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Summary: Nonlinear mixed effects models allow investigating individual differences in drug con-

centration profiles (pharmacokinetics) and responses. Pharmacogenetics focusses on the genetic

component of this variability. Two tests often used to detect a gene effect on a pharmacokinetic

parameter are i) the Wald test, assessing whether estimates for the gene effect are significantly

different from 0 and ii) the likelihood ratio test comparing models with and without the genetic effect.

Because those asymptotic tests show inflated type I error on small sample size and/or with unevenly

distributed genotypes, we develop two alternatives and evaluate them by means of a simulation study.

First, we assess the performance of the permutation test using the Wald and the likelihood ratio

statistics. Second, for the Wald test we propose the use of the F -distribution with four different values

for the denominator degrees of freedom. We also explore the influence of the estimation algorithm

using both the First-Order Conditional Estimation with interaction linearisation-based algorithm

and the Stochastic Approximation Expectation Maximization algorithm. We apply these methods to

the analysis of the pharmacogenetics of indinavir in HIV patients recruited in the COPHAR2-ANRS

111 trial. Results of the simulation study show that the permutation test seems appropriate but at

the cost of an additional computational burden. One of the four F -distribution based approaches

provides a correct type I error estimate for the Wald test and should be further investigated.

Key words: F -distribution based approach; First-order approximation; Nonlinear mixed effects

models; Permutation tests; Pharmacogenetics.
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1. Introduction

Pharmacokinetics (PK) studies the time course of a drug in the body. Nonlinear mixed

effects models (NLMEM) in the analysis of PK data allow integrating the knowledge

accumulated on drug absorption, distribution, metabolism and elimination (ADME), to

quantify the inter-individual variability with fewer samples per patient than standard non

compartmental approaches. Pharmacogenetics (PG) studies the relationship between this

inter-individual variability and variations in the DNA sequence of proteins involved in the

ADME mechanisms of the drug.

In previous simulation studies, we have shown that a correction for type I error inflation was

required for the two most commonly used tests for differences between groups in NLMEM,

the Wald and the likelihood ratio tests (LRT), in data sets of small sample size and/or with

unevenly distributed genotypes (Bertrand et al., 2008, 2009b). Also in the context of testing

parametric against semi-parametric nonlinear mixed models, Wu and Zhang (2002) have

shown that asymptotic distributions cannot be used for the Wald test and the LRT

when the normality assumption of the random effects is violated, though the LRT was

much less affected.

The aim of the present work is to investigate two alternatives to these asymptotic tests to

detect a gene effect in PG studies: permutation and F -distribution based tests. Permutation

testing is a way of determining whether the null hypothesis of randomness is reasonable, i.e.

whether the pattern present in the data could have happen by chance alone (Good,

1994; Manly, 1998). This alternative requires fewer assumptions than a correction based on

simulations from the model under the null hypothesis, but is seldom used in NLMEM (Ding

and Wu, 2001). The second alternative is to correct the Wald test for the underestimation

of the variance of parameter estimates in small sample size. We investigate four such
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corrections based on F -distributions with various values of denominator degrees of freedom

(df) which have been proposed in different settings.

In the present work, we study the type I error and power of these two alternatives

through simulations. The permutation tests are evaluated for both the Wald and the LRT

statistics whereas the F -distributions are used to correct the Wald test only. The same

simulation setting as in the simulation studies mentioned before (Bertrand et al.,

2008, 2009b) was used here to enable a comparison with the results of the

simulation-based correction studied in these works. As an illustration, we present

an analysis of the indinavir concentration-time profiles collected in the COPHAR2 trial.

As in NLMEM the integral in the likelihood has no analytical form, estimation algorithms

use model linearisation, such as the first order (FO) and first order conditional estimation

with interaction (FOCE-I) (Lindstrom and Bates, 1990) methods implemented in the NON-

MEM and the Phoenix NLME software. Others consider numerical approximations of the

likelihood such as the Laplacian or Adaptive Gaussian quadrature algorithms (AGQ) or

more recently stochastic approximation of the EM algorithm (SAEM) (Deylon et al., 1999)

as implemented in the MONOLIX software. In Bertrand et al. (2008, 2009b), we have shown

that the bias in the FO algorithm leads to a very large inflation of both asymptotic tests

type I error. Thus, to account for the influence of the estimation algorithm in the present

work we use FOCE-I and SAEM.

In Section 2, we present the model and how the likelihood and the estimation variance

matrix are obtained. Then, we introduce the usual asymptotic tests and both investigated

alternatives in Section 3. In Sections 4 and 5 we describe the real data, the simulation study

and the evaluation protocol. The results of the evaluation and the illustration are presented

in Section 6. We finally discuss our findings and conclusions in Sections 7 and 8.
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2. Evaluation of the likelihood and the estimation variance matrix in NLMEM

2.1 Models and notation

To describe the ni-dimensional vector of concentrations yi of a subject i = 1, ..., N , we use

a pharmacokinetic function f which is nonlinear in its parameters φi:

yi = f(Xi; φi) + ǫi , (1)

where Xi is the within-subject design vector and φi = µ + Aiβ + Bηi is the subject

p-dimensional vector of parameters, Ai is the (p × k)-dimensional covariate matrix

modelling the relationship between the covariates and φi with β the corresponding k-

coefficient effects vector. Because the covariate coefficients enter the model nonlinearly

through the structural parameter associated to the covariate, the matrix-based notation

peculiar to linear mixed effect models can no longer be used and therefore θ, the (p + k)-

dimensional fixed effects vector is decomposed into [µ′ β′]′. B is a (p × q)-dimensional

design matrix, permitting some components of φi to have no associated random effect when

p > q. ηi is the random effect q-dimensional vector which follows a Gaussian distribution

with null mean and variance-covariance (q×q)-dimensional matrix Ω. ǫi is the residual error

ni-dimensional vector which follows a Gaussian distribution with null mean and variance-

covariance (ni × ni)-dimensional matrix Σi(Xi; φi,γ) whose diagonal terms are equal to

g(Xi; φi,γ)2 and off-diagonal terms are equal to 0.

To obtain a combination of constant and proportional error models, g(Xi; φi,γ) can be

set equal to a+ bf(Xi; φi) with γ = [a b]′ the vector of the error model parameters. Define

the l-dimensional vector of variance parameters as λ = [Vech(Ω)′ γ ′]′ where the operator

Vech(.) creates a column vector from the matrix Ω by stacking its lower diagonal elements

below one another. Finally, define the (p+k+l)-dimensional vector of all model parameters

as Ψ = [θ′ λ′]′.
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2.2 Evaluation of the likelihood

Because of the nonlinearity of the regression function in the random effects, the likelihood

of NLMEM cannot be expressed in a closed form. Indeed, for the subject i, the marginal

loglikelihood Li(yi;Ψ) of Ψ for the data yi is given by

Li(yi;Ψ) =log

(∫

p(yi; φi,Ψ)dφi

)

=log

(∫

p(yi|φi,Ψ)p(φi;Ψ)dφi

) (2)

with p(yi|φi,Ψ) the density of the observations conditioned on the random ef-

fects and the model parameters, p(φi;Ψ) the density of the individual parameters and

p(yi; φi,Ψ) the likelihood of the complete data, that is,

−2 log p(yi; φi,Ψ) =ni log(2π) + log(|Σi(Xi; φi,γ)|)

+(yi − f(Xi; φi))
′Σi(Xi; φi,γ)−1(yi − f(Xi; φi)) + q log(2π)

+log(|Ω∗|)(φi − (µ + Aiβ))′Ω∗−1(φi − (µ + Aiβ))

where Ω∗ = B′ΩB.

Different approaches have been proposed to estimate Li(yi;Ψ). Linearisation based meth-

ods consist of taking a Taylor expansion of the model function f and approximating (2) by

the loglikelihood of a linear mixed effect model:

−2 Li(yi;Ψ) = ni log(2π) + log(|Vi|) + (yi − Ei)
′Vi

−1(yi − Ei)

where Ei and Vi are respectively the marginal expectation and variance of the vector yi.

Another approach is to use an importance sampling procedure (Robert and Casella, 1983)

to compute an estimate Li(yi;Ψ)T of the observed loglikelihood, such as

Li(yi;Ψ)T = log

(

1

T

T
∑

t=1

p(yi|φi
(t),Ψ)

p(φi
(t);Ψ)

h(φi
(t))

)

where the φi
(t) are sampled from an instrumental distribution h(φi

(t)) which is chosen to

minimize the variance of the estimate Li(yi;Ψ)T . In the MONOLIX software where such a

procedure is used, the instrumental function is a non-centred Student distribution (Samson

et al., 2007; Lavielle, 2008).
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2.3 Evaluation of the estimation variance matrix

The estimation variance matrix is composed of

Var(Ψ) =







Var(θ) Var(θ,λ)

Var(θ,λ)′ Var(λ)







where Var(θ) is the ((p + k) × (p + k))-estimation variance matrix for the fixed effects,

Var(λ) is the (l × l)-estimation variance matrix for the variance components, and Var(θ,λ)

is the ((p + k) × l)-estimation covariance matrix between the fixed effects and the variance

components. Based on the Cramer-Rao inequality, the inverse of the Fisher estimation matrix

MF is the lower bound of the variance covariance matrix of any unbiased estimators of the

parameters. In the framework of normal theory maximum likelihood, MF is computed as

the Hessian of the loglikelihood in all the model parameters, and thus

MF =
N
∑

i=1

−∂2Li(yi;Ψ)

∂Ψ∂Ψ′

where N is the total number of subjects. Thus, the (asymptotic) estimate of Var(Ψ) is

MF
−1.

Here as well, linearisation of the model has been proposed to derive an approximate

expression of MF . The FOCE-I approach linearises the model around the individual random

effect estimates η̂i (Pinheiro and Bates, 2000).

yi = f(Xi; φ̃i) +
∂f(Xi; φi)

∂ηi

∣

∣

∣

∣

′

φ̃i

(ηi − η̂i) + ǫi

with φ̃i = µ + Aiβ + η̂i. The approximate marginal expectation Ei and variance Vi of the

vector yi are then given by

Ei = f(Xi; φ̃i) −
∂f(Xi; φi)

∂ηi

∣

∣

∣

∣

′

φ̃i

η̂i

Vi =
∂f(Xi; φi)

∂ηi

∣

∣

∣

∣

′

φ̃i

Ω∗ ∂f(Xi; φi)

∂ηi

∣

∣

∣

∣

φ̃i

+ Σi(Xi; φ̃i,γ)

(3)

Alternatively, a Taylor expansion of the model function f can also be performed around

the individual parameter estimates φ̂i = µ̂ + Aiβ̂ + η̂i, which provides the following



6 Alternatives to Asymptotic Tests in NLMEM: an Application to Pharmacogenetics

approximation. Then, (1) is rewritten as

yi = f(Xi; φ̂i) +
∂f(Xi; φi)

∂φi

∣

∣

∣

∣

′

φ̂i

(φi − φ̂i) + ǫi

which is reformulated for sake of simplicity:

ỹi =
∂f(Xi; φi)

∂φi

∣

∣

∣

∣

′

φ̂i

φi + ǫi

with ỹi = yi − f(Xi; φ̂i) + ∂f(Xi ;φi)
∂φi

∣

∣

∣

′

φ̂i

φ̂i. Then, the approximate marginal expectation Ei

and variance Vi of the vector ỹi are given by

Ei =
∂f(Xi; φi)

∂φi

∣

∣

∣

∣

′

φ̂i

(µ + Aiβ)

Vi =
∂f(Xi; φi)

∂φi

∣

∣

∣

∣

′

φ̂i

Ω∗ ∂f(Xi; φi)

∂φi

∣

∣

∣

∣

φ̂i

+ Σi(Xi, φ̂i,γ)

(4)

This latter approach is implemented in the MONOLIX software.

As we need its expression in the following, let us write here the estimation variance for

the fixed effects. Using a first order linearisation of the model where Ei and Vi are given in

either (3) or (4), we have Var(θ,λ) = 0 and thus

Var(θ) =

(

N
∑

i=1

∂Ei

∂θ

′

Vi
−1∂Ei

∂θ

)−1

(5)

3. Asymptotic tests and alternatives

3.1 Asymptotic tests

In asymptotic conditions, testing the null hypothesis H0 : Cθ = 0 based on the estimates of

the fixed effects θ̂ can be carried out with the usual Wald test, comparing the Wald statistic

to the critical value of a χ2 distribution. Here, C is a ((p + k) × U)-contrast matrix and U

the number of contrasts one wishes to test. If H0 is true, then:

W = (Cθ̂)′(C ′Var(θ)C)−1(Cθ̂) ∼ χ2
U (6)

H0 can also be tested using the likelihood ratio test (LRT) that compares the models with

Cθ = 0 (reduced) with the full model where θ is estimated. If H0 is true, then:

S = −2 × (Lreduced − Lfull) ∼ χ2
U
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where Lreduced and Lfull are the loglikelihood of the two models.

3.2 Permutation based alternative

To perform permutation tests, R data sets are generated by permuting the rows of the

covariate matrix from the original data set. For a given test, the statistic Qobs is estimated

from the original data and the statistic Qperm is estimated from each of the R data sets.

Thus, r = 1, ..., R values Qpermr are obtained which constitute a distribution of the statistic

under the null hypothesis of no covariate effect. The permutation p-value is the proportion:

(Card(Qpermr > Qobs) + 1)/(R + 1), where the operator Card(.) counts the realisations of

Qpermr > Qobs.

3.3 F -distribution based alternative

Comparing W/U to an F -distribution with an infinite denominator df is equivalent to using

the classical Wald test. However, in biology studies, sample size is often small to moderate,

thus approximate F -distributions with numerator df= U and non infinite denominator df

have been proposed to correct for the departure from the asymptotic. In this section,we

consider four different F -distribution based approaches.

The first approach derives from decomposition of the degrees of freedom in the ANOVA (Pin-

heiro and Bates, 2000) (=DFPB) with a denominator df equal to
∑N

i=1 ni−(N+p+k−U) and

is implemented in the nlme function in R. In the second approach which is implemented in

the NLMIXED Procedure in SAS, the computation of the degrees of freedom is based on the

number of random effects (Wolfinger, 2000) (=DFW) with a denominator df equal to N − q.

The third approach comes from the multivariate nonlinear models (MNLM) framework (Gal-

lant, 1975) (=DFG). In his study on nonlinear regressions contemporaneously but not serially

correlated, Gallant (1975) observed that estimation variances were underestimated and thus

recommended the multiplication of Var(θ) by the factor N/(N−p) and using a denominator
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df equal to N − p. In classical non linear regression, the downward bias of the maximum

likelihood variance estimator is corrected using a factor of n/(n−p), with n being the number

of observations and p being the number of model parameters (Huet et al., 1996). Here, Gallant

(1975) proposed substituting N and not
∑N

i=1 ni for n because MNLM, as a population-

averaged approach, focusses on the marginal expectation of the response variable (Vonesh

and Chinchilli, 1997).

The fourth approach is an extension to NLMEM of the method developed by Fai and

Cornelius (1996) (=DFFC) that is implemented in the DDFM=SATTERTH option of the

MIXED Procedure in SAS. Fai and Cornelius (1996) proposed using the spectral decompo-

sition of C ′Var(θ)C in (6) to decompose W into a sum of U squared Student statistics with

of df

υu =
2(c′uVar(θ)cu)

2

Var(c′uVar(θ)cu)

with u = 1, .., U the decomposition index and where Var(c′uVar(θ)cu) can be approx-

imated by the delta method using the estimates of Var(λ) and the estimates of the model

parameters:

Var(c′uVar(θ)cu) ≈
(

∂c′uVar(θ)cu

∂λ

)′

Var(λ)

(

∂c′uVar(θ)cu

∂λ

)

(7)

When U > 1, Fai and Cornelius (1996) showed that W/U follows an approximate F -

distribution with denominator df:

υ =

2
U
∑

u=1

υu

υu − 2

U
∑

u=1

υu

υu − 2
− U

As, in NLMEM, Var(θ) includes derivatives, we use the following property of matrix

derivatives dA−1

dx
= −A−1 dA

dx
A−1 to take the derivative of c′uVar(θ)cu in (7) with respect

to each element l of the vector λ:

∂c′uVar(θ)cu

∂λl

= c′u



−Var(θ)
∂
(

∑N

i=1
∂Ei

∂θ

′
Vi

−1 ∂Ei

∂θ

)

∂λl

Var(θ)



 cu (8)
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We also use this property to take the derivative of
∑N

i=1
∂Ei

∂θ

′
Vi

−1 ∂Ei

∂θ
in (8) with respect to

each element l of λ, so we have, for each element q of V ech(Ω),

∂
(

∑N

i=1
∂Ei

∂θ

′
Vi

−1 ∂Ei

∂θ

)

∂V ech(Ω)q

=
N
∑

i=1

∂Ei

∂θ

′
(

−Vi
−1 ∂f(Xi; φi)

∂φi

∣

∣

∣

∣

′

φ̂i

∂f(Xi; φi)

∂φi

∣

∣

∣

∣

φ̂i

Vi
−1

)

∂Ei

∂θ

and for the error model parameters,

∂
(

∑N

i=1
∂Ei

∂θ

′
Vi

−1 ∂Ei

∂θ

)

∂a2
=

N
∑

i=1

∂Ei

∂θ

′
(

−Vi
−1diag

(

1 +
bf(Xi; φ̂i)

a

)

Vi
−1

)

∂Ei

∂θ

∂
(

∑N

i=1
∂Ei

∂θ

′
Vi

−1 ∂Ei

∂θ

)

∂b2
=

N
∑

i=1

∂Ei

∂θ

′
(

−Vi
−1diag

(

af(Xi; φ̂i)

b
+ f(Xi; φ̂i)

2

)

Vi
−1

)

∂Ei

∂θ

In these calculations, we linearise the model around the individual parameters estimates as

described in Section 2.3.

4. Real Data and Simulation Study

4.1 Real data

As in our previous papers (Bertrand et al., 2008, 2009b), we illustrate the different approaches

with data from a PK substudy of the COPHAR2-ANRS 111 study, a multicentre non-

comparative pilot trial of early therapeutic drug monitoring in HIV-positive patients näıve

of treatment. We focus on the PK sub-study from the group of patients receiving indinavir

doses of 400, 600 and 800 mg boosted with ritonavir at a dose of 100 mg twice a day. Patients

were genotyped for the exons 21 and 26 of the ABCB1 gene which code for the P-glycoprotein,

and for polymorphisms on gene coding for proteins involved in the metabolism of indinavir;

the CYP 3A4*1B, CYP 3A5*3 and *6 polymorphisms.

The indinavir pharmacokinetic profiles were determined at 1, 3, 6, and 12h following

drug administration, 2 weeks after the treatment onset (Fig. 1).

[Figure 1 about here.]



10 Alternatives to Asymptotic Tests in NLMEM: an Application to Pharmacogenetics

4.2 Simulation setting

An extended description of the simulations can be found in Bertrand et al. (2008) and is

briefly summarised below.

Parameters from the simulated NLMEM were set based on a preliminary analysis of the

indinavir data without covariates. The concentrations at time t were simulated using a one

compartment model at steady state (τ = 12 h) with first order absorption (ka = 1.4 h−1),

first order elimination (k = 0.2 h−1) and apparent volume of distribution (V/F = 102 L).

f(t; ka, k, V/F ) =
D

V/F

ka

ka − k

(

e−kt

1 − e−kτ
− e−kat

1 − e−kaτ

)

We use a diagonal Ω matrix and a proportional error model (g(t; φi,γ) = bf(t,φi)) setting

the dose (D) to 400 mg. The model parameters are expressed in term of natural logarithms to

achieve the positivity requirement of pharmacokinetic parameters, µ = [log(ka) log(k) log(V/F )]′

with random effect standard deviations set to 1.13, 0.41 and 0.26, respectively and the

coefficient of variation for the residual error set to 20% (b=0.2).

We simulate a diplotype of SNP1 and SNP2, with a distribution mimicking that of exons

26 and 21 of the ABCB1 gene Sakaeda et al. (2002); we obtained frequencies for the rare

homozygotes, heterozygotes and common homozygotes of respectively 24%, 48% and 28%

for SNP1 and 29%, 44% and 27% for SNP2. As, in the intestine, the P-glycoprotein restricts

drug entry into the body, we consider an effect on the drug bioavailability (F) through the

volume of distribution V/F.

The genetic coefficient values are chosen to be consistent with results found in the literature

for ABCB1 polymorphisms on drugs disposition (Marzolini et al., 2003) and provide clinically

relevant effect, with V/F and CL/F (=k × V/F ) increasing from 105.4 to 200.5 L and 21.1

to 40.1 L/h respectively between common and rare homozygotes for SNP1.

In this work, the tests under study assess only the effect of SNP1 on V/F even if we

simulated diplotypes to allow for population genetic factors such as linkage disequilibrium.
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In the model including the covariate, the effect coefficient vector is β = [β1 β2]
′. As we

test for the effect of the SNP as a whole, we have U = 2 and C =







0 0 0 1 0

0 0 0 0 1







′

.

We simulated 200 data sets with N = 40 subjects and n = 4 samples as in the COPHAR2

trial under both the null hypothesis of no genetic effect (H0) and the alternative hypothesis

of a genetic effect (H1) (Fig. 2).

[Figure 2 about here.]

5. Evaluation protocol

5.1 Simulation study

In the present research we used the FOCE-I and SAEM algorithms implemented in the

softwares NONMEM version 7 and MONOLIX version 2.1 respectively to estimate the

parameters, the likelihood and the estimation variance matrix. In NONMEM, the starting

values were set to the simulated ones + 10% except for the standard deviation of ka which

was set to 0.7. In MONOLIX, the starting values were similar for the fixed effects but the

random effect standard deviations were set to 1.

For the likelihood estimation in MONOLIX, the number of iterations for the importance

sampling T was set to 10000.

The alternatives proposed in the present work are evaluated in terms of type I error and

power. The type I error estimate is the percentage of the 200 data sets simulated under H0

where the test is significant and the power estimate is the same percentage but for the 200

data sets simulated under H1. The prediction interval around 5% for 200 data sets is [2%;

8%]. The estimates of type I error and power obtained with permutations or F -distributions

are compared to values obtained using the asymptotic tests (theoretical threshold of p-

value=0.05) and using a simulation based correction (threshold built from simulations under

the model with Cθ = 0).
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As described in Section 3, the type I error of the asymptotic tests is obtained using a

threshold of 5.99 which is the 95th percentile of a χ2 distribution with 2 degrees of freedom.

The type I error for the simulation based correction is obtained using a threshold of 10.18 and

7.05 with FOCE-I and 7.80 and 6.96 with SAEM for the Wald test and the LRT, respectively.

These values are the 95th percentiles of the distributions obtained for both the Wald test

and the LRT statistics on 1000 data sets simulated under the null hypothesis in Bertrand

et al. (2008) using the same setting as described in Section 4 of the present paper.

We also evaluate the p-value distribution for both tests on the 200 data sets simulated

under H0. If the test statistic does follow its reference distribution, these p-values should

follow an uniform distribution on the interval [0, 1]. Thus, we computed the Kolmogorov

distance between the uniform distribution on the interval [0, 1] and the p-value distributions

observed for the Wald test and the LRT under their asymptotic form and using the proposed

alternatives with both estimation algorithms (Ruckdeschel et al., 2006). For a sample of

200 values, the Kolmogorov-Smirnov (K-S) test of equality of one-dimensional probability

distributions is significant at a level of 5% when the Kolmogorov distance is below
1.358√

200
=

0.096.

For the permutation test, the number R of permutations is set to 1000.

The fourth approach based on F -distribution (DFFC) is evaluated only with SAEM in

MONOLIX. Our implementation of this denominator df calculation is nested within the

MONOLIX code, following the computation of the estimation variance matrix. We did not

program the extension with the FOCE-I algorithm as we had no easy access to the NONMEM

code dedicated to the estimation variance matrix.

5.2 Application to real data

The indinavir concentrations were analysed with the same PK model as in the simulation

study, using the SAEM algorithm. The details of the covariate model building strategy are
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described in Bertrand et al. (2009a). Briefly, we tested for demographic and biological covari-

ates along with the genetic polymorphisms. First, a screening on the estimated individual

parameters was performed, followed by a forward selection based on LRT. Then, the p-value

of the covariates remaining in the final model were assessed using the asymptotic LRT as

well as the four F -distribution based Wald tests for illustrative purpose.

6. Results

6.1 Simulation study

As shown on Table 1, SAEM achieved convergence on all data sets and always provided

the estimation variance matrix, whereas FOCE-I failed to converge and/or compute the

estimation variance matrix on few data sets.

[Table 1 about here.]

The thresholds used for the asymptotic test, the simulation based correction, and the

first three F -distribution based approaches, are the same for the 200 data sets under both

hypotheses. For the permutation test and the DFFC approach, the threshold comes from,

respectively, the permutation based distribution and the estimated denominator df, which

are both specific to the data set.

With SAEM, the type I error for the asymptotic Wald test and LRT are significantly

inflated. With FOCE-I, the type I error for the asymptotic Wald test is significantly inflated

whereas the asymptotic LRT estimate is at the upper limit of the prediction interval around

5%. Of note, the Wald test and LRT asymptotic estimates on the 1000 data sets used to

derive the simulation-based threshold are 8.9% and 7.6% with SAEM and 12.2% and 7.4%

with FOCE-I. For the permutation test, the type I error estimates of the Wald test and the

LRT are non-significantly different from the nominal level of 5%, with both algorithms. Of

note with FOCE-I, the maximal value observed over the 195 thresholds is four times larger
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than that obtained with SAEM for the Wald test. Using the simulation-based correction or

the permutation test, the corrected power estimates for the Wald test are much lower using

FOCE-I than SAEM

[Figure 3 about here.]

As displayed on Fig. 3, all the Kolmogorov distance estimates are below the K-S threshold

for the permutation test and the simulation based correction. With SAEM and FOCE-I,

the Kolmogorov distance estimate of the DFG approach is similar to that obtained using

permutation test or simulations based correction with both estimation algorithms, although

the type I error estimate is about 10% with FOCE-I and not significantly different from

the nominal level of 5% with SAEM. For the asymptotic test and the DFPB approach, the

Kolmogorov distance and type I error estimates are close and significantly inflated. Indeed,

the large denominator df of the DFPB approach leads to a threshold quite close to that of a

χ2 divided by 2. The DFFC and the DFW methods also have close and significantly inflated

estimates of Kolmogorov distance and type I error, though lower than the asymptotic test.

The range of denominator df obtained with the DFFC method is quite narrow and happens

to include that of the DFW approach.

Fig. 4 shows that for the Wald test with SAEM, one should use a denominator

df of 10 to obtain a type I error of exactly 5%, and between 6 and 27 for an

estimate non significantly different from 5%.

[Figure 4 about here.]

6.2 Real data

As described in Bertrand et al. (2009a), the indinavir concentration time data are adequately

fitted by a one compartment model parametrised in first-order absorption rate, apparent

volume of distribution and apparent elimination clearance (Cl/F). The model with no co-



Alternatives to Asymptotic Tests in NLMEM: an Application to Pharmacogenetics 15

variate has an absorption constant of 1.3 h−1 with an important inter-individual variability

of 118%, an elimination clearance of 21.9 L.h−1 and a volume of distribution of 93.9 L

with inter-individual variabilities of 34.4% and 19.3%, respectively. The standard deviations

of the random effect are expressed as the coefficient of variation of the pharmacokinetic

parameters, as in the model the latter are coded in natural logarithms. Those estimates

are in accordance with the literature on indinavir given in combination with ritonavir. The

coefficient of variation for the residual error is 44.5%. All of the estimation relative standard

errors (RSE) were below 25% with the exception of ka and V/F (around 30% and 60%,

respectively).

After ascending selection using the asymptotic LRT, only an effect of the CYP 3A4*1B

polymorphism effect on ka (p-value=0.02) and an age effect on Cl/F (p-value=0.03) remain

in the model. The p-values of the permutation tests are 0.04 and 0.1 for the CYP 3A4*1B

polymorphism and age effects, respectively. The corresponding p-values are 0.014 and 0.043

using the DFPB approach, 0.018 and 0.048 using the DFW approach, 0.023 and 0.057 using

the DFG approach, and 0.02 and 0.047 using the DFFC approach.

Only the effect of the CYP 3A4*1B polymorphism remains in the final model, as the effect

of age is discarded based on the p-value estimates from the permutation test and the DFG

approach.

7. Discussion

Several studies have evaluated by simulation the performance of tests for discrete covariate

on continuous responses using NLMEM with various designs and estimation methods (see

the review in the discussion of Bertrand et al. (2009b)). Permutation tests and F -distribution

based tests have been compared in the linear mixed effects framework (Lin and Heagerty,

2004; Routledge, 1997). In particular Routledge (1997) concluded that when unable to

guarantee, in advance, the reliability of p-values based on the F -distribution one should
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use a permutation test. However, as far as we know, such an evaluation has not yet been

published in the specific context of NLMEM.

Both simulation and permutation based-approaches are relatively time consuming

with computing time estimates which are about 3.4 h and 24 min compared to 19.2 s and

12.4 s for the asymptotic Wald test with SAEM and FOCE-I, respectively. The permutation

test is found to be a robust alternative to correction based on simulations under H0 from a

model, with type I error close to 5%. With regard to the main assumption of permutation

tests, our simulation setting ensures exchangeability of the observations as the genetic

covariate only affected the fixed effects. The external validity of a permutation test is often

questioned as it is by construction ‘sample dependent’. Manly (1998) argues however that

it is equivalent to question the representativeness of the study sample which also conditions

the external validity of classical tests.

Because the covariates enter the model in a linear fashion, we also consider

using a F -distribution for the Wald test, a widely used method in LMEM (Ver-

beke and Molenberghs, 1997). The df of the DFPB approach which is derived from

the multivariate ANOVA differs greatly from the df used within the mixed effect

framework. Indeed, in the multivariate ANOVA, the subject concentrations are

considered as independent variables under the influence of the genotype and

the multivariate statistic is based on the comparison of the between and within

variance matrices whose covariance terms inform on the correlation between

the variables. Thus in this approach, n variables are considered in N subjects

leading to an N × n sample size. Then, one degree of freedom is subtracted

per parameter estimates minus the number of contrast tested. On the other

hand in the mixed effects model, the independent variable is the subject with

N the sample size. For DFW and DFG, one degree of freedom is subtracted per
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random effect variance and fixed effect respectively. For DFFC, the information

available in the data for the parameter estimation is quantified through the

variance of parameter estimates rather than by subtracting degrees of freedom

to the sample size. Here, all these methods however fail to correct for the Wald

type I error inflation, as the denominator df estimates for the 200 data sets are

too large. Actually, the optimal denominator df is even smaller than the number

of independent observations to compensate for the downward bias of the variance

of the estimates, as shown by the performance of the DFG method.

Indeed, the only method based on an F -distribution that corrects for the type I error

inflation of the Wald test is the DFG method with SAEM. With the FOCE-I algorithm, the

Kolmogorov distance suggested an improvement using the DFG method despite the fact that

we observed an inflation of the type I error, indicating that the correction may be useful even

in this case. To go past the simple design under study here, we considered two other designs

from a previous study evaluating the Wald test and the LRT (Bertrand et al., 2009b): a

design optimised using the PFIM software (Retout et al., 2007) including N = 80 subjects

sorted in 4 groups with n = 2 samples and a combined design with N = 20 subjects having

n = 4 samples plus N = 80 subjects with only one trough concentration (n = 1). The type

I error estimates using the classical Wald test and the DFG method are 8.7% and 5.7%,

respectively for the optimal design and 8.4% and 4.5%, respectively for the combined design.

These results show that the DFG method also corrects the type I error inflation observed in

these designs. However, it does so not only through approximating the distribution for the

Wald test but essentially through inflating the estimation variance for the effect coefficient

by the factor N/(N − p). This factor, which brings Bessel’s correction for the unbiased

estimator of the variance to mind, was recommended by Gallant (1975) based only on a

Monte Carlo study in the multivariate nonlinear model framework. Thus, caution should be
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used and further investigation is needed as to designs involving different number of samples

per subject and in other simulation settings.

One limitation of the present research is that we consider the method developed by Fai and

Cornelius (1996) and not the method developed by Kenward and Roger (1997). The latter

method is indeed based on restricted maximum likelihood (REML) which is not commonly

used in NLMEM. Further, Faes et al. (2009) have recently revisited the effective sample

size in correlated data and provided an approximate degrees of freedom method. They used

REML estimation, thus we did not assess their approach. Meza et al. (2007) have developed a

REML extension of the SAEM algorithm not implemented in MONOLIX yet. A perspective

of the present work would therefore be to assess the Kenward and Roger (1997) and Faes et al.

(2009) methods using this extension. Of note, a Bayesian framework would be appealing,

not the least because it would circumvent the issue of the type I error by summarizing the

available information in a posterior distribution instead of a p-value.

8. Conclusion

While this research confirms the feasibility of permutation tests in pharmacogenetic studies

for both the LRT and the Wald test, further investigations in other simulation settings are

required to recommend the F -distribution based approach proposed in multivariate nonlinear

models for the Wald test. As permutation does only slightly better than the asymptotic

alternatives for an additional computing burden, a sensible course of action could be to use

it only when decisions based respectively on the asymptotic test and the Gallant alternative

are discordant.
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Biomodélisation as well as Prof. Marc Lavielle for the valuable help he provided in using

MONOLIX.

During this research, Julie Bertrand was supported by a grant from the Institut de Recherches

Internationales Servier (France).

References

Bertrand, J., Comets, E., Laffont, C., Chenel, M., and Mentré, F. (2009b). Pharmacogenetics
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Figure 1. Indinavir pharmacokinetic concentrations versus time profiles for the 40 pa-
tients included in the COPHAR2-ANRS 111 study sorted by dose and genotype for the
CYP 3A4*1B polymorphism. The plain, dashed and dotted lines represent patients with a
400, 600 and 800 mg dose, respectively.
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Figure 2. Concentrations (ng/mL) simulated for a representative data set under H0 (top)
and a representative one under H1 (bottom). The subjects are sorted by genotype for the exon
SNP1: common homozygotes (left), heterozygotes (center) and rare homozygotes (right).
The profile for the mean parameters is represented by a thick line. Individual concentration
curves are represented by dotted lines.
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Figure 3. Kolmogorov distance between the uniform distribution on the interval [0, 1] and
the p-value distributions obtained on 200 simulations under H0 for the Wald test and the
LRT under their asymptotic form and using the proposed alternatives with FOCE-I and
SAEM. The horizontal gray line is the corresponding threshold of the Kolmogorov-Smirnov
test for 200 data sets.
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Figure 4. Type I error estimates (%) of the Wald test on the 200 data sets simulated under
H0 versus the corresponding denominator degree of freedom with SAEM. The gray dotted
line and shaded area represent the nominal level of 5% and its 95% prediction interval.
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Table 1

Threshold, denominator degrees of freedom (df), type I error, and power estimates (%) of the Wald test and the
LRT for different approaches, using both FOCE-I and SAEM

Algorithm Test Approach denominator Threshold T Type I T Power
df error

FOCE Wald asymptotic - 5.99∗ 199 13.1 199 53.8
simulation - 10.18∗ 199 4.5 199 18.6
permutation - 9.09[6.9;34.65]∗† 195 4.6 197 27.4
DFPB 117 3.07 199 12.1 199 52.3
DFW 37 3.25 199 11.1 199 48.2
DFG 37 3.25 199 10.1 199 44.2

LRT asymptotic - 5.99∗ 200 8.0 199 76.4
simulation - 7.05∗ 200 5.5 199 69.8
permutation - 6.57[5.75;7.63]∗† 198 6.5 199 72.4

SAEM Wald asymptotic - 5.99∗ 200 10.0 200 78.0
simulation - 7.80∗ 200 5.5 200 71.0
permutation - 7.33[6.33;8.46]∗† 200 6.0 200 73.0
DFPB 117 3.07 200 9.0 200 78.0
DFW 37 3.25 200 8.5 200 77.0
DFG 37 3.25 200 7.5 200 75.0
DFFC 39.8[36.3;43.8]† 3.23[3.21;3.26]† 200 8.5 200 77.0

LRT asymptotic - 5.99∗ 200 9.0 200 77.0
simulation - 6.89∗ 200 6.5 200 72.0
permutation - 6.73[4.45-8.11]∗† 200 7.0 200 72.0

T = number of data sets on which the test could be performed.

Predicted interval for a nominal level of 5% = [2.0 − 8.0].
∗ Threshold for the distribution of W, not W/2.
† The threshold for the permutation test and both the threshold and the denominator df for the DFFC approach

are displayed as median [range] over the T data sets simulated under H0.


