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Abstract

Estimation methods for nonlinear mixed-effects modelling have considerably improved over the last decades. Nowadays several
algorithms implemented in different softwares are used. The present study aimed at comparing their performance for dose-response
models.

Eight scenarios were considered using a sigmoid E__ model, with varying sigmoidicity factors and residual error models. 100
simulated datasets for each scenario were generated. 100 individuals with observations at 4 doses constituted therich design and at 2
doses for the sparse design. Nine parametric approaches for maximum likelihood estimation were studied: FOCE in NONMEM and
R, LAPLACE in NONMEM and SAS, adaptive Gaussian quadrature (AGQ) in SAS, and SAEM in NONMEM and MONOLIX (both
SAEM approaches with default and modified settings). All approaches started first from initial estimates set to the true values, and
second using altered values. Results were examined through relative root mean squared error (RRM SE) of the estimates.

With trueinitial conditions, full completion rate was obtained with all approaches except FOCE in R. Runtimes wer e shortest with
FOCE and LAPLACE, and longest with AGQ. Under the rich design with true initial conditions, all approaches performed well
except FOCE in R. When starting from altered initial conditions, AGQ, and then FOCE in NONMEM, LAPLACE in SAS, and
SAEM in NONMEM and MONOLI X with tuned settings, consistently displayed lower RRM SE than the other approaches.

For standard dose-response models analyzed through mixed-effects models, differences could be identified in the performance of
estimation methods availablein current software.
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I ntroduction

Non-linear mixed-effects models (NLMEM) were introduced to the biomedical field about 30 years ago (1-3) and have substantially
improved the information learned from preclinical and clinical trials. Within drug development, NLMEM were initially used for
pharmacokinetic (PK) analyses (4), before being extended to pharmacokinetic-pharmacodynamic (PKPD) analyses (5), along with
dose-response analyses. On top of the structural mathematical model fit to PK or/and PD observations, the statistical model components
enable the modeller to characterize results obtained in a set of individuals with the same parametric model and, in addition, to estimate the
interindividual variability (6), and to quantify the unexplained variability (7).

The estimation of the fixed effect and random effect parameters involve complex estimation methods. Maximum likelihood estimation
(MLE) approaches constitute a large family of methods commonly used in NLMEM analyses (8). The non-linearity of the regression
function in the random effects prevents a closed form solution to the integration over the random effects of the likelihood function (9), thus
several algorithms have been developed for MLE. Gaussian assumptions for the distribution of the random effects are common among
MLE methods, and form the group of parametric approaches (10).

Along with methodological developments, different software have emerged, the most commonly used one (11) being NONMEM (12).
Estimation algorithms available were first restricted to First-Order (FO) and then First-Order Conditional Estimation (FOCE), which were
subsequently implemented in Splus, R and WinNonMix. LAPLACE (13) then appeared in NONMEM, while SAS witnessed the addition
of two macros MIXLIN and NLINMIX. A later procedure in SAS that represented a considerable improvement was NLMIXED, with FO
and adaptive Gaussian quadrature (AGQ). Alternatives followed with stochastic expectation maximisation (EM) algorithms, and especially
the SAEM algorithm (14) implemented in the MONOLIX (15) and the NONMEM (16) software.

Whilst the estimation algorithms use different statistical methods, all aim at producing reliable estimates of the model parameters. The
complexity of the model and the approximations embedded in the algorithm could potentially lead to poor estimation performance. This
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performance is measured through precision and accuracy. As the estimates may impact on clinical decisions and lead to biomedical
conclusions, selecting an estimation method with lower bias and higher precision is desirable.

In the past, several studies comparing algorithms have been performed, stimulated by the introduction of new algorithms (17, 18), as a
systematic comparison from a workgroup (19), in order to highlight practical applications (20), or as a complex-problem solving survey
(21). However, apart from (17, 18), these investigations were not supported by a high number of simulations, but rather considered the
analysis of only one simulated dataset (19, 21) or onereal dataset (20).

Recently, large Monte Carlo simulation studies compared estimation methods performance for PD count (22, 23), categorical (24, 25),
and repeated time-to-event (26) models, enlarging the challenge represented by the model type. Estimation methods compared over all
these five investigations were LAPLACE in NONMEM, AGQ in SAS, SAEM in MONOLIX, SAEM in NONMEM and importance
sampling in NONMEM. Nevertheless, rarely more than three approaches were compared within a study, although the panel of algorithms
and software available to the modeller is now rich and diversified. A wider comparison has been performed for continuous PK data (27)
and remained to be for dose-response analyses.

The objectives of this study were to measure and compare the estimation performance of FOCE in NONMEM and R, LAPLACE in
NONMEM and SAS, adaptive Gaussian quadrature in SAS, and SAEM in NONMEM and MONOLIX for a set of dose-response
scenarios.

Methods
Statistical model
Letd=d,, ..., d, beaset of ordered dose levels selected in a dose-response study and y;, be the response of subjecti = 1, ..., N to the

dose d, . The dose-response is assumed to be adequately described by afunction f such as:
Wy = fid;, tpi) 4]

@

where @, is the p dimensional vector of the model individual parameters for subject i and ¢, is the measurement error. g, given ¢, are
assumed to be independent and normally distributed with a zero mean and a variance a;, 2which can be additive (o;, 2= 62) or proportional
(o, 2= f(d, ,,)>=x0?). f isafunction than can be nonlinear with respect to the parameters ¢.

@; depend on the fixed effect p-dimensional vector u and the random effect g-dimensional vector n; in the following manner when
considering an exponential model to ensure positivity:

Q=1 e
@

with the random effects following a Gaussian distribution with a zero mean and a variance matrix Q of size (gxq), whose diagonal
elements are variances w? . The (pxq)-matrix B allows some components of ¢ not to have a random part. Also, the exponential random
effect model ensures the positivity of the model parameter.

Finally, let define the vector of all the model parameters as W = (u',Vech(Q)',0) where the operator Vech(.) creates a column vector
from the matrix by stacking its lower diagonal elements below one another.

Likelihood function

The log-likelihood L (y; W) is the sum over the N subjects of the individual likelihoods, L(y; ; ¥):
Ly 0=, Liy; ¥)
i=1

(©)
where the individual log-likelihood L, (y; ; W) is defined as follows:

Liy; ¥)=log |an[3@ n, ¥d r?:,l = log |fp(afil n; Yip(n; ¥)d r}:,l

4
with p(y; In; ; W) the conditional density of the observations given the individual random effects, p(n; ; ¥) the density of the individual
random effects, and p(y; , n;; W) the likelihood of the ‘complete’ data which correspond to the observations plus the random effects, n; .

Estimation algorithms

Estimation methods are briefly described here. More details may be obtained in the original articles.
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First-Order Conditional Estimation (FOCE)

As initially described by Lindstrom and Bates (28), the algorithm approximates (4) by the log-likelihood of a linear mixed effect
model. The n; and updated estimates of u are obtained by minimizing a penalized nonlinear least square (PNLS) objective function using
the current estimates of Q and a. Then, the model function f is linearized using a first-order Taylor expansion around the current estimates
of u and the conditional mode of the n; so that (4) can be approximated by the log-likelihood of a linear mixed effect (LME) model to
estimate Q and o. The maximization is realized through a hybrid approach starting with a moderate number of EM iterations before
switching to Newton-Raphson iterations. The approach alternates between PNLS and LME until a convergence criterion is met. They
implemented their method in the nime function of the R software (29).

In the NONMEM software, the conditional modes of the n; are obtained by maximizing the empirical Bayes posterior density of n,, p(
n; ly; s W), using the current estimates of vector W:

ply,| n; ¥ipln, ¥
Jpty,In; ¥p(n; ¥idn

P |y, ¥)=

©)

Also, (4) is approximated by a second order Taylor expansion of the integrand (also called Laplacian approximation) around the n; ;
however the Hessian is approximated by a function of the gradient vector to avoid the direct computation of second-order derivatives. For
an additive residua error model, both the approximation by the linearization of the function f and the Laplacian approximation using an
approximated Hessian have been shown to be equivalent asymptotically (9). However, this equivalence no longer holds in case of
interaction between the n; and the ¢;, , as in the proportional error model. A derivative-free quasi-Newton type minimization algorithm is
used.

Laplacian approximation (LAPLACE)

The principle of this algorithm is to approximate (4) by a second order Taylor expansion of the integrand around the conditional mode
of the n; , which are obtained by maximizing the empirical Bayes posterior density of the n, using the current estimates of vector W.

In the NLMIXED procedure of the SAS software (30), this algorithm is implemented as a special case of the adaptive Gaussian
quadrature algorithm (see below) where only one abscissa is defined at the conditional modes of the n, with a corresponding weight equal
to 1. Also, the n, are also obtained by maximizing p(n; y; ; ¥) with adefault dual quasi-Newton optimisation method.

Adaptive Gaussian Quadrature (AGQ)

The principle of this algorithm is to numerically compute (4) by aweighted average of p(y; |n; ; W) p(n;; W) at predetermined abscissa
for the random effects using a Gaussian kernel. Pinheiro and Bates (31) suggested using standard Gauss-Hermite abscissa and weights
(32), with the abscissa centred around the conditional mode of the n; and scaled by the Hessian matrix from the conditional mode
estimation (33). The adaptive Gaussian approximation can be made arbitrarily accurate by increasing the number of abscissa.

Stochastic Approximation Expectation Maximization (SAEM)

SAEM is an extension of the EM algorithm where individual random effects are considered as missing data (34). It converges to
maximum likelihood estimates by repeatedly alternating between the E and M steps. As the E step is often analytically intractable for
nonlinear models, the E step in SAEM s replaced by a simulation step where the n; are drawn by running several iterations of a
Hastings-Metropolis algorithm using three different kernels successively (35). Then the expectation of the complete log-likelihood Q(W) =
E(log(p(y, n ; ¥))) is computed according to a stochastic approximation:

Q-m |?‘I‘rjz[:)-111—1[11{:'-'_}’.111“':|g (PLy; i?111’1}r Qm 1
(6)

where y,, is a decreasing sequence of positive numbers over them =1, ..., M algorithm iterations with y, = 1. The SAEM algorithm
has been shown to converge to a maximum (local or global) of the likelihood of the observations under very general conditions (36).

Simulation and estimation study

This simulation study consisted, for each studied scenario, of 100 stochastic simulated datasets generated in NONMEM and
subsequently analysed with the different studied approaches (i.e. implementation of the estimation algorithms in the various software).

Simulations

Design
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The dataset structure mimicked a clinical trial including 100 individuals and investigating four dose levels: 0, 100, 300 and 1000 mg.
A continuous PD outcome was recorded for each individual following two simulation designs: (i) the rich design counted four
observations per individual, one at each dose level, whereas (ii) in the sparse design each individual was randomly allocated to only two of
the four dose levels.

Base model

A dose-response model based on a sigmoid E, function with a baseline (E; ) was constructed as in (7). The Hill factor (y) is
responsible for the sigmoidicity, i.e. the degree of non-linearity of the function shape.

Ema:-:-' dv
E.= _
A Y

@)

Gaussian random components with normal zero-mean distribution were assumed for al individual parameters except for y. A
correlation in the variances of the random effects for E,, and ED,,was assumed. The residual error model was assumed to be additive or
proportional (see 2.1). Selected parameters values are reported Table 1.

Scenarios

Eight simulation scenarios (s = 8) were derived, exploring (i) the two previously described simulation designs: rich (R) and sparse (S),
(ii) three values of y: 1, 2, and 3, and (iii) two error models: additive (A) and proportional (P). They were referred to as: R1A, R2A, R3A,
R1P, R2P, R3P, S3A, and S3P, and corresponded to eight sets of 100 simulated datasets to be analysed. Note that for the sparse design
only setswith y = 3, the most non-linear model, were eval uated.

Estimations
Initial conditions

The same model from which the simulated datasets were generated was used for estimation. Each dataset was analysed twice: (i) with
true initial conditions, i.e. starting estimate values set to the original parameter values on which simulations were based, and (ii) with
altered initial conditions: y set to 1, the other fixed effects to two fold of their true value, and random effects to low numbers (Table 1).
This procedure explored the robustness of the approaches.

Software settings

Estimation algorithms were mostly utilised with the default settings with which they are available in the different studied software.
Changes from these defaults were listed Table 2 and reported below.

FOCE and LAPLACE in NONMEM 7.1.0 (FOCE_NM and LAP_NM) had the maximum number of iterations set to the highest
possible value as done in common practice, and the option INTERACTION was added for the scenarios with a proportional error. FOCE
in R 2.9.1 (FOCE_R) was using the nime routine. LAPLACE and AGQ in SAS 9.2 (LAP_SAS and AGQ_SAS) were adaptive Gaussian
quadrature respectively corresponding to a number of quadrature points (QPOINTS) of 1 and 9. Other settings listed in table 2 were
adapted from the defaults (FTOL=1E-15.7 XTOL=0 TECH=QUANEW EBSTEPS=50 EBSUBSTEPS=20 EBSSFRAC=0.8 EBTOL=
2.2E-12 INSTEP=1) in SAS. These settings were used previoudly (22) to improve robustness in the conditional modes calculations (the EB
options) or to reduce the very high default convergence criteria (for FTOL and XTOL).

SAEM presents a number of settings the user is invited to modify, that can follow different terminologies depending on the software:
NONMEM 7.1.0/MONOLIX 3.1. These include the numbers NBURN/K1 and NITER/K2 of iterations in the stochastic (y, = 1) and the
cooling (decreasing v, ) phases, respectively, as well as the number ISAMPLE/nmc of chainsin the MCMC procedure. Stopping rules can
also be defined for the two software for the stochastic phase, and aso for the cooling phase in MONOLIX only. A simulated annealing
version of SAEM during the first iterations can be set in NONMEM while it is automatically performed in MONOLIX. Moreover, ¢i can
be defined as the log-transform of a Gaussian random vector to meet with constraints of positivity, which corresponds to mu-referencing in
NONMEM and the default in MONOLIX. In light of these possibilities, SAEM was run with each software twice: once with the default
settings (SAEM_NM and SAEM_MLX), and a second time with modified settings (SAEM_NM_tun and SAEM_MLX_tun). SAEM_NM
was run with the defaults NITER=1000, ISAMPLE=2 and IACCEPT=0.4, and with the number of iterations from the stochastic phase
NBURN=2000 being stopped with a convergence test for termination CTY PE=3 based on objective function, fixed effects, residual error
and all random effect elements. SAEM_NM_tun had parameters linearly mu-referenced, decreased number of iterations in the two phases
and increased number of individual samples. Concerning the convergence, it was stopped in the same manner as SAEM_NM, but instead

of every 9999 iterations being submitted to the convergence test system, only every 25 were.. SAEM_MLX was run with setting the
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maximal number of iterations for the stochastic (K1<500) and the cooling phase (K2<200) using the following stopping rules: i) the
stochastic phase is ended before K1 is reached if an iteration m is met where p(y, n,; W) <PV, Nakr s Wk ) With IK1=100 and ii) the
cooling phase is ended before K2 is reached if an iteration m is met where the variances of the parameters, computed over a window of
IK2 iterations, is reduced by a factor rK2 compared to their values at the end of the stochastic phase, with IK2=50 and rK2=0.1.
SAEM_MLX_tun was tuned in the way that it had a number of iterations for the stochastic phase, K1=500 (i.e. not using the stopping rule
for this phase), and increased individual samples, nmc=5.

Hence nine approaches (a = 9) were explored through the estimation of the simulated datasets: FOCE_NM, FOCE_R, LAP_NM
LAP_SAS, AGQ_SAS, SAEM_NM, SAEM_NM_tun, SAEM_MLX, and SAEM_MLX_tun.

Computer power

FOCE, LAPLACE and SAEM runin NONMEM 7.1.0 were assisted with PsN 3.2.5 (37) on a Linux cluster node of 3.59 GHz with a
G77 Fortran compiler. Estimations with FOCE in R were done on a 2.49 GHz CPU as well as some with SAEM in MONOLIX (others
were on a 1.83 GHz), assisted by a Matlab version R2009b. All SAS runs (LAPLACE and AGQ) were performed on a 2.66 GHz computer
using SAS 9.2 for Windows.

Performance comparison
Completion rates

The proportion of completed estimations, i.e. the number K of the 100 analysed datasets that produced parameter estimates with each
approach was reported. Other computations were executed with these Z sets of results; however when less than 50 of the runs completed,
statistical measures were not produced. Z, thereafter expressed as a percentage, was therefore assessing the stability of the different
approaches, whereas results were given only when K = 50.

Runtimes

Runtimes were recorded as the CPU time needed to estimate each of the 100 copies of a simulated scenario. Then the average was
calculated. A correction was done with the clock rate of the processor in the computer on which runs were performed as in (8).
Parallelization was not possible with the investigated approaches, so did not have to be accounted for.

1 K
Nla=p) CPUt,, CPUE,
®

where NI, is the calculated number of instructions in billions for scenario s with approach a, CPUt,, the real time in seconds
recorded on a CPU to perform the corresponding ki estimation, and CPUf , the frequency in GHz (equivalent to billion instructions per
second) of the clock in the utilized CPU.

Accuracy and precision

Relative estimation errors (RER), relative bias (RBias), and root mean squared error (RMSE) were computed such that the accuracy
and the precision of the estimation algorithms were evaluated for each of the 9 components (p) of the vector W. The RER (%) are evaluated
for each estimate and box-plot of RER(%) show both bias (mean) and imprecision (width). The RBias (%) describes the deviation of the
mean over the estimated parameters from their true value. The relative RMSE (RRMSE %) summarize both the bias and the variability in
estimates. The Standardized RRMSE (%) was constructed for each parameter and each approach as the RRMSE divided by the lowest
RRM SE value obtained across all approaches for that parameter in (12).

=k
RER,, (¥psa) = |% | 100
© o
RBias(¥psal = KIZ:;RERHHIRSJ
(10 ]
RRMSE(¥ 5 = JKl Z;RE Ry (¥ psa)’
(W)
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RRMSE(¥ps2)
Imin [RRMSEY )

Standardized RRMSE(Ypsa) =

(12)
where ¥ is the estimated p component for the k" data set and ¥, " the true value.

For each scenario and each approach, mean standardized RRM SE across the 9 components of W was computed as a global measure of
the performance.

Computations were conducted in R 2.11.1.

Results

Completion rates

100 % of the analyses started from true initial conditions completed with final estimates for all the approaches except FOCE_R (99,
62, 5, 69, 32, 2, 16, and 33 % for the R1A, R2A, R3A, R1P, R2P, R3P, S3A, and S3P scenarios, respectively) (Figure 2). The same
simulated datasets estimated with atered starting values gave completion rates of the same order with FOCE_R (98, 76, 16, 68, 8, 3, 5, and
10 % for the R1A, R2A, R3A, R1P, R2P, R3P, S3A, and S3P scenarios, respectively), decreased ones with SAEM_NM (97, 91, 16, 74,
81, and 75 % for the R1A, R3A, R1P, R2P, R3P, and S3P scenarios, respectively) and SAEM_NM_tun (91 and 67 % for the R3A and S3A
scenarios), and maximum completion (100 %) for al the other approaches. Therefore 133 sets of estimates were considered for further
comparison statistics, 11 failing to meet the 50 % completion criterion.

Runtimes

Runtimes expressed as number of instructions (NI) ranged from 4 to 1614 hillion instructions (BI), and are displayed for estimations
starting from true initial conditions in Figure 2. FOCE_NM was the fastest approach (median NI = 7.2 Bl and 9.6 BlI, starting from true
and altered initial conditions, respectively), never taking longer than 15 BI, very closely followed by FOCE_R and LAP_SAS. LAP_NM
was displaying equivalently short runtimes for the additive error models (median NI = 10.2 Bl and 11.2 B, starting from true and altered
initial conditions, respectively), which were doubled (median NI = 22.7 Bl and 27.3 B, starting from true and altered initial conditions,
respectively) for the proportiona error models, the design having no noticeable impact. SAEM approaches with default settings were
systematically slower than FOCE and LAPLACE, but it was faster in MONOLIX (median NI = 43.2 Bl and 52.6 Bl, starting from true and
atered initial conditions, respectively) than in NONMEM (median NI = 147.7 Bl and 287.8 BI, starting from true and altered initial
conditions, respectively), by around 3 folds when the initial conditions were true and 6 folds when they were altered. The tuned version of
the approach, SAEM_MLX_tun, took around 2.5 times longer (median NI = 117.6 BIl) than the non-tuned version, whereas
SAEM_NM_tun (median NI =79.9 BI) was amost 3 times faster than SAEM_NM and 1.5 times faster than SAEM_MLX _tun; both had
very similar runtimes between true and altered initial conditions. The NI reached with AGQ_SAS was high (median NI = 674.8 Bl and
864.1 B, starting from true and altered initial conditions, respectively); it was consistently the slowest.

Accuracy and precision

Boxplots of RER for ED, and w? (ED,, ) estimates are displayed on Figures 3a and 3b as they often are the main parameters of
interest in dose-response studies. Standardized RRM SE star-plots with 9 radii for each of the elements of W are represented in Figure 4; on
a given radius, the closer to 1, the closer is the performance relative to the approach with the smallest RRMSE for the parameter of
interest. For a global assessment across parameters, mean standardized RRMSE areillustrated in Figure 5.

Trueinitial conditions

As displayed in Figure 3a, the parameter ED., was globally accurately estimated under true conditions, but presented a lower precision
for scenarios with y = 1. The highest and most consistent biases were observed with FOCE_R, on the few scenarios for which metrics were
produced due to poor completion rates. ED, was better estimated with AGQ_SAS, LAP_NM and FOCE_NM on the sparse design than
with the other tested approaches, which produced some bias, especially LAP_SAS (interquartile range excluding zero), and exhibited
imprecision (wide interquartile range and longer whiskers), especially the SAEM approaches (except SAEM_NM). For the parameter w?
(EDg, ) (Figure 3b), estimates were slightly more biased, but essentially more imprecise, especially with y = 1, and the additive error
model. For the sparse design, most approaches exhibited a bias, except the four SAEM approaches, which appeared to provide more
accurate but less precise estimates than the other approaches.

SAEM_NM obtained the lowest RRM SEs whatever the scenario and parameter (values available in appendix); asillustrated in Figure
4, when y > 1 and the error model was additive, al approaches but SAEM_NM estimated large E and when y = 3 and the error model
was proportional, all approaches but SAEM_NM estimated large ED.

max !
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Globally on the rich design, as represented Figure 5, all approaches had a mean standardized RRMSE below 1.5 for most of the
scenarios with the exception of FOCE_R. Nevertheless, for scenario R3A, FOCE_NM and SAEM_MLX had it slightly above 1.5. On the
sparse design, the LAPLACE methods, AGQ_SAS, and SAEM_NM had mean standardized RRM SEs below 1.5, whereas SAEM_MLX
had it above 1.5 for both error models and SAEM_NM_tun and SAEM_MLX_tun for only the S3A scenario.

Altered initial conditions

On the rich design, most of the approaches estimated ED., similarly as when starting from true values, as illustrated in Figure 3a.
However, the results of the SAEM approaches changed compared to the previous initial conditions case and sometimes drastically for the
versions with the default settings, even failing to reach 50 % of completion for SAEM_NM with scenario R1P. On the sparse design, most
of the methods obtained biased estimates, with the exceptions of AGQ_SAS, SAEM_NM, and FOCE_NM, which gave the distributions of
100 estimated ED, the most centred on the true value and tight. FOCE_R results could not be assessed, but the other approaches presented
tailed distributions of estimated ED., , with quartiles not including the true value for LAP_SAS with both scenarios models and for
SAEM_MLX with S3A. As shown in Figure 3b, the bias and imprecision in the w? (EDg, ) estimates were increased by starting from
atered initial conditions particularly for SAEM_NM, whereas SAEM_MLX_tun yielded the boxplot most centred on zero.

It can be observed in Figure 4 that FOCE_NM and AGQ_SAS obtained standardized RRM SEs below 1.5 on most scenarios and
parameters. When the sparse design was adopted the SAEM approaches and the LAPLACE approaches obtained standardized RRM SEs
above 1.5 on most parameters, but for the proportional error model scenario they were below 1.5 with SAEM_NM_tun. FOCE_R
estimated most parameters with poor standardized RRM SE, but especially y and o.

On Figure 5, FOCE_NM, and AGQ_SAS are shown to have lowest mean standardized RRMSE whatever the scenario, with
LAP_SAS and SAEM_MLX_tun having mean standardized RRMSE below 1.5 for al but one scenario (S3P and S3A respectively).
FOCE_R obtained mean standardized RRM SE above 1.5 on all scenarios where its performance could be evaluated, whereas SAEM_NM,
SAEM_MLX and LAP_NM also obtained €l evated mean standardized RRM SE on at least half of the scenarios.

Discussion

The present work provides a comparison in terms of speed, robustness, bias and precision of the most commonly used
likelihood-based estimation approaches in nonlinear mixed effect modelling for the fitting of a dose-response model.

FOCE_R was shown to be the least robust approach with less than 50 % completion rate on 9 of the 16 combinations of scenarios and
initial conditions settings investigated. All other approaches could be evaluated as they completed at least half of the data sets, with the
exception of SAEM_NM in one situation. However the convergence criteria differed across estimation methods. In NONMEM,
convergence of classical methods (FOCE and LAPLACE) is based only on the parameter estimation gradient, whereas it was set to be
based on objective function, thetas, sigmas, and al omega elements for the SAEM methods. In MONOLI X, the automatic stopping rule for
the stochastic phase is based on the complete log-likelihood. In SAS, convergence is primarily based on 6 key criteria, relating to the
absolute and relative changes in the likelihood, gradients, and parameter values. The difficulty in defining convergence complicates these
comparisons.

The convergence criteria used will affect runtimes, with less strict convergence criteria yielding shorter runtimes. However it is
believed that the trends would remain the same, with the classical methods FOCE and LAPLACE being the fastest, and AGQ being the
slowest. AGQ slow runtimes were due to the high number of quadrature points chosen (9 quadrature points across 3 random effects imply
729 (93) likelihood evaluations for each subject at each iteration). Reducing this (e.g. to 3 quadrature points) would have significantly
shortened the runtimes, and may have led to similar results (not inspected). Unsurprisingly, the estimation process speed was driven by the
extent of the likelihood function simplification, with first-order linearization-based algorithms achieving the shortest run times. Within
each iteration, the SAEM approaches are faster than the Gaussian quadrature-based method because they sample the integrand rather than
fully integrating it, but many more iterations are needed with SAEM than with AGQ. Increasing the number of chains to the SAEM
algorithm was additionally time-consuming in MONOLIX, whereas SAEM_NM_tun was overal faster than SAEM_NM due to the
number of iterations being decreased.

Globally, the approximation based on a linearization of the model, but for FOCE_R, gave good results for the fixed effects (relative
biases typically less than 3 %) when starting from the true conditions, with w? (ED,,) and Cov(E,,,, ,.EDx,) being least well estimated. As
for their precision, it was decreasing in a similar extent using altered conditions and/or on a sparse design. The performance of adaptive
Gaussian quadrature was high on all cases. The conclusions were less straightforward for the SAEM approaches. Indeed, SAEM_NM
lacks a global search first step in order to refine the initial estimates; this could be appreciated with the results of the scenarios starting
from altered values compared to SAEM_MLX. . However increasing the number of individual samples and linearly mu-referencing the
parameters substantially improved the results. Mu-referencing appeared to yield more efficient behaviour of SAEM_NM _tun according to
the implementation of the algorithm in NONMEM. SAEM_MLX performance with altered initial conditions comes from the fact that it is
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coupled with a simulated annealing algorithm slowing up the decrease in variance estimates during the first iterations allowing escape
from the local maxima of the likelihood and convergence to a neighbourhood of the global maximum. However, the more reduced the
information isin the data, the more iterations and the more chains are needed to be provided in order to improve the convergence. Of note,
on the S3A scenario with altered initial conditions, which is a particularly challenging combination of error model, Hill parameter value
and design, the SAEM_NM _tun performance was improved using a user-supplied Omega shrinking algorithm for fixed effects parameters
without interindividual variability instead of the default gradient process (results not shown). A similar Omega shrinking approach is
implemented in MONOLIX.

One noticeable aspect about the investigated approaches is the possibility for user-defined options. The main advantage is the
opportunity for the modeller to adapt the search to their specific problem. This makes it necessary for the user to be educated to the
different alternatives, and their need might change during the model building, or worst, their non-utilization might influence the model
selection. Nevertheless, an implementation always entails default settings, chosen by the developer and enlightened by common usage.
Hence the same estimation algorithm existing in distinct software represents a dissimilar approach not only because of the implementation,
but also because of the defaults settings. For that reason, explored approaches were primarily run with the options set to the defaults and
secondarily with settings changed or tuned, when possible.

As estimation approaches in NLMEM require the user to provide initial values for the parameters to estimate, it was decided to assess
the impact of these values on their performances. For the sake of simplicity, only two scenarios were considered, with initial guesses
respectively correct and reasonably altered. The real case scenario would probably lie in between both situations as the user would first
explore the data at hand, as well as use prior knowledge on the compound to come up with reasonable guesses. Of note, low initial values
for the variances may provide less power to the EM-like algorithms for exploring the parameter search space, however in MONOLIX the
simulated annealing inflates initial values for the variances.

Models investigated in the present study were dose-response models, based on the most commonly used structure in the field, a
sigmoid E,,, . This model is fairly simple and contains alow number of parameters. The degree of nonlinearity is linked to the value of
the Hill factor, which was varied across scenarios. Non-linearity is the major difficulty for ML estimation methods, for the reason
mentioned earlier of no closed form solution for the integrand, whether the algorithm performs a linear approximation, a numerical
integration or a stochastic approximation of the likelihood. Decreasing performance could hence be observed aong the y-increase with the
additive error models, but not with the proportional error models, revealing other factors to take into account, such as the design. Models
defined by ordinary differential equations represent also a challenge for estimation methods, and would perhaps result in conclusions of a
different nature, but were not investigated in the present study.

Random effects are keys in the analysis of repeated data, allowing the modeller to quantify interindividual variability. The number of
random effects that can be included in a model primarily depends on the amount of information generated under the chosen design, but
aso on the capacity of the algorithm to estimate them in addition to the fixed effects. The structure plays likewise a role, with
considerations about the size of the variance-covariance matrices; therefore the studied structure included random effects on all parameters
except one, plus one correlation.

Studies performing comparisons are bound to be limited by their tools. In the present work we used RM SE to sum-up information on
both accuracy and precision which is a metric known to be sensitive to outliers. Yet, these choices provided us with the opportunity to
present a readable comparison of 9 different estimation approaches across several combinations of true parameter values, error models and
designs.

Drawbacks of FOCE_R experienced in this study had been described before (27). Nevertheless, previously reported (22, 24) poor
performance of LAP_NM for skewed distributions was not as evident in this study, where LAP_NM mean standardized RRM SE was low
for all scenarios. However parameters on which performance was the poorest were variance of random effects, which was the case here
also. These studies and additional ones (23, 25) showed estimates were improved with the use of AGQ_SAS or SAEM_MLX_tun; these
approaches gave good results here too. Another investigation (26) highlighted that for cases with low information content LAP_NM had
problems that disappeared when SAEM_NM was used. Again, thiswas only retrieved for variances of random effects, but was accordingly
the case for the sparse design scenarios S3A and S3P. The impact of initial conditions had not been explored before, and this study showed
the lack of robustness of some otherwise accurate estimation methods. Notwithstanding, it is important to realize that none of the
NONMEM nor MONOL IX methods has been tested before, as the sofware have been updated since previous publications (from versions
NONMEM VI and MONOLIX 2.4, respectively). Another comparison (38) presenting EM methods as alternatives to gradient-based
methods in terms of computation rates and runtimes was recently published (based on real data).

Conclusions
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For standard dose-response models analyzed through mixed-effects models, differences could be identified in the performance of
estimation methods available in current software. Along with the exploration of different settings, designs and initial conditions, the
strength of the present investigation residesin the inclusion of a high number of estimation methods and software.
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Tables of relative bias (RBias) and relative RMSE (RRM SE) obtained with the 9 investigated approaches for the parameters of the explored scenarios (in %) (* based on less than 50% convergence)

Trueinitial conditions

Parameter EO Emax EDSO Y w? (EO) w? (Emax) COV(Emax ‘EDSO) w? (EDSO) a?
Approach Scenario RBias RRMSE RBias RRMSE RBias RRMSE RBias RRMSE RBias RRMSE RBias RRMSE RBias RRMSE RBias RRMSE RBias RRMSE
R1A 1.63 5.13 -0.57 10.99 0.03 20.15 -0.52 6.37 7.38 32.35 -2.49 18.16 -9.83 3846 -1546 3345 -0.89 11.96
R2A 174 481 -6.95 11.84 -6.17 10.28 0.11 5.62 6.00 29.21 -157 18.42 -24.69 3995 -2214 32.06 -2.89 12.29
R3A 1.64 4.74 -13.71 16.53 -9.55 12.22 0.39 7.66 5.87 27.89 2.24 19.70 -42.16 51.76 -3155 38.17 -2.09 1253
R1P -1.48 3.26 -1.78 10.90 -0.89 19.69 -0.29 5.43 0.34 15.06 -0.99 16.78 -3.45 38.13 -6.24 32.32 -2.34 14.39
FOCE_NM R2P -1.11 311 -1.29 8.86 0.70 8.08 -1.76 354 0.23 14.80 -1.30 16.97 -5.84 31.32 -1.90 20.92 -4.58 13.84
R3P -0.93 3.00 -4.05 10.75 -0.63 8.06 =177 3.95 0.08 14.34 -0.97 17.19 -14.72 35.46 -6.54 21.27 -4.52 13.61
S3A 3.52 7.33 -17.30 2297 -8.14 19.28 141 34.15 15.53 60.54 3.59 27.87 -32.83 5749 -29.76 40.68 -3.55 22.93
S3P -022 374 -1606 2197 -418 1785 -519 1261 6.37 23.48 9.54 3488 -1934 5931 -1716 3149 -18.03 40.40
R1A 4.96 6.98 -10.74 1710 -1857 38.70 15.82 20.91 -0.67 30.75 -21.33 2750 -66.19 70.34 -70.68 73.06 3532 127.65
R2A* 854 1005 -1465 1803 -15.70 2092 1847 26.32 2.03 3961 -2822 3273 -8836 8942 -7893 8241 15419 41329
R3A* -2.14 13.02 -1.00 12.60 -2.87 14.66 0.94 2716 -3489 5734 -1735 21.90 -74.52 78.89 -3829 5430 126.92 260.89
FOCE R R1P -097  3.07 6.71 1745 2332 4830 -6.23 8.60 -821 1735 -30.02 3428 -9949 10236 -97.68 97.73 9480 97.36
- R2P 0.19 2.97 -1386 1557 -15.68 16.45 12.02 12.62 -2.85 1474 -15.82 20.80 -51.26 5471 -3247 35.48 11.41 19.78
R3P* 0.47 326 -1619 1798 -17.11 1797 1897 2034 -132 1455 -17.94 2405 -6842 70.72 -3567 39.09 1334 24.66
S3A* 6.22 9.06 -5.38 3051 -21.05 3548 67760 94582 1741 66.82 -2844 4055 -101.02 105.63 -59.24 67.61 2.73 32.73
S3P* 1.01 499 -1553 3094 -3327 4294 73117 107508 -295 2351 -2289 3789 -103.73 10953 -5519 61.62 11.01 118.97
R1A -0.47 5.03 2.46 15.34 5.08 32.25 0.58 6.89 -0.02 29.61 -7.30 19.46 -15.72 4451 -1099 49.31 0.86 12.23
R2A -0.22 4.56 -1.18 9.30 -1.58 8.74 0.99 5.26 -0.04 28.31 -9.06 19.34 -21.65 39.61 -12.14 2348 -1.53 13.48
R3A -1.08 4.92 -5.08 10.11 -1.00 7.03 =177 7.26 0.34 22.36 -5.17 17.62 -37.61 51.00 -17.02 25.62 171 15.72
LAP NM R1P -0.26 2.93 0.53 11.56 0.33 20.85 0.95 5.52 -1.07 15.05 -5.69 17.40 -14.89 3833 -11.84 3356 -1.37 15.48
- R2P -0.27 2.90 1.18 9.05 -0.11 7.56 0.46 3.18 -0.61 14.66 -4.07 17.29 -3.91 32.64 -1.98 20.57 -5.15 13.97
R3P -0.33 3.20 -0.27 9.74 -0.53 8.00 0.23 3.80 -1.01 14.34 -2.42 15.72 -10.16 34.28 -5.38 19.31 -4.44 14.57
S3A -1.04 7.11 -3.72 14.19 334 1211 -9.11 12.55 3.68 40.75 0.62 32.50 -37.50 5145 -1837 23.76 3.69 25.13
S3P 0.41 472 =177 15.57 6.52 13.60 -5.66 11.21 3.22 23.50 -0.33 21.80 -43.69 50.37 -2166 26.83 8.86 50.11
R1A -047  5.03 249 15.38 5.01 32.04 0.60 6.86 -025 2945 -736 1946 -1600 4375 -11.25 4847 0.88 12.25
R2A -0.52 4.79 127 9.45 0.89 10.10 -0.25 4.79 -1.71 25.12 -8.15 17.78 -14.78 31.65 -6.67 21.06 -0.92 12.68
R3A -021 470 -0.28 11.75 261 10.70  -2.00 6.37 -1.06 2656 -10.39 19.13 -3257 4596 -10.73 24.43 0.17 13.48
LAP SAS R1P -0.27 2.95 0.49 11.55 0.23 20.83 1.00 554 -1.10 15.06 -5.72 17.44 -15.00 3847 -1197 3345 -1.37 15.48
- R2P -0.18 294 1.19 9.23 0.17 8.32 0.42 3.16 -0.83 1466 -533 17.30 -5.99 3144 -259 1983 -408 13.98
R3P -0.34 2.83 0.44 9.60 -0.40 7.23 0.26 3.61 -0.77 13.85 -1.35 17.76 -4.08 34.40 -3.23 19.50 -4.72 14.81
S3A -1.12 6.95 2.58 14.31 9.42 1561 -10.39 1319 141 36.17 1.55 21.97 -29.74 36.00 -13.36 20.88 471 21.49
S3P 0.45 3.75 3.79 16.22 12.86 17.73 -6.97 10.11 2.09 20.64 491 22.05 -28.65 36.24 -1653 23.39 7.00 53.67
R1A -0.55 5.00 2.40 12.94 3.26 23.81 0.16 6.66 144 32.20 -0.96 19.05 231 43.67 1.37 38.78 -0.68 11.70
R2A -0.46 451 -0.99 10.37 -1.95 9.02 111 5.43 0.03 28.85 -4.90 18.49 -13.55 33.20 -9.33 24.53 0.35 12.42
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R3A 0.12 451 -1.67 9.92 0.56 9.57 0.36 6.38 -313 2735 -1544 2197 -3494 4447 -1191 2426 4.28 14.47
AGQ SAS R1P -0.23 2.93 2.61 12,55 3.84 22.86 0.07 5.55 -032 1499 -030 1747 3.08 42.84 3.18 3717 -131 1421
R2P -0.17 2.94 1.52 9.17 0.24 8.31 0.30 3.12 -065 1439 -248 1724 -1.98 3026 -135 1953 -180 1374
R3P -0.21 2.95 0.41 8.86 -0.56 7.21 0.54 3.26 -0.78 1386 -344 1798 -5.96 3217 -340 1793 -1.00 1379
S3A -299 1224 0.31 1134 -222 9.27 0.26 405 -1301 2519 -3248 40.06 -17.04 2474 -646 1936 -99.61 99.61
S3P -1.82 1945 6.54 2253 -463 1258 0.35 394 -1801 3380 -6520 7515 -31.74 3839 -342 2398 5763 90.29
R1A -0.14 4.95 1.70 9.10 211 21.52 1.06 6.43 -063 3016 -149 17.60 -6.80 4047 -555 3699 -193 1132
R2A -0.33 459 -1.67 5.03 -1.03 6.56 1.36 5.22 0.75 2006 -1.01 19.12 -5.00 36.72 -359 2485 -287 1232
R3A -0.40 4.32 -1.53 4.15 -0.40 5.24 1.26 6.48 0.66 28.06 -0.26 20.72 -3.68 3952 -226 2327 -248 1240
SAEM NM R1P -0.60 3.00 0.19 9.71 -0.74 18.04 1.35 5.31 1.01 1516 -143 1651 -5.98 3569 -496 2834 -362 1397
- R2P -0.88 2.87 -1.80 7.54 1.09 7.51 0.72 3.10 113 1478 -135 16.71 -3.48 3137 -129 2059 -567 1412
R3P -111 2.74 -4.26 7.58 -0.45 4.92 1.40 3.70 1.01 1440 -182 1756 -9.51 3360 -444 1887 -536 1352
S3A -191 6.66 -2.20 8.12 -2.02 8.93 0.67 1445 2483  55.69 9.07 33.25 13.59 55.81 5.40 20.88 -1751 25.81
S3P -0.52 3.60 -8.09 1246 -423 11.15 3.90 12.33 3.18 19.29 441 3115 -7.71 4844 -394 2612 -3242 4316
R1A -0.11 5.02 3.77 14.61 6.45 29.38 -0.66 5.94 0.67 32.81 0.91 18.72 7.59 47.92 8.07 4814 -0.63 1179
R2A 0.24 4.49 2.79 12.09 1.36 1151 0.54 5.69 -051 30.20 0.77 21.68 6.77 48.50 4.68 3393 -087 1261
R3A 0.08 4.36 2.78 13.04 0.87 10.40 0.55 6.50 -0.66 29.43 0.95 21.84 5.35 47.65 2.13 2955 -0.38 12.66
SAEM NM tun R1P -0.20 2.97 0.97 1048 -011 17.06 0.87 5.05 0.72 1513 -043 1711 -0.47 3934 -001 3232 -170 1381
-~ R2P -0.14 2.92 1.98 9.54 0.54 8.64 0.18 3.24 0.56 1474 -0.88 17.26 1.83 32.56 1.72 2170 -2.09 1385
R3P -0.14 2.89 1.26 9.79 -0.17 7.50 0.61 3.58 0.46 1416 -066  18.66 -0.18 3597 -048 209 -216 1179
S3A -0.89 6.76 2.64 25.12 2.04 23.22 1.46 18.73 1157 6174 4.01 39.87 1.06 76.93 -146 4243 -556 23.73
S3P -0.29 384 --202 2247 -262 19.92 4.44 15.50 127 19.29 3.02 35.38 -4.08 7033 -311 35.04 -17.02 41.06
R1A -2.06 5.78 -059 1056 -407 1801 1.99 6.54 1357 3646 -350 19.29 -5.49 4268 -745 3585 -012 1171
R2A -1.18 5.01 -1.02 1045 -291 10.29 2.22 6.50 8.24 3183 -4.07 21.02 -8.17 4125 -6.95 29.33 0.14 12.78
R3A -1.02 4.60 -254 1232 -334 10.68 4.06 9.14 8.29 3044 -459 2171 -1426 4670 -995 3044 -029 1255
SAEM MLX R1P -0.23 2.92 0.67 10.69 0.16 19.35 0.85 5.17 -067 1506 -260 19.17 -5.98 4460 -5.68 36.92 3.36 15.48
- R2P -0.17 2.92 0.83 8.58 -0.57 8.00 0.81 3.13 -066 1435 -363 17.86 -3.16 3241 -150 2187 0.92 13.91
R3P -0.15 2.87 -0.96 9.34 -1.63 7.61 1.64 4.28 -0.87 1410 -462 1818 -9.95 3347 -554 2049 1.84 14.08
S3A -2.46 741 0.58 2375 -169 1948 4.08 20.19 2933 6333 7.75 40.63 6.29 8181 -228 4253 -802 2148
S3P -0.36 3.73 11.02 5584 6.86 47.15 2.69 1751 -174 1971 1186 46.28 20.70 94.21 6.06 46.89 3.72 49.86
R1A -0.82 511 1.29 11.91 0.73 23.18 0.96 6.77 244 3461 -159 18.66 0.01 4145 -154 3532 -0.84 12.06
R2A -0.66 454 1.87 1154 -0.07 1081 0.79 5.70 1.56 3183 -0.78 20.46 3.07 45.56 0.94 3182 -0.81 12.68
R3A -0.67 4.46 144 1244 -045 10.16 1.15 6.86 1.99 2058 -0.69 2179 0.48 4755 -149 3001 -0.84 1249
SAEM MLX tun R1P -0.23 2.93 0.18 1099 -143 20.58 1.66 5.58 -027 1496 -194 16.67 -3.16 3818 -272 3439 -1.70 1433
- - R2P -0.21 2.93 215 9.24 0.56 8.31 0.24 3.08 -043 1454 -098 17.02 3.00 33.31 1.64 2225 -234 1385
R3P -0.19 291 181 9.65 0.10 7.52 0.54 3.63 -057 1405 -081 1893 1.36 3655 -036 2016 -191 1334
S3A -0.52 6.60 -431 2301 -520 19.73 9.81 26.69 6.04 59.23 1.80 3456 -10.17 7557 -10.86 4462 -3.18 2442
S3P -0.26 3.69 -3.07 1979 -323 1885 521 1658 -1.08 18.82 0.08 3403 -1032 7022 -714 3541 -814  40.60
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Altered initial conditions

Parameter EO Emax EDg, y w2(EQ) w2(Emax) Cov(Emax,EDg,;) w2(EDy)) a?
Approach Scenario RBias RRMSE RBias RRMSE RBias RRMSE RBias RRMSE RBias RRMSE RBias RRMSE RBias RRMSE RBias RRMSE RBias RRMSE
R1A 1.63 513 -058 1099 003 2015 -052 6.37 738 3234 -249 18.16 -9.83 3845 -1546 3346 -0.89 11.96
R2A 178 4.83 -6.87 1141 -597 1006 0.07 5.54 462 3068 -201 18.91 -25.52 4117 -2197 3149 -234 1372
R3A 1.96 479 -1243 1681 -855 1384 -040 844 -943 4490 154 20.76 -40.11 5128 -2923 4132 506 2316
FOCE NM RIP -148 326 -177 1090 -0.88 1969 -030 542 034 1506 -099 16.78 -3.44 3813 -6.23 3232 -233 1439
- R2p -111 311 -1.30 8.86 0.69 842 -175 353 021 1461 -1.38 16.60 -5.57 31.44 -1.86 2142 -452 13.83
R3P -104 324 -477 1104 -08 831 -158 4.07 017 1464 -051 185  -1644 3932 -757 2218 -3.88 1324
S3A 3.65 7.44 -931 4225 122 4262 -046 3162 2861 7636 -4.71 32.37 -44.01 65.80 -3173 4256 -4.69 2395
S3P 0.09 391 -1615 2352 -344 1955 -374 1284 644 2451 4.00 3450 -3225 6383 -2293 3553 -281 7312
R1A 4.72 707 -1282 1749 -2335 3569 1836 2233 -4.00 3444 -2029 2549 -64.71 68.87 -6753 69.46 2023 3343
R2A 3.88 961 -11.59 1641 -1486 1991 1195 2278 -2619 7981 -2675 3155 -86.84 8813 -80.61 8350 18797 397.65
R3A* -3.04 894 -131 2184 -107 2715 -7.75 2673 -8334 9860 -37.80 49.80 -84.06 86.33 -77.98 8615 691.81 1112.98
FOCE R R1IP -084 3.07 6.31 1797 2274 4893 -583 860 -864 1731 -30.72 3497 -10041 10320 -9742 9750 9451 97.42
- R2P 0.26 2.98 177 15133 679 21718 11.30 1329 -350 1514 -16.98 2295 -51.65 5573 -3280 36.63 2049 67.16
R3P* 0.53 338 -1912 2054 -1940 2020 1981 2118 -195 21.04 -13.93 2377 -66.40 6855 -38.89 4170 3206 104.63
S3A* 6.22 9.06 -538 3051 -2105 3548 67760 94582 1741 6682 -2844 4055 -101.02 10563 -59.24 6761 273 3273
S3P* 1.01 499  -1553 3094 -3327 4294 73117 107508 -2.95 2351 -2289 3789 -103.73 10953 -5519 61.62 1101 118.97
R1A -046 504 2.45 1518 482 3076 057 689 -005 2957 -7.30 19.33 -15.94 4335 -1085 4963 078 1227
R2A 187 5.44 0.20 1614 123 1772 012 812 -5495 7269 -1445 2282 -29.58 46.14 -9.63 2702 2251 3647
R3A 2.56 8.55 -427 1876 140 2235 -657 1253 -7381 8479 -11.09 3042 -4575 6937 -711 4806 5226 8230
LAP NM R1IP -025 293 0.52 1156 028 2083 097 552 -110 1506 -5.68 17.38 -14.95 3840 -11.87 3353 -137 1548
- R2P  -009 331 2.20 1090 120 1327 0.09 383 -055 1755 -545 1885 -6.96 40.12 0.87 2331 -035 24.88
R3P 0.26 4.39 0.66 1129 069 109 -074 433 -099 1583 -565 20.82 -16.73 41.72 -288 2377 432 3093
S3A  -148 722 5.96 40.16 2423 5627 -1245 2720 6031 13005 7.94 5258  -6545 9029 -3847 4762 1024 3945
S3P 1.60 4.72 1250 4425 2379 5097 -1211 2205 -965 3682 -513 48.06 -62.17 8282 -33.69 3880 20267 27331
R1IA -045 503 291 1634 613 3518 050 698 -007 2950 -717 1965 -1484 4499 -953 5143 083 1226
R2A  -001 468 3.73 1101 411 1292 -010 529 -370 2894 -997 20.66 -13.22 36.58 -134 2499 339 1713
R3A  -064 467 0.57 1293 328 1399 -280 7.23 072 2614 -1064 2412 -3281 4654 -1280 2676 -145 1399
LAP SAS R1P -026 293 0.53 1156 032 2084 0.96 5562 -109 1506 -567 17.37 -14.90 3835 -1184 3356 -136 1548
- R2P  -022 293 201 1014 076 9.24 0.28 318 -079 1454 -522 17.99 -3.41 35.32 -043 2277 -389 1505
R3P -011 290 4.60 1316 323 1031 -09 399 -010 1452 -4.05 22.75 0.57 44.16 2.20 2359 153 2141
S3A -218 812 1953 36.01 3058 4886 -17.24 2216 4603 9445 9.77 36.94 -27.82 5747 -21.78 3110 1351 3497
S3P 0.41 431 1596 2863 2655 3858 -1540 1889 -7.11 29.38 0.32 35.53 -32.54 4992 -2443 3038 10420 186.10
R1IA -055 500 2.40 1294 326 2381 0.16 6.66 144 3220 -0.96 19.05 231 43.67 137 3878 -068 11.70
R2A  -005 484 243 1131 220 1283 047 545 -171 3006 -7.01 21.30 -9.10 35.94 -056 2876 174 1432
R3A 0.02 4.40 -158 1282 080 11.89 055 766 -094 2896 -1525 2456 -37.08 5140 -1326 2815 332 1390
R1IP -023 293 2.61 1255 384 228 007 555 -032 1499 -030 1747 3.08 42.83 3.18 3717 -131 1421
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AGQ SAS

SAEM_NM

SAEM_NM_tun

SAEM_MLX

SAEM_MLX_tun

R2P
R3P
S3A

S3P

R1A
R2A
R3A
R1P*
R2P
R3P
S3A

S3P

R1A
R2A
R3A
R1P
R2P
R3P
S3A

S3P

R1A
R2A
R3A
R1P
R2P
R3P
S3A

S3P

R1A
R2A
R3A
R1P
R2P
R3P
S3A

S3P

-0.19
-0.02
-0.05
0.35
-0.22
-3.63
-8.60
5.53
3.76
7.57
-8.98
-21.77
-0.46
-0.81
-1.07
-0.22
-0.22
-0.19
-3.47
-0.86
-1.62
-1.91
-2.00
-0.26
-0.18
-0.11
-7.30
-1.10
-0.84
-0.55
-0.71
-0.24
-0.16
-0.16
-2.25
-0.50

2.92
297
6.73
3.94
5.20
6.74
10.65
10.62
573
10.65
13.46
4.18
511
4.71
477
2.95
2.95
2.90
841
391
5.75
5.26
4.98
2.96
291
2.90
10.39
4.18
5.05
4.67
441
294
294
2.90
6.88
3.69

1.97 9.19
3.77 12.44
-840 2545
-1.82 19.45
59.29 6294
4177 24410
113.94 309.40
7260 121.03
4.97 15.30
-0.72 11.42
1181 2844
-36.70 20.81
4.47 14.02
5.30 14.39
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Figurel
Individual response versus dose profiles from atypical dataset ssimulated using 6 of the 8 dose-response profiles: rich design, additional error
model with Hill parameter = 1, 2 and 3: R1A, R2A, R3A and proportional error model with Hill parameter = 1, 2 and 3: R1P, R2P, R3P. On

the x-axis are displayed the four doses considered.
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Figure2
Percentage of completion and number of instructions (in billions) obtained with the 9 investigated approaches for the true initial conditions.

The barchart represents the median, and the arrows link the minimum to the maximum value of the range.
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Figure3

Relative estimation error (RER) for the parameter ED, (3a) and its variance (3b), for the 8 scenarios R1A, R2A, R3A, R1P, R2P, R3P, S3A,
and S3P referring to 2 simulation designs (R for rich and S for sparse), 3 Hill factor values (1, 2, 3), and 2 residua error models (A for
additive and P for proportional), with the estimation from true initial conditions and altered initial conditions. The boxplot represents the

median (middle bar) and the interquartile range (box limits), with points for the mean (black) and the outliers (grey).
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Figure4

Standardized RRMSE of the 9 population parameters for the 8 scenarios R1A, R2A, R3A, R1P, R2P, R3P, S3A, and S3P, and 2 initial
conditions: true and altered. The following colour code was used: FOCE_NM = red, FOCE_R = pink, LAP_NM = orange, LAP_SAS = light
green, AGQ_SAS = dark green, SAEM_NM = dark blue, SAEM_NM_tun = light blue, SAEM_MLX = dark violet, SAEM_MLX_tun = light
violet.
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Figure5

Str% p chart of the mean standardized RRM SE obtained with each approach for the 8 scenarios R1A, R2A, R3A, R1P, R2P, R3P, S3A, and
S3P, and 2 initial conditions: true and altered, on a semi-log scale. The colour code used is described in the Figure 4 legend. The star symbol (
*) represents the S3A estimate from SAEM_NM_tun that is above 45 units. The dashed line is drawn at the value 1.5 used for description
purposes in the results section.
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Tablel

Maximum Likelihood Methods for Dose-Response Models

Trueinitia conditions are the parameter values used for the simulation of 8 scenarios constructed with 3 different Hill factor (y) values and 2 different residual error models: additive (A) and proportional

(P). True and atered initial conditions were used for the estimation of the simulated datasets.
Parameters Eo E e EDg, Y w? (EO) w? (Emax) CO\I(Emax 'EDSO) w? (EDSO) &
Trueinitial conditions 5 30 500 123 0.090 0.490 0.245 0.490 A:4 P: 0.010
Altered initial conditions 10 60 1000 1 1 1 0.100 0.100 0.010 0.100 Al P: 0.0625

Table2
Approach settings changed from defaults

Approach Algorithm Software Settings

Al, A2, A3: MAXEVALS=9999
FOCE_NM FOCE NONMEM 7.1.0 P1, P2, P3: INTERACTION MAXEVALS=9999
FOCE_R FOCE R29.1 -
Al, A2, A3: MAXEVALS=9999
LAP_NM LAPLACE NONMEM 7.1.0 P1, P2, P3: INTERACTION MAXEVALS=9999
QPOINTS=1 FTOL=1E-8 XTOL=1E-8 TECH=QUANEW/DBLDOG EBSTEPS=300
LSS LAPLACE SAS9.2 EBSUBSTEPS=300 EBSSFRAC=0.2 EBTOL=1E-6 INSTEP=1E-1
QPOINTS=9 FTOL=1E-8 XTOL=1E-8 TECH=QUANEW/DBLDOG EBSTEPS=300
AGQ_SAS AGQ SAS9.2 EBSUBSTEPS=300 EBSSFRAC=0.2 EBTOL=1E-6 INSTEP=1E-1
SAEM_NM SAEM NONMEM 7.1.0 INTERACTION CTYPE=3
INTERACTION CTYPE=3
SAEMENM tun SAEM NONMEM 7.1.0 NBURN=1000 NITER=200 ISAMPLE=5 IACCEPT=0.3 CINTERVAL=25 NOABORT
SAEM_MLX SAEM MONOLIX 3.1 -
SAEM_MLX_tun SAEM MONOLIX 3.1 K1=500 nmc=5
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