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Fisetin disposition and metabolism in mice: Identification of geraldol as an active metabolite
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Although the natural flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) has been recently identified as an anticancer agent with antiangiogenic properties in mice, its in vivo pharmacokinetics and metabolism are presently not characterized. Our purpose was to determine the pharmacokinetics and metabolism of fisetin in mice and determine the biological activity of a detected fisetin metabolite. After fisetin administration of an efficacious dose of 223 mg/kg i.p. in mice, the maximum fisetin concentration reached 2.5 µg/ml at 15 min and the plasma concentration declined biphasically with a rapid half-life of 0.09 h and a terminal half-life of 3.1 h. Three metabolites were detected, one of which was a glucuronide of fisetin (M1), whereas another glucuronide (M2) was a glucuronide of a previously unknown fisetin metabolite (M3). HPLC MS/MS analysis indicated that M3 was a methoxylated metabolite of fisetin (MW=300 Da). The UV spectrum of M3 was identical to that of fisetin and standard 3,4',7-trihydroxy-3'-methoxyflavone (geraldol). In addition, because M3 co-eluted with standard geraldol in 4 different chromatographic ternary gradient conditions, M3 was therefore assigned to geraldol. Of interest, this metabolite was shown to achieve higher concentrations than fisetin in Lewis lung tumors. We also compared the cytotoxic and antiangiogenic activities of fisetin and geraldol in vitro and it was found that the latter was more cytotoxic than the parent compound toward tumor cells, and that it could also inhibit endothelial cells migration and proliferation. In conclusion, these results suggest that fisetin metabolism plays an important role in its in vivo anticancer activities.

Introduction

Among the numerous products available from plants, the flavonoid superfamily plays a central role by their interesting pharmacological properties for several diseases, including cancer prevention and therapy [START_REF] Havsteen | The biochemistry and medical significance of the flavonoids[END_REF][START_REF] Hill | Vascular collapse after flavone acetic acid: a possible mechanism of its anti-tumour action[END_REF][START_REF] Lopez-Lazaro | Flavonoids as anticancer agents: structure-activity relationship study[END_REF][START_REF] Middleton | The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer[END_REF]. We, and others, have recently identified fisetin (3,3',4',7tetrahydroxyflavone, Figure 1), a flavonoid found in several fruits, vegetables, nuts and wine [5;6], as a lead compound possessing biological properties of potential interest in the prevention and/or treatment of cancer in vivo [START_REF] Khan | A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice[END_REF][START_REF] Tripathi | Anti-cancer activity of a combination of cisplatin and fisetin in embryonal carcinoma cells and xenograft tumors[END_REF][START_REF] Touil | Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice[END_REF]. Fisetin possesses antioxidant and antiinflammatory activity [10;11] and was found to be cytotoxic and antiangiogenic in vitro [12;13]. Fisetin is cytotoxic to various human cancer cell lines including leukemia (HL60) [START_REF] Lee | Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca 2+ -dependent endonuclease[END_REF], breast (MCF7) [START_REF] Fotsis | Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis[END_REF], colon (HT29) [START_REF] Kuntz | Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines[END_REF], liver (SK-HEP-1, Caco-2) [15;16], neuroblastoma (SHEP, WAC-2) [START_REF] Fotsis | Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis[END_REF], prostate (LNCaP, PC3) [START_REF] Haddad | Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines[END_REF], and also to endothelial cells [START_REF] Fotsis | Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis[END_REF]. Fisetin appears to interact with several molecular targets, including cyclindependent kinases [START_REF] Lu | Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells[END_REF][START_REF] Sung | Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation[END_REF][START_REF] Lu | Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin[END_REF], DNA topoisomerases I and II [21;22], urokinase [START_REF] Jankun | Nutraceutical inhibitors of urokinase: potential applications in prostate cancer prevention and treatment[END_REF], actin [START_REF] Böhl | Flavonoids affect actin functions in cytoplasm and nucleus[END_REF],

and androgen receptor signaling [START_REF] Khan | A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice[END_REF]. It has also recently been found that fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint involving the inhibition of Aurora B activities required for the maintenance of normal spindle checkpoint signaling [START_REF] Salmela | Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint[END_REF]. In vivo, fisetin has shown antiangiogenic activity after topical application in a rabbit model of corneal neovascularization [START_REF] Joussen | Treatment of corneal neovascularization with dietary isoflavonoids and flavonoids[END_REF]. After systemic administration in mice, fisetin has shown interesting antitumor activity in several cancer models, including prostate, teratocarcinoma and lung carcinoma [START_REF] Khan | A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice[END_REF][START_REF] Tripathi | Anti-cancer activity of a combination of cisplatin and fisetin in embryonal carcinoma cells and xenograft tumors[END_REF][START_REF] Touil | Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice[END_REF].

Although fisetin has shown activity in vitro and in vivo in mice, there is presently no information concerning the fisetin levels achieved in this preclinical species that could allow in vitro and in vivo comparisons. Moreover, the fisetin molecule bearing 4 hydroxyl substituents, including a catechol on the phenyl B ring, is therefore probably extensively metabolized in vivo. In the present study, at an effective dose of 223 mg/kg given by the i.p. route, we were therefore interested to determine the pharmacokinetics and metabolism of fisetin in vivo in mice.

We report here the pharmacokinetics of fisetin and its main metabolites in mice. In addition to glucuronide conjugates, we identified a 3'-methoxylated metabolite of fisetin (3,4',7-trihydroxy-3'-methoxyflavone or geraldol) as a major metabolite of fisetin. This methoxylated metabolite was found to be more cytotoxic that the parent compound and could also inhibit endothelial cells migration and proliferation.

Materials and Methods

Chemicals and reagents

Fisetin (3,3',4',7-tetrahydroxyflavone), kaempferol (3,4',5,7-tetrahydroxyflavone), βglucuronidase, dimethylsulfoxide (DMSO), polyethylene glycol 200 (PEG200) were purchased from Sigma-Aldrich (Saint-Quentin Fallavier, France), and geraldol (3,4',7trihydroxy-3'-methoxyflavone) was obtained from Extrasynthese (Genay, France). For HPLC studies, stock solutions of fisetin, kaempferol and geraldol were prepared in methanol and stored at -20°C protected from light. Methanol (HPLC grade) was purchased from Carlo Erba (Val de Reuil, France), glacial acetic acid was from Prolabo (Paris, France), and water was purified using a Milli-Q apparatus from Millipore Corporation. For cell culture, stock solutions of fisetin and geraldol were freshly prepared in DMSO and further diluted in cell culture medium. Matrigel and bFGF were obtained from BD Biosciences (Le Pont de Claix, France). All other chemicals were obtained from commercial sources and were of the highest purity available.

Fisetin pharmacokinetics in mice

Female 8 weeks old C57BL/6J mice (mean body weight 18-22 g), were purchased from Janvier (Le Genest-St-Isle, France). After an overnight fasting period, mice were injected intraperitonelly (i.p.) with fisetin (223 mg/kg body weight) dissolved in 100 µl of PEG200/DMSO (7:3; v:v). This dose level was chosen because it was non toxic (based on body weights) when administered i.p. (daily X 5) for 2 consecutive weeks and also because this dose was found active in Lewis lung carcinoma bearing mice [START_REF] Touil | Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice[END_REF]. Blood samples (n=3 per sampling time) were collected by cardiac puncture with heparinized syringes after sacrificing the animals by CO 2 at the following times: pre-administration (time 0), and at 0.25, 0.5, 1, 1.5, 2, 4, 8, 15 and 24 h post-dosing. Blood samples were transferred into polypropylene tubes and centrifuged at 12,000g for 10 min to obtain the plasma which was kept at -20°C until HPLC analysis. For the determination of fisetin and metabolites in tumors, pieces of Lewis lung carcinoma (LLC) were injected subcutaneously into the right flank of female C57BL/6J mice (5 mm 3 ) on day 0. Fifteen days later, when the tumors reached a volume of 500-1000 mm 

Sample preparation and extraction

Plasma samples, tumor or normal tissues homogenates (prepared with 1 ml of PBS using a Teflon potter at a speed of 50 rpm with 3 strokes), were extracted by mixing (Vortex mixer, 1 min) with a 5-fold volume of cold methanol containing kaempferol (3,4',5,7tetrahydroxyflavone, Fig. 1), as an internal standard (final concentration 3.3 µg/ml). The mixture was put on ice for one hour to precipitate the proteins, and the samples were centrifuged at 12,000g for 10 min at 4°C. The upper phase was transferred to another polypropylene tube and 100 µl was injected onto a Shimadzu HPLC-UV system described below.

Standard curves and extraction

Stock solutions of fisetin, geraldol and kaempferol (cf., Fig. 1) were prepared in methanol at 100 µg/ml and stored at -20 °C in the dark. Working standard solutions of increasing concentrations of fisetin and geraldol were prepared on the day of analysis by diluting the stock solution. The standard curves of fisetin and geraldol in mouse plasma, tumors, or normal tissues, were built using the ratio of the area of fisetin or geraldol over the area of the internal standard (kaempferol) and were linear within the concentration range used (0.01 to 20 µg/ml) with correlation coefficient >0.99. The percent extraction from plasma, tumors, or normal tissues was 91% and the lower limit of quantification was 0.01 µg/ml. The apparent concentration of the metabolites was calculated based on the fisetin standard curve.

HPLC system for pharmacokinetic studies

For pharmacokinetic studies we used a HPLC-UV system (Shimadzu CLASS-VP ® , version 5.3), equipped with a C 18 column (Beckman Ultrasphere ODS, 5 µm; 4.6 × 25 mm) thermostated at 20°C, and a UV detector set at 360 nm. The mobile phase was composed of 52% methanol, 48% aqueous acetic acid (2%), at a flow rate of 1 ml/min.

Pharmacokinetic parameters determination

Fisetin plasma concentrations were analyzed using non compartmental analysis and also using a bicompartmental model with extravascular administration. The following non compartmental pharmacokinetics parameters were derived using standard methods [START_REF] Gibaldi | Noncompartmental analysis based on statistical moment theory[END_REF] B, 75-46% C. For each gradient, the logarithm of the retention factor (log k) of M3 and geraldol were calculated using retention time and dead time. The retention factor relates to retention time, but is preferred because it is dimensionless and independent of unexpected variations in mobile phase flow. In contrast to retention time, the log k can unequivocally be ascribed to structural changes, as previously used for flavonoids by Stefova et al., 2007 [28].

To further ascertain the identity of M3, we also injected an equimolar mixture of geraldol and M3 using all 4 gradient systems.

In vitro cytotoxic activity of fisetin and metabolite

The murine Lewis lung carcinoma (LLC) cell line, the normal NIH 3T3 murine fibroblast cell line and the EAhy 926 endothelial cell line were grown in Dulbecco's modified Eagle's medium (DMEM) containing 2 mM L-glutamine, 10% fetal bovine serum, 100 U/ml penicillin and 100 µg/ml streptomycin (37°C, 5% CO 2 ). Exponentially growing cells were plated onto 96-well plates at 5000 cells per well in 200 µl. Twenty-four h later, cells were exposed for 24 or 48 h to fisetin or geraldol at increasing concentrations (0 to 1 mM).

Viability was assessed using the MTT test and absorbance was read at 562 nm in a microplate reader (BioKinetics Reader, EL340). Appropriate controls with DMEM only and MTT were run to subtract background absorbance. Experiments were run in quadruplicate and repeated 3 times. Control cells were exposed to 1% DMSO which was not cytotoxic. The results are presented as the inhibitory concentrations for 50% of cells (IC 50 ) for a 24 or 48 h exposure time relative to controls.

Cell migration assay (scratch wound assay)

EAhy 926 endothelial cells were grown to confluence and a wound was introduced by clearing an area of the monolayer using a 100 µl pipet tip. After wounding, digital photographs were recorded of wounded areas of each well at a magnification of X 100 (time 0 h). Medium was changed, and bFGF (10 ng/ml), fisetin or geraldol was added at increasing concentrations (0, 22, 44 and 88 µM) to the media containing 2.5 % of FBS. After a 24 h incubation period, digital photographs were recorded of the cleared areas of each well.

Migration was evaluated by manually drawing the distance of the wound area (d) at T 0h and T 24h time on a computer screen and distances values were obtained using the ImageJ software [START_REF] Abramoff | Image processing with ImageJ[END_REF]. The results were expressed as a percent of the controls using the following formula: 100

× [1-(dT 0h -dT 24h of treated cells)/( dT 0h -dT 24h of control cells)]. Experiments were performed in triplicate for each concentration and were repeated 3 times.

Formation of capillary-like structures

Analysis of capillary-like structure formation was performed using EAhy 926 endothelial cells grown on Matrigel. Fifty µl of the Matrigel solution was applied to each well on a 96well plate and incubated for 30 min at 37°C. EAhy 926 cells (1 × 10 4 ) were suspended in 100 µl of medium, plated onto the gel matrix and incubated at 37°C. Adherent cells received bFGF (10 ng/ml) and fisetin or geraldol at increasing concentrations (0, 22, 44 and 88 µM).

After a 24 h exposure time, in vitro angiogenesis was assessed by counting the capillary-like structures in each well at X 100 magnification under a light microscope (Zeiss). The in vitro anti-angiogenic effect was calculated by the following formula: 100 × [1-(number of capillary-like tube of treated cells) / (number of capillary-like tube of control cells)].

Experiments were performed in duplicate for each condition and repeated 3 times.

Statistical analysis

Results are expressed as the mean ± SEM of at least 3 independent experiments. Statistical differences between means were assessed using the Student t test for unpaired data. If unequal variance was observed, the Welch's correction was applied. A P value ≤ 0.05 was considered significant.

Results

Plasma and tissue pharmacokinetics of fisetin and its metabolites

A representative chromatogram depicting the separation of fisetin and its metabolites in mouse plasma is presented in Figure 2. In these chromatographic conditions (reversed-phase mode), fisetin eluted at 40 min and the internal standard (kaempferol) at 53 min. Fisetin plasma pharmacokinetics after an i.p. administration at a dose of 223 mg/kg is presented in Figure 3 and Table 1. The maximum plasma concentration reached 2.53 µg/ml at 15 min post dosing and declined thereafter with a first rapid alpha half-life of 0.09 h (5.4 min), followed by a longer terminal disposition half-life beta of 3.12 h. The total area under the plasma versus time curve (AUC) was 4.0 µg × h/ml, the apparent intraperitoneal clearance (CL/F) was 1.12 L/h, and the Vss/F was 5.1 L.

As shown in Figure 2, in addition to the fisetin peak, several other peaks not present in control plasma were also detected. Of those peaks, two metabolites eluted before fisetin (M1 at 26 min and M2 at 35 min), whereas another metabolite (M3) eluted after fisetin with a retention time of 48 min. Figure 4 presents the relative concentrations of these metabolites as a function of time using fisetin as a reference. It can be observed that metabolites M1 and M2 could achieve apparent higher concentrations than the parent compound, whereas metabolite M3 apparent concentrations were lower compared to fisetin. Pharmacokinetic parameters of the metabolites are presented in Table 1.

To obtain some information on fisetin and metabolites levels in normal tissues, mice were sacrificed 30 minutes after i.p. injection of fisetin and liver, intestines, kidneys, lungs and spleen were harvested. Fisetin and metabolites levels presented in Table 2 show that fisetin concentrations were highest in liver, intestines and kidneys. Metabolite M1 highest concentrations were mainly found in plasma and kidneys. For metabolites M2 and M3, the highest concentrations were in kidneys and intestines.

We next submitted plasma samples to β-glucuronidase digestion, and the M1 and M2 metabolite peaks were completely abolished, whereas the fisetin and the M3 peaks were markedly increased as shown in Figure 5 (compare with Fig. 2 without β-glucuronidase). This observation indicated that M1 and M2 were glucuronides of fisetin and metabolite M3, respectively.

Identification of metabolite M3

To identify metabolite M3, the peak at 48 min was subjected on line to mass spectrometry analysis and UV spectrum determination. The mass spectrum of M3 presented a molecular ion m/z value of 301 Da [M+H] + , thus corresponding to a molecular weight of 300 Da (Figure 6-A). In the same conditions, fisetin presented a M+H m/z value of 287 Da corresponding to a molecular weight of 286 Da (data not shown). Therefore, the gain of 14 atomic mass units observed with M3 over the parent compound corresponded to the addition of a CH 2 on the fisetin molecule, indicating that metabolite M3 was a methylated compound of fisetin.

However, because fisetin possesses 4 hydroxyl groups, the exact localization of the methoxyl on the fisetin molecule could not easily be identified.

In addition, the UV spectrum of M3 was found superimposable to that of fisetin with identical maxima at 245, 320 (shoulder) and 360 nm (Figure 6-B). Among the possible methylated fisetin candidates, the 3,4',7-trihydroxy-3'-methoxyflavone or geraldol (cf. Figure 1), therefore appeared as a possible candidate. Geraldol UV spectrum was indeed found superimposable to that of M3 and fisetin (Figure 6-B). Also the mass spectrum of authentic geraldol was also superimposable to the mass spectrum of M3 (data not shown).

Authentic geraldol was also tested for its HPLC retention time and it was found to co-elute with metabolite M3 in 4 different ternary elution systems (Table 3), thus further substantiating that M3 was indeed geraldol. In addition, the logarithm of the retention factor (log k) of M3

and geraldol yielded the same values, further substantiating the identity of M3 as geraldol.

Considering M3 molecular mass identical to geraldol, its UV spectrum superimposable to both fisetin and geraldol spectra, its retention times and log k identical to authentic geraldol in 4 ternary gradient systems, allowed us to ascribe M3 as being geraldol.

Tumor concentration of fisetin and its metabolites

At 15 min after the administration of fisetin i.p. (223 mg/kg) to tumor bearing mice (Lewis lung carcinoma), the plasma and tumor concentrations of fisetin and its main metabolites were also determined by HPLC. Glucuronides M1 and M2 presented higher concentrations in the plasma compared to tumors (compare Figures 7A and7B). However, it was of interest to note that geraldol was the metabolite that reached the highest concentrations in tumors (Figure 7-B). Indeed, geraldol concentrations in tumors were 4.3 times higher than the fisetin concentration in this tissue at this sampling time. Considering this observation, we were next interested to investigate further the geraldol cytotoxic and antiangiogenic properties.

Cytotoxic activity of fisetin and geraldol on Lewis lung carcinoma (LLC) cells, endothelial cells (EAhy 926), and normal cells ( IH 3T3)

The effect of fisetin and metabolite geraldol on the viability of Lewis carcinoma cells, endothelial cells (EAhy 926), and normal NIH 3T3 cells were also tested (Figure 8). A dosedependent decrease in viability of the three cell lines after a 24 h exposure time to both flavonoids could be observed. The most cytotoxic flavonoid on LLC cells was found to be geraldol with an IC 50 (the concentration producing 50 % reduction of viability) of 24 µM, about 2.5-fold lower than that of fisetin (59 µM) (Fig. 8-A). Concerning the effect on EAhy 926 endothelial cells viability, fisetin and geraldol showed similar IC 50 (76 and 72 µM, respectively) (Fig. 8-B). However, it was of interest that the normal NIH 3T3 cells were significantly less sensitive to fisetin and geraldol than either LLC or endothelial cells, with IC 50 of 195 µM and 128 µM, respectively (Fig. 8-C).

Fisetin and geraldol effect on endothelial cells migration in vitro

We next compared the effect of various concentrations [START_REF] Constantinou | Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships[END_REF][START_REF] Lotito | Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties[END_REF], 88 µM) of fisetin and its metabolite geraldol on EAhy 926 endothelial cells migration using the scrape wound assay.

Figure 9 illustrates that at 24 h post-wounding of confluent EAhy 926 endothelial cells, the control bFGF (10 ng/ml) treated cells migrated and totally filled the scraped area, as expected.

Although fisetin and geraldol could inhibit significantly endothelial cells migration at 44 µM (Figure 9), fisetin was found more active than geraldol at this concentration, and also at the lower concentration of 22 µM (Figure 10). Although the inhibition of endothelial cells migration was dose-dependent for both flavonoids, the calculated IC 50 for the antimigration effect showed that fisetin had a significantly (p<0.001) stronger antimigration effect compared to geraldol (43 ± 0.8 µM versus 64 ± 0.8 µM, respectively) (Figure 10).

Fisetin and geraldol effect on the capillary-like structure formation on Matrigel

To examine whether geraldol could directly inhibit angiogenesis, its effect on bFGF-mediated tube formation by endothelial cells was investigated at concentrations ranging from 3 to 300 µM. As expected, EAhy 926 endothelial cells plated on Matrigel with bFGF (10 ng/ml) formed a capillary-like network within 24 h (data not shown). Fisetin could prevent the formation of the capillary-like network in a dose-dependent fashion with an IC 50 of 51 ± 7 µM, whereas no significant antiangiogenic effect of geraldol could be observed at the highest achievable in vitro concentration of 88 µM, because geraldol was not soluble at higher concentrations (data not shown).

4.

Discussion

The natural flavonoids are attracting interest in cancer prevention and therapy because these compounds are relatively non toxic compared to other chemotherapeutic agents used in cancer therapy [START_REF] Havsteen | The biochemistry and medical significance of the flavonoids[END_REF][START_REF] Hill | Vascular collapse after flavone acetic acid: a possible mechanism of its anti-tumour action[END_REF][START_REF] Lopez-Lazaro | Flavonoids as anticancer agents: structure-activity relationship study[END_REF][START_REF] Middleton | The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer[END_REF]. Although the dietary flavonoid fisetin has recently been shown to be an interesting anticancer active agent in mice [START_REF] Khan | A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice[END_REF][START_REF] Tripathi | Anti-cancer activity of a combination of cisplatin and fisetin in embryonal carcinoma cells and xenograft tumors[END_REF][START_REF] Touil | Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice[END_REF] and to possess antiangiogenic properties in vitro [12;13] and in vivo [START_REF] Touil | Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice[END_REF], the blood levels achieved by this compound after systemic administration and its metabolism have not previously been investigated in mice. The purpose of this study was therefore to study fisetin pharmacokinetics in mice, to determine fisetin principal metabolic routes and to evaluate the biological activity of a detected metabolite.

Concerning the pharmacokinetics of fisetin in mouse plasma, we found that it could reach a concentration of 2.5 µg/ml at 15 min and that it displayed a relatively long terminal half-life in plasma of 3.12 h after an i.p. administration of 223 mg/kg. Although the plasma concentrations are relatively low, it is possible that the long residence time could be responsible for the remarkable in vivo antitumor effect in mice at this dose level [START_REF] Touil | Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice[END_REF].

Nonlinear pharmacokinetics may also be involved in the fisetin long residence time at this dose level, as nonlinear pharmacokinetics has already been reported for other flavonoids [START_REF] Chabot | Pharmacodynamics and causes of dose-dependent pharmacokinetics of flavone-8-acetic acid (LM-975; NSC-347512) in mice[END_REF].

Potential accumulation of fisetin and/or metabolites in tumour tissue could also play a role in the fisetin antitumour activity. Compared to fisetin pharmacokinetics in rat in which negligible levels of free fisetin and a short half-life of 2.7 minutes were reported [START_REF] Shia | Metabolism and pharmacokinetics of 3,3',4',7-tetrahydroxyflavone (fisetin), 5-hydroxyflavone, and 7-hydroxyflavone and antihemolysis effects of fisetin and its serum metabolites[END_REF], it thus appears that the mouse is eliminating fisetin at a much slower rate (half-life = 3.12 hours), probably due to a lower conjugation capacity through glucuronidation in mice. Indeed, such significant species differences in clearance has also been observed for the flavonoid analogue 5,6-dimethylxanthenone-4-acetic acid (DMXAA), which is also mainly metabolized through glucuronidation, where in vitro intrinsic clearance in mice was found to be 15-fold lower that in rats, and in vivo plasma clearance was 1.8-fold smaller in mice compared to rat plasma clearance [START_REF] Zhou | Species differences in the metabolism of the antitumour agent 5,6-dimethylxanthenone-4-acetic acid in vitro: implications for prediction of metabolic interactions in vivo[END_REF].

We also observed that metabolites M1 and M2, which were identified as glucuronides, displayed longer terminal half-lives compared to fisetin. This appears unusual since these two metabolites are glucuronides of fisetin and M3, and shorter half-lives could have been expected. However such a pharmacokinetic behaviour has also been reported for fisetin in rats where a half-life of 2.7 min was found for the aglycone, whereas the glucuronides were showing a half-life of 40.7 min [START_REF] Shia | Metabolism and pharmacokinetics of 3,3',4',7-tetrahydroxyflavone (fisetin), 5-hydroxyflavone, and 7-hydroxyflavone and antihemolysis effects of fisetin and its serum metabolites[END_REF]. Such a longer half-life for genistein sulfates/glucuronides has also been observed in rats compared to the parent aglycone [START_REF] Piskula | Factors affecting flavonoids absorption[END_REF].

In this study, we have also identified a methylated metabolite of fisetin which was assigned to the 3,4',7-trihydroxy-3'-methoxyflavone (geraldol). This metabolite, reported here for the first time to our knowledge, is probably generated through catechol-O-methyl transferase (COMT) metabolism because fisetin possesses a catechol function on the B ring.

COMT catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to polyphenols possessing an o-diphenolic (catechol) moiety. COMT can be found as membrane bound and soluble forms and is expressed in brain and most peripheral tissues including liver, kidneys and small intestine in the mouse, although there are large differences between species [34;35].

Methylation has already been reported for other flavonoids possessing a catechol function, e.g., quercetin, catechin, caffeic acid, and luteolin (reviewed in [START_REF] Manach | Polyphenols: food sources and bioavailability[END_REF]). Methylation of flavonoids generally occurs predominantly in the 3'-position of the polyphenol, but a minor proportion of 4'-O-methylated product can also be formed.

Although our mass spectrometry data indicated the presence of a methoxyl group on the fisetin molecule, the exact position of this substituent could not be determined by this technique alone. The formal identification of the methoxylated metabolite of fisetin was therefore further investigated using UV spectroscopy which is particularly useful for the identification of flavonoids [START_REF] Mabry | The systematic identification of flavonoids[END_REF]. It is known that methylation of hydroxyl groups in positions 3, 5, 7, or 4' produces hypsochromic shifts (shorter wavelengths) of the characteristic absorption bands in the UV-spectra of flavones, but does not significantly affect the shape of the UV-spectra when it occurs in other positions [START_REF] Markham | Techniques of flavonoid identification[END_REF]. In our case, metabolite M3 did not present a hypsochromic shift compared to the parent compound and their UV spectra were superimposable. Therefore, the methylation of the 3, 4', and the 7 positions could therefore be ruled out as possible methylated positions of fisetin.

We further ascertained the identity of metabolite M3 as being the 3,4',7-trihydroxy-3'methoxyflavone or geraldol using the log k value obtained by reversed-phase HPLC. It was already demonstrated that log k values are significantly different for the same flavone if methylated in the 3' or the 4' position [START_REF] Stefova | QSRR of flavones: evaluation of substituent contributions to RP HPLC retention[END_REF]. Using the same approach, the log k values obtained with 4 different ternary mobile phases were strictly identical for geraldol and metabolite M3, therefore substantiating further that M3 was indeed the 3'-methyl-fisetin, and could not be the 4'-methyl-fisetin. Concerning the possible methylation on position 3 of fisetin, this would have resulted in a decrease in the retention time in the reversed-phase HPLC mode, owing to its inductive effect which increases the influence of the polar carbonyl group [START_REF] Stefova | QSRR of flavones: evaluation of substituent contributions to RP HPLC retention[END_REF]. Methylation of the hydroxyl group in position 3 results in a lack of hydrogen bonding between 3-OH and the carbonyl group (at C4) which results in an increased polarity of the molecule and consequently a decreased in retention time. In contrast, an increase in retention time was observed compared to fisetin, which further rules out a methylation at the 3 position of fisetin. Considering metabolite M3 molecular mass M3 identical to geraldol, its UV spectrum identical to fisetin and geraldol, and identical retention times to geraldol in 4 different ternary gradient systems, the identity of M3 was therefore assigned to geraldol.

Of particular interest, it was also observed that this 3'-methoxylated metabolite of fisetin could achieve higher concentrations in tumors compared to fisetin, an observation probably linked to the fisetin in vivo remarkable anticancer activity already noted by some investigators [START_REF] Khan | A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice[END_REF][START_REF] Tripathi | Anti-cancer activity of a combination of cisplatin and fisetin in embryonal carcinoma cells and xenograft tumors[END_REF][START_REF] Touil | Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice[END_REF]. This high tumor geraldol levels could result from either an increased in situ formation or this metabolite, or from hydrolysis of its glucuronide that could regenerate the aglycone.

Indeed, a high COMT activity in the tumor is possible because an increased expression of this enzyme has recently been observed in cancer [START_REF] Hevir | Disturbed expression of phase I and phase II estrogen-metabolizing enzymes in endometrial cancer: lower levels of CYP1B1 and increased expression of S-COMT[END_REF]. Concerning the possible regeneration of the aglycone from its corresponding glucuronide, it has been reported that Lewis lung tumors express a high β-glucuronidase activity that could hydrolyze the glucuronide to its geraldol aglycone [START_REF] Dobrossy | Elevation of lysosomal enzymes in primary Lewis lung tumor correlated with the initiation of metastasis[END_REF].

From a metabolic standpoint, the methylation of fisetin in vivo could be viewed as a favourable metabolic route, because methylation usually results in a higher metabolic stability of flavonoids that could favour its retention in vivo [START_REF] Wen | Methylated flavonoids have greatly improved intestinal absorption and metabolic stability[END_REF]. Because geraldol can be glucuronidated, as shown in this work, and could therefore be secreted in bile, bacterial glucuronidase present in the intestines could hydrolyze this metabolite and give back the aglycone (geraldol) that could be absorbed from the intestines, therefore possibly contributing to a longer residence time in vivo for this metabolite. In addition, the presence of a methoxy group on the A or B ring of the flavonoid also seems to protect the structure from bacterial degradation in faeces, therefore probably contributing to longer exposure times in vivo by allowing the reabsorption from the intestines of the intact methylated metabolite [START_REF] Lin | Degradation of flavonoid aglycones by rabbit, rat and human fecal flora[END_REF].

However, we observed in this work that the geraldol formed in vivo is rapidly cleared from the plasma as shown by its short half-life, although this metabolite is less polar and probably more metabolically stable than fisetin. We have no obvious explanation for this observation, except that upon geraldol formation in vivo, this metabolite could be rapidly metabolized to other metabolites (e.g., glucuronides and/or sulfates), which could perhaps explain its rapid clearance.

The fisetin antiproliferative/cytotoxic activity determined in this study on Lewis lung carcinoma cells is in line with its cytotoxic activity reported on other cancer cell lines, e.g., in prostate [START_REF] Haddad | Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines[END_REF], liver [START_REF] Chen | Wogonin and fisetin induction of apoptosis through activation of caspase 3 cascade and alternative expression of p21 protein in hepatocellular carcinoma cells SK-HEP-1[END_REF], colon [START_REF] Lu | Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells[END_REF], and leukemia cell lines [START_REF] Lee | Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca 2+ -dependent endonuclease[END_REF]. With regard to the comparison of the biological activity of fisetin and its metabolite geraldol, it was of interest to note that the metabolite was more cytotoxic than the parent compound on Lewis lung carcinoma cells showing a 2.5-fold lower IC 50 value. This increased cytotoxicity of the metabolite associated with the higher concentrations of geraldol in tumor could give fisetin a selective anticancer activity advantage in vivo. Also of interest, both fisetin and geraldol were found several folds less cytotoxic towards normal NIH 3T3 cells compared to tumor cells, and this could give these compounds an important in vivo advantage in terms of therapeutic index, because they would be less toxic to normal cells compared to cancer cells. This relative non toxicity of flavonoids to normal cells was also noted for other normal cell lines [START_REF] Fotsis | Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis[END_REF]. This tumor cell selectivity was also observed on prostate cancer cells that were shown to be more vulnerable to fisetin compared to normal prostate cells [START_REF] Haddad | Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines[END_REF]. This relatively uncommon cancer cell selectivity could therefore confer fisetin a valuable advantage for in vivo anticancer treatment.

In addition, it should be mentioned that because of the presence of 4 hydroxyl substituents on the fisetin molecule, several glucuronide conjugates were also detected at high concentrations in mouse plasma in the present mouse study, and also in rat plasma [START_REF] Shia | Metabolism and pharmacokinetics of 3,3',4',7-tetrahydroxyflavone (fisetin), 5-hydroxyflavone, and 7-hydroxyflavone and antihemolysis effects of fisetin and its serum metabolites[END_REF]. These metabolites could also play a role in the overall antiangiogenic effects observed in vivo in mice, because some flavonoid sulfates and/or glucuronides have been reported to display bioactivities sometimes superior to their aglycones (free forms) [START_REF] Fang | Morin sulfates/glucuronides exert anti-inflammatory activity on activated macrophages and decreased the incidence of septic shock[END_REF][START_REF] Meng | Activation of aminoflavone (NSC 686288) by a sulfotransferase is required for the antiproliferative effect of the drug and for induction of histone -H2AX[END_REF][START_REF] Lotito | Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties[END_REF][START_REF] Tribolo | Comparative effects of quercetin and its predominant human metabolites on adhesion molecule expression in activated human vascular endothelial cells[END_REF]. Future studies aimed at determining potential high partition of metabolites and/or accumulation in tumour tissue should also be considered, as well as a more complete pharmacokinetic profile of fisetin and its metabolites in tumours should also be assessed.

The interesting bioactivity of geraldol shown in the present work has also to be put in perspective of a recently published work on quercetin (3',3,4',5,7-pentahydroxyflavone), a close parent of fisetin bearing an additional 5-hydroxyl substituent. A 3'-O-methylated metabolite of quercetin, i.e., isorhamnetin, was shown to possess potent inhibitory activity of cyclo-oxygenase-2 (COX-2), an enzyme mechanistically linked to carcinogenesis [START_REF] Jones | Characterisation of metabolites of the putative cancer chemopreventive agent quercetin and their effect on cyclo-oxygenase activity[END_REF]. Also in line with this observation, quercetin metabolites have been found to possess antioxidant properties [START_REF] Da Silva | Quercetin metabolites inhibit copper ion-induced lipid peroxidation in rat plasma[END_REF][START_REF] Manach | Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties[END_REF][START_REF] Merfort | Radical scavenger activity of three flavonoid metabolites studied by inhibition of chemiluminescence in human PMNs[END_REF], and to inhibit xanthine oxidase and lipoxygenase [START_REF] Day | Conjugation position of quercetin glucuronides and effect on biological activity[END_REF].

Regarding the effect of fisetin and geraldol on the formation of capillary-like structures, the parent compound fisetin has previously been shown to be active in this model [START_REF] Touil | Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice[END_REF], whereas geraldol could not achieve an active concentration in this model probably due to its inherently low water solubility. It is however possible that longer exposure time to geraldol (> 24 h) could nonetheless participate to an antiangiogenic response in vitro. Considering the above results, it is therefore possible that fisetin antitumor action in vivo could involve a dual mechanism of action, i.e., the parent compound fisetin would exert its strong antiangiogenic action directly, whereas its main metabolite geraldol would then exert its strong cytotoxicity against tumor cells.

In conclusion, we have determined fisetin pharmacokinetics in mice, for the first time to our knowledge, and have also identified geraldol, a previously unknown metabolite. In addition, we have shown that the metabolite geraldol possesses interesting biological activities in terms of selective cytotoxicity on cancer cells, antiproliferative and antimigration effects on endothelial cells. Fisetin and geraldol anticancer and antiangiogenic properties therefore deserve to be optimized in preclinical models, as a single administration or in combination therapy with cytotoxic anticancer agents. 
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  3 , mice were injected with fisetin (223 mg/kg, i.p.) dissolved in 100 µl of polyethylene glycol 200/DMSO (7:3; v:v), and 15 min later, the mice were sacrificed and the tumors were harvested, rinsed with ice-cold PBS and transferred into a polypropylene tube and kept at -

20°C until analysis. All animal experiments have been carried out in accordance with institutional and French regulations concerning the protection of animals used for experimental and other scientific purposes, and with the European Commission regulations.

. Identification of metabolites 2.7.1 Hydrolysis of glucuronide conjugates. To

  

	2.7hydrolyze glucuronide conjugates, plasma
	or tumor homogenate samples were adjusted to pH 5.0 with an equal volume of 50 mM
	acetate buffer, and incubated at 37°C for 2 h in the presence of 1000 units of β-glucuronidase
	(Sigma No. G-0751). The hydrolyzed samples were submitted to the above described protocol
	of methanolic extraction and injected onto the HPLC system.
	: area
	under the plasma concentration versus time curve from time zero to the time of the last
	measurable concentration (AUC 0-t ) calculated by the trapezoidal method; maximum
	concentration (C max ); mean residence time (MRT); terminal half-life; apparent intraperitoneal
	clearance (CL/F) and volume of distribution at steady state (Vss/F). Pharmacokinetics
	parameters were also determined by fitting the fisetin plasma concentration versus time to a
	two-compartmental model with extravascular administration using the Graph Pad Prism
	software.

2.7.2 Identification of metabolite M3 using UV and mass spectrometry. Metabolite

  

	M3
	was analyzed online using an HPLC-MS/MS system composed of an HPLC apparatus
	(Surveyor  , ThermoElectron) equipped with a UV diode array detector and coupled with a
	mass spectrometer (LCQ-Advantage  , ThermoElectron). A C 18 reversed-phase column (EC.
	250/2 Nucleodur Sphinx RP, 5 µm, 250 mm X 2.1 mm, Macherey-Nagel) thermostated at
	30°C was used. The metabolites (injection volume: 15 µl) were resolved with the following
	ternary gradient using methanol (A), acetonitrile (B) and aqueous 0.1% TFA (C) at a flow rate
	of 0.2 ml/min: from 0 to 50 min, 7-35% A, 4-19 % B, 89-46 % C; from 50 to 60 min, 35% A,
	19% B, 6% C (gradient 1). The mass spectrometer consisted of an electrospray ionization
	system used in positive ion polarity mode and ion trap mass analyzer. The operating
	parameters where as follows: the spray needle voltage was set at 4.0 kV and the spray was
	stabilized with a nitrogen sheath gas. Electrospray capillary voltage was 4.0 V, nitrogen was
	used as auxilliary gas, and the capillary temperature was 250°C. The Xcalibur ® software was
	used for data acquisition and analysis.

2.7.3 Identification of M3 using retention times in various gradient systems. To ascertain

  

	the identity of M3, this metabolite and authentic geraldol were separately injected using the
	HPLC system with gradient 1 described in section 2.7.2, and three other ternary gradients
	composed of methanol (A), acetonitrile (B) and aqueous 0.1% TFA (C) (flow rate 0.2 ml/min)
	as follows: gradient 2-from 0 to 70 min, 7-35% A, 4-19% B, 89-46% C; gradient 3-from 0 to
	50 min, 15-35% A, 10-19% B, 75-46% C; gradient 4-from 0 to 70 min, 15-35% A, 10-19%

Table 1 . Fisetin and metabolites pharmacokinetic parameters. 1

 1 

		Cmax (µg/ml) AUC (µg/ml)×h	MRT (h)	Half-lives (h)
	Fisetin	2.53	4.00	4.51	3.12
	Metabolite M1	6.54	40.71	11.27	7.81
	Metabolite M2	2.22	13.63	9.95	6.89
	Metabolite M3	0.07	0.17	0.65	0.45

1 

Cmax, maximum plasma concentration; AUC, area under the plasma concentration versus time curve from time zero to the time of the last measurable concentration; MRT, mean residence time.

Table 2 . Fisetin and its metabolites distribution in plasma and normal tissues in mice.

 2 Mice were administered fisetin intraperitoneally at a dose of 223 mg/kg and tissues were harvested 30 minutes later for HPLC analyses, as detailed in the Materials and Methods section. Values are the mean ± SEM of 3 independent determinations.

			Concentration (µg/ml or µg/g tissue)	
	Tissues	Fisetin	M1	M2	M3
	Plasma	1.14 ± 0.12	6.12 ± 0.47	1.93 ± 0.29	0.10 ± 0.01
	Liver	39.15 ± 12.85	0.66 ± 0.22	2.02 ± 1.31	2.23 ± 0.38
	Intestines	80.11 ± 33.82	0.12 ± 0.08	4.17 ± 3.24	5.05 ± 0.49
	Kidneys	83.69 ± 10.45	4.23 ± 1.88	49.03 ± 22.65	14.25 ± 6.54
	Lungs	8.00 ± 3.31	0.69 ± 0.46	5.67 ± 5.69	1.57 ± 0.67
	Spleen	2.00 ± 0.50	1.03 ± 1.37	1.30 ± 1.01	1.71 ± 1.67

Table 3 . Retention times of fisetin and geraldol in various HPLC ternary gradient systems Gradient Retention times in minutes (log k) b

 3 

	system a	Fisetin	Geraldol	Metabolite M3
	1	40.0 (0.561)	47.7 (0.590)	47.7 (0.591)
	2	49.4 (0.596)	60.1 (0.628)	60.1 (0.628)
	3	28.6 (0.504)	39.0 (0.557)	39.0 (0.557)
	4	32.8 (0.528)	46.6 (0.586)	46.6 (0.586)
	a The ternary gradient systems used were composed of methanol (A), acetonitrile (B) and
	water containing 0.1% TFA, as follows: gradient 1-from 0 to 50 min: 7-35% A, 4-19% B, 89-
	46% C ; gradient 2-from 0 to 70 min: 7-35% A ; 4-19% B ; 89-46% C ; gradient 3-from 0 to
	50 min : 15-35% A ; 10-19% B ; 75-46% C ; gradient 4-from 0 to 70 min : 15-35% A ; 10-
	19% B ; 75-46% C. The reversed-phase HPLC system used is described in the Methods
	section.			

b The retention factor k was calculated as in

Stefova et al., 2007 [27] 
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