and fibrinoly-

sis) and the 4-year incidence of coronary heart disease

(CHD), stroke and all subtypes of dementia, including

vascular dementia (VaD), in an elderly population. The

phase-1 variables provided information on socio-demo-

graphic characteristics, education, medical history, diet,

alcohol and tobacco use. Blood pressure, height and

weight were also available. A subcohort of size n = 1,254,

(13.5% of the full cohort) was randomly selected, stratify-

ing on age, sex and recruitment center. Observed

cumulated incidences of CHD and VaD were approxi-

mately 2% and 0.6%, respectively. Plasma D-dimer levels

were only available for phase-2 subjects. Carcaillon et al.

[18] treated quintiles of D-dimer level both qualitatively

and linearly. They reported a linear increase in the risk of

VaD according to D-dimer quintiles.

We re-assessed the relationship between plasma D-

dimer levels and the risk of CHD and VaD, using MI and

weighted estimators, and evaluated the predictive ability of

D-dimer levels on both risks. We included the same expla-

natory variables as Carcaillon et al. [18] although we used

tertiles of D-dimer rather than quintiles, to estimate CHD

and VaD risks, due to the small number of events. There-

fore, to estimate the risk of CHD, the proportional hazard

model includedthe phase-1 variables: age, sex, center, body

mass index, hypertension, hypercholesterolemia, diabetes,

tobacco use, diabetes drugs, and as phase-2 variables, indi-

cators of D-dimer tertiles. To estimate the risk of VaD, the

proportional hazard model included the phase-1 variables:

age, sex, centre, educational level, body mass index, the

presence or absence of an apolipoprotein є4 allele and

indicators of D-dimer tertiles.

For each outcome (CHD or VaD), it was necessary to

reproduce the relationships among the incomplete vari-

able, the outcomes and the confounder variables. For

each outcome, we built an imputation model of tertiles

of D-dimer levels, including the variables used in the

proportional hazard model and the case-indicator. We

estimated the predictive ability of proportional hazard

models, without (C1) and with (C2) D-dimer levels, ∆ =

C2 - C1, and IDI for CHD and VaD risks. The NRI

requires that some a priori meaningful risk categories be

known. Based on the Third Adult Treatment Panel

[ATP III] [19] risk classification for the 10-year risk of

CHD, we adapted the cut-offs to 4-year risk. For VaD,

we do not know a priori meaningful risk categories and

did not compute NRI.

Results
Simulation study

The mean fraction of missing information about the

effect of Z2 ranged from 5 to 14 percent when b2 = 0

and from 23 to 30 per cent when b2 = log(2) (data not

shown). For each estimator (full cohort, case-cohort

with MI and case-cohort with weights), we give the

mean of the estimated coefficients, the mean of their

standard error estimates, the observed standard error of

the estimated coefficients and the mean squared errors

of 1000 simulations (Table 1). Not surprisingly, the full

cohort estimates and the case-cohort weighted estimates

of the log hazard ratios were unbiased. Similarly, with a

correctly specified normal imputation model, all MI esti-

mates were unbiased. With a misspecified normal

Marti et al. BMC Medical Research Methodology 2012, 12:24

http://www.biomedcentral.com/1471-2288/12/24

Page 4 of 10



imputation model, MI estimate of the effect b2 = log(2)

of Z2 was biased (-13%) when Z2 was log-normally dis-

tributed. When Z2 was uniformly distributed, MI esti-

mate of the effect of Z2 was slightly biased (-5%). With

a misspecified normal imputation model and b2= 0, no

bias was observed. TheMI variance and the weighted

estimator variance agreed with the observed dispersions

of the estimates. The observed dispersion was always

smaller with MI than with the weighted estimator. For

the phase-1 variables, this dispersion was similar for the

entire cohort and with MI, whatever the distribution of

the phase-2 variable. For the estimated effect of the

phase-2 variable, the observed standard deviations were

smaller with MI than with the Borgan II weighted esti-

mator but, as expected, slightly larger with MI than in

the full cohort analyses. Altogether, the mean squared

errors were smaller with MI than with the weighted

estimator, except for the effect of the phase-2 variable

with b2 = log(2) and Z2 was log-normally distributed.

The results concerning the consistency of the naive

estimator of Harrell’s C index are reported in Table 2.

In the scenario b1 = b 2 = b3 = 0, the mean C index was

nearly 0.5 for both models, without and with Z2, what-

ever the analysis performed. In the scenarios b1 = b3 =

log(2) and b2 = log(1.5) or b2 = log(2), the naive compu-

tation of C with the case-cohort data led to lower pre-

dictive ability than with the full cohort, especially for

the smaller subcohort. Bycontrast, the Harrell’s C

indexes estimated by MI were similar to those com-

puted for the full cohort and did not depend on the

subcohort size. The estimated dispersion of the C index

was slightly greater than the observed dispersion of the

estimates. The rejection percentage of the null hypoth-

esis ∆ = 0 was always similar to the full cohort analysis

and to MI. As a consequence of the standard error over-

estimation, the observed first type error rate was slightly

lower than 5%. Nevertheless, in the considered scenar-

ios, the observed power was very high. As expected, the

Table 1 Mean of the log hazard ratio estimates (Est), mean of the standard error estimates
∧

SE
, standard error of the

estimates (SE) and mean of the mean square error (MSE). Results of 1,000 simulations.

Full cohort Multiple imputation a Weighted estimator

Est
∧

SE
SE MSE Est

∧

SE
SE MSE Est

∧

SE
SE MSE

Z2 normally distributed

b1 = b2 = b3 = 0

b1 -0.003 0.107 0.100 0.010 -0.003 0.107 0.110 0.010 -0.001 0.133 0.128 0.016

b2 -0.001 0.054 0.058 0.003 -0.001 0.060 0.062 0.004 0.001 0.065 0.068 0.005

b3 -0.004 0.053 0.056 0.003 -0.004 0.054 0.057 0.003 -0.003 0.058 0.060 0.004

b1 = b2 = b3 = log(2)

b1 0.689 0.118 0.113 0.013 0.676 0.119 0.112 0.013 0.696 0.168 0.165 0.027

b2 0.687 0.058 0.057 0.003 0.679 0.070 0.068 0.005 0.701 0.088 0.097 0.009

b3 0.683 0.057 0.057 0.003 0.679 0.058 0.058 0.004 0.689 0.080 0.090 0.007

Z2 log normally distributed

b1 = b2 = b3 = 0

b1 -0.003 0.107 0.100 0.010 -0.003 0.107 0.100 0.010 -0.004 0.133 0.128 0.016

b2 -0.001 0.027 0.034 0.001 0.015 0.031 0.032 0.001 0.002 0.034 0.038 0.001

b3 -0.004 0.053 0.056 0.003 -0.004 0.054 0.058 0.004 -0.005 0.059 0.062 0.004

b1 = b2 = b3 = log(2)

b1 0.686 0.058 0.056 0.003 0.621 0.061 0.055 0.008 0.686 0.112 0.117 0.014

b2 0.692 0.013 0.015 2e0-4 0.602 0.015 0.014 0.008 0.695 0.020 0.023 0.001

b3 0.685 0.029 0.031 0.001 0.686 0.032 0.031 0.001 0.687 0.049 0.053 0.003

Z2 uniformly distributed

b1 = b2 = b3 = 0

b1 0.007 0.181 0.175 0.031 0.007 0.181 0.175 0.031 0.007 0.197 0.188 0.035

b2 -0.001 0.092 0.087 0.008 0.004 0.094 0.088 0.008 -0.002 0.098 0.095 0.009

b3 0.003 0.090 0.090 0.008 0.002 0.090 0.090 0.008 0.004 0.093 0.093 0.009

b1 = b2 = b3 = log(2)

b1 0.690 0.120 0.116 0.013 0.680 0.121 0.115 0.013 0.694 0.166 0.169 0.028

b2 0.695 0.069 0.063 0.004 0.656 0.075 0.066 0.006 0.698 0.087 0.082 0.007

b3 0.690 0.058 0.054 0.003 0.689 0.059 0.055 0.003 0.698 0.081 0.081 0.007

a MI estimates with imputation model: Z2 = a0 + a1Indcase + a2Strata + ε, ε ~ N(0, s)
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loss of power when comparing case-cohort with MI to

full cohort analysis was small: with b2 = log(1.5), the

observed power was 84.6% with a subsample size of 300,

and 90.6% with a subsample size of 1000 versus 91.6%

with the full cohort. MI estimates of NRI and IDI

indexes were close to those obtained with the full cohort

analysis and did not depend on the subcohort size. As

compared to the full cohort results, the rejection per-

centage of the null hypothesis NRI = 0 was smaller with

MI analysis when b2 = 0, larger when b2 = log(1.5) and

similar when b2 = log(2). When the effect of the phase-2

variable was not null, the rejection percentage of the

null hypothesis IDI = 0 was similar with MI and with

full cohort analysis. By contrast, whatever the effect of

the phase-2 variable, the estimation of NRI and IDI in

the case-cohort sample provided larger measures of

these indexes than the full cohort analysis.

Table 3 gives the results of the estimated predictive

abilities for the correctly specified and the two misspeci-

fied normal imputation models. Full cohort analysis and

MI provided similar predictive abilities estimates when

the imputation model was correctly specified or when

the phase-2 variable had no effect on the studied risk.

In the scenario b1 = b2 = b3 = log(2), when Z2 was

Table 2 Mean of the predictive ability estimates (Est), mean of the standard error estimates
∧

SE
and standard error of

the estimates (SE).

b1 = b2 = b3 = 0 b1 = b3 = log(2), b2 = log(1.5) b1 = b2 = b3 = log(2)

Est
∧

SE
SE % H0 rejected Est

∧

SE
SE % H0 rejected Est

∧

SE
SE % H0 rejected

Full Cohort

C1 0.518 0.033 0.012 0.727 0.032 0.015 0.733 0.029 0.014

C2 0.524 0.033 0.013 0.747 0.031 0.015 0.733 0.029 0.014

� 0.006 0.010 0.009 3.7 0.020 0.007 0.007 91.6 0.049 0.010 0.010 100

NRI 0.007 0.017 0.019 4.8 0.071 0.030 0.033 52.5 0.167 0.034 0.035 99.9

IDI 2e-4 2e-4 3e-4 6.0 0.014 0.003 0.005 99.9 0.048 0.006 0.009 99.9

MI1000

C1 0.518 0.033 0.012 0.724 0.032 0.016 0.733 0.029 0.014

C2 0.526 0.033 0.013 0.745 0.031 0.016 0.783 0.027 0.014

∆ 0.008 0.012 0.010 3.4 0.021 0.008 0.008 90.6 0.049 0.010 0.011 100

NRI 0.009 0.019 0.017 1.5 0.076 0.033 0.033 64.8 0.172 0.037 0.036 100

IDI 3e-4 3e-4 4e-4 3.5 0.014 0.004 0.005 99.0 0.045 0.008 0.010 100

MI300

C1 0.518 0.033 0.012 0.724 0.032 0.016 0.733 0.029 0.014

C2 0.528 0.033 0.012 0.745 0.031 0.017 0.783 0.027 0.015

∆ 0.010 0.014 0.011 3.0 0.021 0.008 0.009 84.6 0.050 0.011 0.012 100

NRI 0.013 0.023 0.018 1.3 0.076 0.035 0.035 57.0 0.172 0.039 0.039 99.7

IDI 4e-4 4e-4 5e-4 1.8 0.014 0.005 0.006 87.5 0.046 0.010 0.012 100

CC1000

C1 0.528 0.032 0.013 0.667 0.033 0.015 0.670 0.031 0.014

C2 0.534 0.033 0.015 0.709 0.032 0.022 0.737 0.029 0.014

∆ 0.006 0.010 0.010 4.7 0.043 0.011 0.017 100 0.067 0.012 0.012 100

NRI 0.017 0.031 0.033 6.7 0.147 0.039 0.043 96.7 0.261 0.041 0.043 100

IDI 0.002 0.001 0.003 15.2 0.058 0.009 0.014 100 0.114 0.011 0.017 100

CC300

C1 0.523 0.034 0.013 0.620 0.037 0.016 0.620 0.034 0.015

C2 0.529 0.034 0.015 0.647 0.036 0.016 0.668 0.032 0.015

∆ 0.006 0.010 0.009 3.6 0.027 0.011 0.011 83.3 0.048 0.013 0.013 99.8

NRI 0.019 0.039 0.043 6.2 0.154 0.043 0.050 94.4 0.257 0.046 0.051 99.9

IDI 0.002 0.001 0.003 13.9 0.040 0.008 0.014 99.8 0.078 0.010 0.017 100

Results from 1000 simulations

C1 Harrell’s C index of the proportional hazard model without the phase-2 variable

C2 Harrell’s C index of the proportional hazard model with the phase-2 variable

∆, Harrell’s predictive value of the phase-2 variable, H0: ∆ = 0

NRI, Net reclassification index by adding the phase-2 variable, H0: NRI = 0 IDI, Integrated discrimination index by adding the phase-2 variable, H0: IDI = 0

Cohort, full cohort estimates; MI300, MI1000: multiple imputation estimates with subcohort sizes set, respectively, at 300 and 1,000; CC300, CC1000, case-cohort

estimates with subcohort sizes set, respectively, at 300 and 1,000
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uniformly distributed, MI and full cohort analysis still

provided similar estimates. However, when Z2 was log-

normally distributed, the MI estimate was slightly smal-

ler than the full cohort estimate -15%).

Mean of the predictive ability estimates (Est), mean of

the standard error estimates ∧

SE
and standard error of

the estimates (SE), with a correctly specified normal

imputation model (Z2 normally distributed), and with

two misspecified normal imputation models (Z2 log-nor-

mally and uniformly distributed)

Application to the Three-City study

The mean fraction of missing information about the

effect of D-dimer was 4.9 and 3.7 per cent for CHD and

VaD risks, respectively. Table 4 gives the estimated

hazard ratios associated with D-dimer tertiles. The MI

and the weighted approaches yielded similar estimates

and precision. The CI of the hazard ratio associated

with the linear effect of a one-tertile difference were

respectively (0.94-1.38) versus (0.92-1.38) for CHD and

(1.13-2.53) versus (1.13-2.67) for VaD. For phase-1 vari-

ables, both estimators provided similar results, but MI

was always the more precise (data not shown).

Harrell’s C for the models including only phase-1 vari-

ables were above 0.69 for CHD risk and above 0.86 for

VaD risk (Table 5). Hence, CHD and VaD risks were

largely explained by standard risk factors, and the inclu-

sion of plasma D-dimer levels did not significantly

improve the predictive ability of the model, despite the

fact that elevated D-dimer levels significantly increased

the VaD risk. For CHD as for VaD, the index did not

significantly differ from 0.

Discussion
Use of a consistent estimator does not guarantee the

absence of any bias for finite sample. We only showed

Table 3 Predictive ability of the two models and of the phase-2 variable.

Full cohort Multiple imputation

Est
∧

SE
SE % H0 rejected Est

∧

SE
SE % H0 rejected

Z2 normally distributed

b1 = b2 = b3 = 0

C1 0.518 0.033 0.012 0.518 0.033 0.012

C2 0.524 0.033 0.013 0.526 0.033 0.013

∆ 0.006 0.010 0.010 3.7 0.008 0.012 0.010 3.4

b1 = b2 = b3 = log(2)

C1 0.733 0.029 0.014 0.733 0.029 0.014

C2 0.783 0.027 0.013 0.783 0.027 0.014

∆ 0.049 0.010 0.010 100 0.049 0.010 0.011 100

Z2 normally distributed

b1 = b2 = b3 = 0

C1 0.518 0.033 0.012 0.518 0.033 0.012

C2 0.524 0.033 0.013 0.520 0.031 0.016

∆ 0.006 0.010 0.009 5.5 0.002 0.013 0.012 4.2

b1 = b2 = b3 = log(2)

C1 0.784 0.013 0.006 0.784 0.013 0.006

C2 0.881 0.011 0.006 0.866 0.011 0.006

∆ 0.097 0.005 0.005 100 0.082 0.005 0.004 100

Z2 uniformly distributed

b1 = b2 = b3 = 0

C1 0.532 0.055 0.019 0.532 0.055 0.019

C2 0.540 0.055 0.019 0.541 0.055 0.020

∆ 0.008 0.015 0.013 2.2 0.009 0.017 0.013 4.0

b1 = b2 = b3 = log(2)

C1 0.733 0.029 0.014 0.733 0.029 0.014

C2 0.781 0.027 0.012 0.785 0.027 0.012

∆ 0.048 0.009 0.009 100 0.052 0.010 0.010 100

Results of 1000 simulations

C1, Harrell’s C index of the proportional hazard model without the phase-2 variable

C2, Harrell’s C index of the proportional hazard model with the phase-2 variable

∆, Harrell’s predictive value of the phase-2 variable, H0: ∆ = 0
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that MI analysis of case-cohort data provides unbiased

estimates of the log-hazard ratio when the imputation

model and the proportional hazard model are correctly

specified. The misspecification of the imputation model

can originate from an erroneous choice of the distribu-

tion, or from wrongly assuming that the estimator of

the imputation model is consistent and normal, or from

the omission of some important explanatory variable.

Imputations carried out using a misspecified distribution

in the imputation model can provide biased estimates of

hazard ratios, especially, if the specified distribution of

the phase-2 variable differs from the true one in terms

of symmetry (log-normal versus normal distribution).

The negative bias on a log hazard ratio of 0.69 was

noticeable but not large when a log-normal variable was

imputed according to a normal distribution (-0.09 or

-13%), but it is clearly a type of misspecification easily

identified with diagnostic tools [20]. One can then trans-

form the incomplete variable in order to obtain a sym-

metrical distribution, impute transformed values and

apply the inverse transformation to the imputed values.

Note that although a normal and a uniform distribution

are quite different, both are symmetrical and the

observed bias was quite smaller (only 5%). In the 3C

study of the relationship between VaD and D-dimer, we

observed slightly different estimates of the log hazard

ratio when comparing the third to the first tertile (2.77

versus 2.93, i.e. a relative difference of 8% between the

MI and the weighted estimates). This is probably

because of the qualitative imputation of D-dimer, and

thus, the use of a multinomial imputation model, which

implied estimation of parameters in separate strata

defined by D-dimer concentration tertiles, some of

which had a small number of events. Due to these small

numbers (only 51 VaD in total), asymptotic conditions

might not have been fulfilled in at least some strata, and

the estimated coefficients of the imputation model could

have been biased and notnormally distributed. We give

below some recommendations regarding the choice of

explanatory variables in the imputation model. Since the

potential bias of MI estimates can be detected by com-

paring them to weighted estimates, we suggest building

the proportional hazard model by using only the case-

cohort data and weighted estimators. MI can eventually

be used to reanalyze the data with the selected model to

improve the precision of the results, while verifying that

no bias was introduced.

In simulated data, for the phase-1 variables, the preci-

sion of MI and full cohort estimates was similar and

smaller than with the weighted estimator. For the

phase-2 variable, MI estimates were slightly more pre-

cise than weighted estimates. Globally, the mean

squared errors were smaller with MI than with the

weighted estimator, with one exception implying a nor-

mal imputation model for a log-normally distributed

phase-2 variable, an error which should easily be

avoided.

There is no standard method for estimating the pre-

dictive ability of a model in the framework of case-

cohort surveys. We showed that the naive application of

the C index to case-cohort surveys yielded an underesti-

mation of the predictive ability of the model that

depended on the subcohort size when the phase-2 vari-

able had an effect on the risk. Similarly, the naive esti-

mates of the predictive ability of an added phase-2

variable differed notably from the full cohort values

when the effect of the phase-2 variable was not null.

Harrell’s C index could theoretically be estimated with a

Table 4 Estimates of hazard ratios (HR) and 95%

confidence interval (CI) associated with D-dimer tertiles.

Multiple imputation
estimates

Weighted
estimates

HR (95% CI) HR (95% CI)

Risk of CHD and D-
Dimera

T1 1.00 (reference) 1.00 (reference)

T2 1.42 (0.99-2.04) 1.40 (0.97-2.04)

T3 1.32 (0.89-1.97) 1.30 (0.84-1.99)

Linear trend 1.14 (0.94-1.38) 1.13 (0.92-1.38)

Risk of VaD and D-
Dimerb

T1 1.00 (reference) 1.00 (reference)

T2 1.57 (0.63-3.93) 1.60 (0.63-4.09)

T3 2.77 (1.17-6.57) 2.93 (1.22-7.06)

Linear trend 1.69 (1.13-2.53) 1.74 (1.13-2.67)

CHD, cardiovascular heart disease; T1, tertile 1; T2, tertile 2; T3, tertile 3; VaD,

vascular dementia
a Adjusted for age, center, sex, body mass index, hypertension,

hypercholesterolemia, diabetes, diabetes drugs, tobacco use
b Adjusted for age, center, sex, educational level, body mass index,

apolipoprotein ε4

Table 5 Predictive ability and 95% confidence interval

(CI) of D-Dimer tertiles on cardiovascular heart disease

(CHD) and vascular dementia (VaD) risks.

CHD VaD

Estimate 95% CI Estimate 95% CI

C1 0.693 (0.622-0.764) 0.865 (0.787-0.943)

C2 0.694 (0.621-0.767) 0.874 (0.798-0.950)

∆ 0.002 (-0.004-0.008) 0.009 (-0.011-0.029)

NRI 0.009 (-0.049-0.066) - -

IDI 0.001 (-0.001-0.003) 0.0004 (-0.0002-0.0010)

C1, Harrell’s C index of the proportional hazard model without the phase-2

variable

C2, Harrell’s C index of the proportional hazard model with the phase-2

variable

∆, Harrell’s predictive ability of the phase-2 variable

NRI, net reclassification improvement by adding the phase-2 variable IDI,

integrated discrimination index by adding the phase-2 variable
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weighted approach, but this can be computationally dif-

ficult because it requires weighting each pair by the

pairwise sampling probabilities, i.e., using a square

matrix of size N’(N’-1), where N’ is the size of the case-

cohort sample. Computing the variance of this Horvitz-

Thompson estimator requires either weighting each

quadruplet by the quadruple-wise sampling probabilities,

i.e., working with a matrix of size N’(N’-1)(N’-2)(N’-3),

or bootstrapping the case-cohort data. By contrast, MI

easily allows estimation of the predictive ability of a

model or of an additional phase-2 variable and their var-

iances in the context of case-cohort data, only requiring

bootstrapping to estimate the variance of the predictive

ability of the phase-2 variable. MI provided estimates of

Harrell C, NRI and IDI indexes similar to those

obtained with the full cohort analysis. Note, however,

that the predictive abilities were always overestimated

because the same data were used to estimate the model

and its predictive ability.

Analysis of the Three-City case-cohort study was in

agreement with our previous work [10]. The weighted

and the MI approaches yielded similar estimates of the

hazard ratios and MI was slightly more precise, particu-

larly for phase-1 variables. The relative differences

between both estimates was always below 2% for the

hazard ratios related to CHD and D-dimer, but as early

discussed, they could be slightly higher (8%) for a hazard

ratio related to VaD and D-dimer. The precision was

similar for both analyses.

The imputation model must reflect the association

between the incomplete variable, the outcome and the

other explanatory variables. Therefore, variables

included in the proportional hazard model as well as the

stratification variables must be included in the imputa-

tion model. If a surrogate of the phase-2 variable is

available, it should also be included in the imputation

model. On the other hand, multiple imputation

approach can provide unbiased and more efficient esti-

mates than weighted analysis even when no strong pre-

dictor of the phase-2 variable is available [10]. The

inclusion of additional variables other than strongly pre-

dictive variables can lead to an increased inter-imputa-

tion variance. This prompted the use of different

imputation models for D-dimer levels in the CHD and

VaD analyses. However, we verified that adding the vari-

ables only used in the CHD analysis to the model used

for VaD, did not modify the results observed in the for-

mer (data not shown).

The number of requested imputations depends on the

proportion of missing information which, in case-cohort

studies, is considerably smaller than the percentage of

incompletely observed subjects. Rubin showed that with as

much as 40 per cent information missing, M = 5 imputa-

tions provides an asymptotic relative efficiency was 0.97,

and, with 50 per cent missing information, M = 10 pro-

vides an asymptotic relative efficiency of 0.98. Thus, a

small number of imputations, 5-10, should suffice [21]. In

our analyses, we used 5 imputations to limit the computer

time of the simulations, a reasonable choice since the pro-

portion of missing information was always smaller than 30

per cent. However, a slightly larger number of imputations

(e.g. 10) could have been performed on the 3C study data

at a reasonable time cost; it would have provided a more

precise estimate of the between imputation variance and

of the percentage of missing information.

The VaD risk increased with D-dimer tertiles. How-

ever, D-dimer inclusion did not significantly improve

the predictive ability of the model for VaD risk. Compu-

tations of the C and IDI index yielded the same conclu-

sion. To our knowledge, no other results concerning the

predictive ability of D-dimer on the risk of VaD have

been published to date. The risk of CHD did not vary

with D-dimer, so, not surprisingly, the predictive ability

of this variable was negligible, regardless of the index

used. Wang et al. [22] and Tzoulaki [23] reported that

the use of 10 and 4 biomarkers respectively added only

moderately to the overall risk prediction based on con-

ventional cardiovascular risk factors.

Conclusions
MI is a simple alternative approach to weighted analysis

for analyzing case-cohort surveys, obtaining correct esti-

mates of the log hazard ratios and their standard errors,

improving precision for the phase-1 variable estimates,

and providing at least the same precision as weighted

estimators for phase-2 variable estimates. It allows an

easy evaluation of the predictive ability of the model

and, more generally, any tool proposed in the frame-

work of cohort studies can be applied to case-cohort

data using MI.
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