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Abstract

Vertebrate genes often play functionally distinct roles in different subsets of cells; however, tools to study the cell-specific
function of gene products are poorly developed. Therefore, we have established a novel mouse model that enables the
visualization and manipulation of defined subpopulations of neurons. To demonstrate the power of our system, we
dissected genetic cascades in which Pax6 is central to control tangentially migrating neurons of the mouse brainstem.
Several Pax6 downstream genes were identified and their function was analyzed by over-expression and knock-down
experiments. One of these, Pou4f2, induces a prolonged midline arrest of growth cones to influence the proportion of
ipsilaterally versus contralaterally settling neurons. These results demonstrate that our approach serves as a versatile tool to
study the function of genes involved in cell migration, axonal pathfinding, and patterning processes. Our model will also
serve as a general tool to specifically over-express any gene in a defined subpopulation of neurons and should easily be
adapted to a wide range of applications.
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Introduction

Understanding cell-specific regulatory mechanisms is a major

challenge in the post-genome era. Particularly in mammals, the

reiterated usage of the same transcription factor in distinct subsets

of cells or during distinct developmental time points provides the

basis to generate thousands of individual cell types with a relatively

small number of genes. A single transcription factor may therefore

elicit variable downstream effects depending on the context of its

expression. Tissue-specific knockout strategies based e.g. on the

Cre-lox-system, or promoter-driven transgenic models allow a cell-

specific manipulation of genes. However, as these techniques rely

on the generation of new transgenic animals for each gene-

combination analyzed they are laborious and time-consuming.

Here, we combined a transgenic model with tissue-specific

transfection protocols and organotypic cultures to enable the

quick analysis of numerous genes in a cell-specific manner. As a

proof of principle we applied our system to decode molecular

pathways initiated by the transcription factor Pax6 which is

involved in neuronal cell migration and axonal pathfinding

processes.

Pax6, a homeodomain and paired domain containing transcrip-

tion factor, is a major determinant of visual and olfactory sensory

structures and is essential for a variety of patterning and

pathfinding processes throughout the nervous system [1–3].

Depending on the context and area of expression Pax6 initiates

varying downstream effects. Homozygous small eye (Pax6Sey/Sey)

mouse and rat embryos, which lack functional Pax6, do neither

generate eye nor nasal structures and are deficient in ventral

diencephalic structures [4–9]. In the ventral hindbrain and spinal

cord, Pax6 controls the dorso-ventral patterning of motorneurons

and of interneurons [5,10]. In the cerebral cortex Pax6 determines

the neurogenic potential of radial glial cells [11,12]. Throughout

the developing nervous system, with the exception of the midbrain,

Pax6 is expressed in a ventral and a dorsal pool of progenitor cells.

Although the dorsal Pax6 expression domain has achieved much

less attention than the ventral domain there is evidence that Pax6

plays a pivotal role in the specification and migration of neurons

derived from this domain [13–16].

The dorsal domain of Pax6 positive neuronal precursors of the

hindbrain includes the rhombic lip (RL) [14,16] which comprises

the interface between the dorsal neuroepithelium and the roof

plate. The RL is the source of several tangentially migrating

neurons (see also Figure 1A) [14,17–24]. The most notable are the

neurons of the marginal migratory stream (mms; also pes) which

migrate from the rhombic lip circumferentially around the

medulla towards their contralateral destinations to settle in the

ECN (external cuneate nuclei) and the LRN (lateral reticular

nuclei) [17,25]. Owing to the superficial nature of the mms

migration these neurons serve as paradigm to study neuronal

migration and axonal pathfinding processes.

The highly complex neuronal circuits of the vertebrate nervous

system are established during development when growing axons

travel considerable distances towards their targets to generate the
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appropriate connections. This wiring process depends on attrac-

tive and repulsive factors which emanate from final or interme-

diate cellular targets and which are interpreted by cell surface

receptors located on axonal growth cones [26,27]. Although the

general principles were uncovered during the past years our

understanding of axonal pathfinding processes is far from being

complete. Current methods to analyze candidates regulating

neuronal migration and axonal navigation processes are laborious

and often involve the generation of transgenic animals for each

gene analyzed. Non-transgenic methods, as DiI labeling of

neurons or vector-driven mis-expression of gene constructs, are

suitable for use with certain applications, however, they are neither

cell specific nor can they be targeted to distinct neuronal

subpopulations.

Here we describe a novel transgenic mouse model, which allows

the specific and exclusive visualization and manipulation of subsets

of neurons in the developing brain. To demonstrate the power of

this system we have analyzed the role of Pax6 in migrating neurons

of the brainstem. In Pax6 mutant mice migration of these neurons

is distorted and some neurons differentiate at ectopic positions.

Using transplantation, knock-down and over-expression experi-

ments we show that distinct migratory features are controlled by

discrete sets of Pax6 downstream genes. These results demonstrate

the potential of our transgenic mouse model as a tool to study the

role of Pax6 in individual neurons. Moreover, our system should be

widely applicable to study virtually any gene that acts during cell

determination, axonal pathfinding and/ or cell migration

processes.

Results

A novel mouse model to visualize and manipulate
subsets of neurons

The functional analysis of genes in restricted tissues often

involves the generation of inducible knockout mice or mice over

expressing transgenic constructs. To simplify this time-consuming

process we developed an in vitro model that enables the

visualization and manipulation of defined populations of neurons.

To label neurons in a largely unlabelled background we searched

for genes that were expressed in only a subset of neuronal

precursors and in migrating neurons. Pax6 meets these criteria

ideally. Pax6 is expressed in several groups of tangentially

migrating neurons and their precursors as well as in a small

population of radially migrating neurons and their precursors

(Figure 1A–1C) [5,10,12,14,16,28].

We adopted the Tet binary system [29] and generated YAC

(yeast artificial chromosome) transgenic mice which expressed the

tetracycline dependent transactivator (tTA) in all Pax6 positive

cells. A 420 kb YAC spanning the human PAX6 locus (Y593) [30]

was modified such that the PAX6 coding region was replaced with

a cassette containing an IRES (internal ribosomal entry site) and

the tTA (Figure 1D). Previously, we and others had shown that the

unmodified YAC Y593 contains all elements driving full functional

PAX6 expression [30–32] and, in agreement with this, Tg(PAX6-tTA)

mice showed a wide overlap of tTA and endogenous murine Pax6

expression (Figure S1). Tg(PAX6-tTA) mice were entirely normal and

control experiments insured that neuronal patterning and

migration was unaltered.

tTA is a transcriptional activator that at moderate levels of

expression is completely inert in vertebrates, yet, enables the

activation of artificial constructs containing a tTA-DNA-binding

element (TRE = tetracyline responsive element). To examine

whether our transgenic model specifically allows the labeling of

only Pax6 positive cells we introduced by electroporation reporter

constructs driving the green fluorescent protein into transgenic

embryos. In all instances only Pax6 positive cells, e.g. retinal

precursor cells, cortical precursors, or cerebellar granule cells,

expressed the reporter genes (Figure S1). Non-transgenic embryos

or Pax6 negative tissues did not induce reporter gene expression

(Figure 1H, Figure S1). Together these results demonstrate that

Tg(PAX6-tTA) mice enable the targeting of reporter gene constructs

specifically to Pax6 positive cells and tissues during development.

As Tg(PAX6-tTA) mice allow any gene to be targeted to Pax6

expressing cells, they are of potential value to study neuronal

migration and axonal pathfinding processes and for the analysis of

Pax6 downstream effects. As a proof of principle, we chose to focus

on the marginal migration stream (mms). Like other tangentially

migrating neurons, mms neurons use the same or similar

navigational cues as do growing axons, and migration of mms

neurons is severely disturbed in Pax6 mutant Pax6Sey/Sey mice (see

below). Neurons of the mms are generated at the rhombic lip and

migrate circumferentially around the embryonic brainstem to

generate the contralateral lateral reticular (LRN) and the external

cuneate (ECN) nuclei (Figure 1A) [16,21–23,25]. Migration starts

at E13.0 and is completed by E16.5. Pax6 is expressed in

precursors at the rhombic lip, in all migrating neurons of the mms

and during the initial period of settling in the target nuclei

(Figure 1B, 1C and data not shown). Antibody staining and in situ

hybridization (not shown) of Tg(PAX6-tTA) mice confirmed a

complete overlap of Pax6 and tTA expression in these neurons

(Figure 1I).

To visualize migrating mms neurons in Tg(PAX6-tTA) mice,

reporter constructs were introduced into neuronal precursor cells

in the left rhombic lip by electroporation at E12.5 before

migration had begun (Figure 1E). Whole brainstems including

the cerebellar primordium were then sustained in organotypic

filter cultures for up to 14 days as an open book preparation which

allowed the observation of migrating neurons with a fluorescence

microscope from above (Figure 1F, 1G). Our approach to use a

binary system ensured that only Pax6 positive neurons containing

tTA and a TRE reporter construct expressed the desired reporter

genes. This procedure resulted in the specific labeling of mms

neurons originating only from one rhombic lip. Pax6 positive

neurons originating from the opposite rhombic lip remained

unlabelled as were Pax6 negative (and therefore tTA negative)

neurons originating from regions close to the rhombic lip.

Unlabelled neurons included neurons of the submarginal migra-

tion stream (sms) which generate the inferior olive (IO) thus

demonstrating the specificity of our model. To allow the

Author Summary

In mammals, many genes execute a unique set of
distinctive and common functions in different cell types.
Strategies to address these individual roles often involve
the generation of series of transgenic animals. Here, we
present a novel approach that combines a single
transgenic mouse line with tissue-specific transfection
protocols and organotypic cultures to enable the quick
analysis of numerous genes in a cell-specific manner. As a
proof of principle, we analyzed the function of transcrip-
tion factors in tangentially migrating neurons of the
developing vertebrate hindbrain. We identified a tempo-
rary halt in migration as a novel mechanism for neurons to
decide whether to cross or not cross the midline. Our
model may serve as a general tool to quickly study axonal
pathfinding, neuronal cell migration, or patterning pro-
cesses in a well-defined population of neurons.

Pax6 Controls Cell Migration in the Brainstem
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Figure 1. A novel mouse model to visualize and manipulate Pax6 positive neurons. (A) Schematic diagram of tangentially migrating
neurons in the mouse brainstem. Pax6 positive neurons of the marginal migration stream (mms) and of the pontine migration (pm) are derived from
the rhombic lip (RL) and generate the lateral reticular (LRN), the external cuneate nuclei (ECN), the pontine nuclei and the pontine reticulotegmental
nuclei (not shown), respectively. Pax6 positive external granule cells (EGL) initially migrate rostrally on the surface of the cerebellar primordium (Cb).
Pax6 negative neurons of the submarginal migration stream (sms) generate the inferior olive (IO). Distribution of Pax6 positive cells in the wt
hindbrain at E12.5 (B) and at E14.5 (C) as shown by in situ hybridization on coronal vibratome sections. Pax6 is expressed in precursor cells at the
caudal RL (open arrows in B,C), in ventral precursor cells at the basal plate, in groups of ventrally migrating neurons and in the mms (filled arrow in C).
The dorsal alar plate (brackets in B,C), the hypoglossal nuclei (nXII), and the floor plate are negative for Pax6. (D) Diagram of the targeting construct to
replace the coding sequence of human PAX6 in YAC Y593 with an IRES-tau-tTA-LYS2 cassette. For a more detailed description of the construct see
the Materials and Methods section. (E) Schematic drawing of the electroporation and brainstem culture procedures. Responder constructs consisting
of tetracycline responsive elements (TRE), a minimal promoter (pmin), and a reporter gene (e.g. EGFP) are injected into the fourth ventricle of E12.5
Tg(PAX6-tTA) embryos and then transfected into one RL by electroporation. Subsequently, the hindbrain is dissected and cultured with the ventricular
face onto MilliporeCM filters. After prolonged cultures mms neurons settle either in the ipsi- or the contralateral LRN (LRNi, LRNc), or in the ECN. All
neurons project to the contralateral cerebellar hemisphere (Cb). (F and G) Migrating mms neurons visualized by EGFP fluorescence in transfected
brainstems. The enlarged areas shown are indicated by white boxes in (E). After 1 day in vitro culture (1 DIV) migrating neurons with long leading and
short trailing processes emerge from the transfected RL (F). After 4DIV the majority of mms neurons have settled in contralateral LRN (LRNc) (G).
Genotyping of transfected cultures confirms that responder constructs are exclusively activated in Tg(PAX6-tTA) and not in non-transgenic embryos (H).
Double-immunolabeling of mms neurons with Pax6 and VP16 (to recognize tTA) antibodies confirm a complete overlap of Pax6 and tTA expression
(I). A responder vector containing two TRE elements drives expression of two genes simultaneously: a cytoplasmic green fluorescent protein (EGFPm)
and a nuclear red fluorescent protein (DsRed2nls) (J). The left and right images are green and red fluorescent images, respectively, of migrating mms
neurons after 1.5DIV. K, K9, and L are low magnification fluorescence (K, L) and phase contrast (K9) images of cultures transfected with an EGFP

Pax6 Controls Cell Migration in the Brainstem
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simultaneous visualization and manipulation of neurons we

designed reporter constructs containing two TRE elements

(Figure 1J). Control constructs co-expressed a cytoplasmic green

fluorescent protein (EGFPm) and a nuclear red fluorescent protein

(DsRed2nls) in 99% (61; n = 10) of labeled neurons demonstrating

that our reporter constructs enable the co-expression of two genes

in the same neurons (Figure 1J). To enable statistical analysis of the

cultures, the territories of the LRN and the ECN were delineated

using visible landmarks (Figure 1K, 1K9, 1L; see also the Materials

and Methods section). Immunolabeling of cultures expressing a

HA-tagged Pax6 construct demonstrate that over-expression of

TRE constructs in Tg(PAX6-tTA) transgenic cultures result in

moderate levels of protein expression that are in the range of

physiological Pax6 concentrations (Figure 1M, 1M9, 1M’’).

Pax6 plays multiple roles in patterning and guiding
migrating ECN and LRN neurons

Pax6 mutant Pax6Sey/Sey mice display multiple neuronal pattern-

ing and migration defects. We therefore wished to determine

whether Pax6 also regulates the mms. At the anatomical level,

several features of the mms are severely disturbed in Pax6 mutant

Pax6Sey/Sey embryos. Most noticeable, the initiation of migration

and the midline crossing was delayed by 0.5 days (asterisks in

Figure 2A, 2A9 and data not shown; see also Figure S2 and

Figure 4A, 4A9 The expression patterns of Pax2, Dcx, NK1R, and

DopH was unaltered indicating that there is no general

developmental delay in the mutant brainstem (data not shown).

In Pax6Sey/Sey embryos some migrating mms neurons used a sub-

marginal instead of a marginal migration path (black arrowhead in

Figure 2A9; see also Figure S2 and Figure 4A9) and at E14.5 a

large number of mutant neurons accumulated around the midline

suggesting a reduced pace in midline crossing (black arrow in

Figure 2B, 2B9). Furthermore, a subset of Pax6 positive neurons

migrated along the midline into the parenchyma of the hindbrain

(white arrowheads in Figure 2C, 2C9). We used a variety of

markers, e.g. antibodies against the potassium channel Kcnj6, and

DiI tracing of mossy fiber projections to discriminate between mms

neurons (generating the ECN and LRN) and neurons of the sms

(generating the IO). These experiments all indicated a complete

loss of neurons in the ECN and a disorganized settling of neurons

in the LRN (Figure 2D, 2D9, 2E, 2E9; Figure S2, and data not

shown). Many Kcnj6 positive neurons were even observed within

the inferior olivary territory (black arrows in Figure 2E9) and

dorsally to the IO at the midline (open arrow in Figure 2E9). In

agreement with previous reports [16], we found a slight

enlargement of the IO at E14.5 when we used the Ets transcription

factor Etv1 as a IO specific marker [33] (Figure S3 and data not

shown). However, by labeling for the axon-guidance-molecule B

(RgmB) no alterations in the general architecture of the IO were

seen [34] (Figure S3). This is consistent with our observation that

misguided Pax6Sey/Sey mms neurons make only a negligible

contribution to the IO or settle in the periphery of the IO. In

summary, these data demonstrate that migration of Pax6Sey/Sey mms

neurons is severely disrupted. Mutant neurons of the mms are

initially delayed. Later, a number of neurons use a sub-marginal

migration path, migration is disturbed at the midline and several

neurons migrate to ectopic positions along the midline. Lastly, the

normal structure of the LRN is lost, the ECN is completely

missing, and the IO is enlarged.

Figure 2. Migration defects of Pax6Sey/Sey pre-cerebellar neu-
rons: histology. Coronal vibratome Pax6 in situ hybridizations of wt (A
- C) and mutant (A9–C9) embryos. The Pax6Sey/Sey mutation is a result of
single base pair substitution in the Pax6 gene that leads to a shortened
non-functional protein product [4]. Pax6 transcript levels, however, are
largely unaffected in mutants therefore allowing the detection of Pax6
expressing cells in Pax6Sey/Sey embryos. At E12.5 the mms has not yet
formed (see Figure. 1B), but, at E13.5 first neurons of the mms have
already crossed the midline (asterisk in A). In the mutant, migration of
mms neurons is delayed, some neurons use a sub-marginal migration
(arrowhead in A9), and by E13.5 neurons have not reached the midline
(asterisk in A9). At E14.5 Pax6 positive neurons accumulate around the
ventral midline (arrow in B9) and at E15.5 some neurons migrate dorsally
along the ventral midline (white arrowheads in C9). In wt embryos all
mms neurons migrate along the marginal migration route (A,B) and no
Pax6 positive cells are seen at the ventral midline (C). Immunohisto-
chemical labeling with an a-Kcnj6 antibody on coronal E18.5 wt (D,E)
and Pax6Sey/Sey (D9,E9) sections. The a-Kcnj6 antibody strongly labels the
wt ECN (D) and the LRN (E). a-Kcnj6 is completely absent from the ECN
territory in Pax6Sey/Sey embryos (D9) and mutant LRN neurons (E9) are
scattered at the LRN territory, within the inferior olivary complex (black
arrows in E9), and at both sides of the midline (open arrow in E9). The
dotted line in E and E9 indicates the midline. (Scale bar is 1 mm in [A,
A9]; 1.2 mm in [B, B9]; 380 mm in [C]; 0.55 mm in [D, D9, E, E9].)
doi:10.1371/journal.pgen.1002099.g002

construct as indicated in E. After 3DIV several hundred neurons have left the transfected rhombic lip (RL) to migrate along the mms. At 5DIV all
neurons have reached their target positions. 25 similar cultures were used to outline the territories of the LRNc and ECN in respect to surrounding
‘‘landmarks’’: the superior olivary nuclei (open arrows), the inferior olivary nuclei, the midline (white arrowhead), and the rhombic lip (RL). Double-
immunolabeling of cultures transfected with a hemagglutinin (HA)-tagged Pax6 construct (M, M9, M’’) confirm that over-expression results in Pax6
levels comparable to endogenous Pax6 levels. Immunolabeling with HA-tag antibodies (M) mark transfected cells (black arrows) which express
endogenous and exogenous Pax6. Note, that Pax6 levels in some untransfected cells (only endogenous Pax6) are as high as Pax6 levels in transfected
cells (endogenous plus exogenous Pax6). (The scale bar represents 0.8 mm in [B]; 1 mm in [C]; 150 mm in [F]; 0.44mm in [G, J]; 0.9 mm in [H]; 70 mm in
[I]; 1.8 mm in [K, K9, L]; 50 mm in [M, M9]).
doi:10.1371/journal.pgen.1002099.g001

Pax6 Controls Cell Migration in the Brainstem
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In order to dissect the complex neuronal cell migration defects

observed in Pax6Sey/Sey mice, Pax6Sey/Sey mice were crossed to the

Tg(PAX6-tTA) transgenic line. Comparison of cultures obtained from

wt and from Pax6Sey/Sey embryos confirmed the anatomical

observations described above. Pax6Sey/Sey mms cells showed an initial

delay in the onset of the migration (Figure 3A, 3B) and a disturbance

at midline crossing later on. After 5 DIV (5 days in vitro) Pax6Sey/Sey

mms neurons settled randomly in the LRN (Figure 3B9) but failed to

form any ECN structures (Figure 3B’’). In contrast, wt cultures

formed a well organized LRN in which cells settled in a dorsal and

ventral sub-nucleus of the LRN (Figure 3A9) and in a distinguished

ECN (Figure 3A’’). To quantify the effect we counted labeled cells in

cultures from wt (LRNi = ipsilateral LRN = 11267; LRNc =

contralateral LRN = 266616; ECN = 86614; total number of

cells = 610634; n = 50) and Pax6Sey/Sey embryos (LRNi = 313623;

LRNc = 426646; ECN = 862; total number of cells = 670671;

n = 8) (Figure 3K). These data suggested that there were no

alterations in the gross number of migrating neurons between wt

and Pax6Sey/Sey embryos and confirmed the complete absence of an

ECN in Pax6Sey/Sey embryos. In both, mutant and wt tissues, a

proportion of LRN neurons settled ipsilaterally (Figure 3K). All

LRN neurons, however, projected to the contralateral cerebellum in

respect to their origin from one rhombic lip, explaining the

observations by Bourrat and Sotelo of an ipsilateral and

contralateral contribution of mossy fibers [17].

The Pax6Sey/Sey migration defect could be caused either by a

direct cell autonomous action of Pax6 in migrating RL precursors

or via an indirect non-autonomous effect, for example in the

ventral domain of Pax6expression (e.g. by altering migration cues

at the midline). We performed three types of experiments to

discriminate between these alternatives. First, we transplanted

transfected Pax6Sey/Sey rhombic lips onto wt brainstems and vice

versa (Figure 3C, 3D). Unexpectedly, migrating Pax6Sey/Sey neurons

(in a wt host) formed a well organized LRN (Figure 3C9), but no

ECN (Figure 3C’’). In contrast, wt neurons (in a mutant host)

failed to form a correctly organized LRN (Figure 3D9), but were

able to generate a normal ECN (Figure 3D’’). These data

suggested, that Pax6 may act cell autonomously in generating

ECN neurons, but non-autonomously in specifying the correct

sub-organization of LRN neurons. To further validate this

assumption we rescued the Pax6Sey/Sey migration defect by re-

expression of Pax6. We tested the two major splice variants and of

these, the expression of the Pax6(-5a) isoform in PaxSey/Sey6

rhombic lips resulted in a full recovery of the ECN (Figure 3E’’),

Figure 3. Migration defects of Pax6Sey/Sey pre-cerebellar neurons: cultures. (A–F) Fluorescence images of transfected brainstem cultures. The
enlargements shown are indicated by dotted boxes in (G). Dotted lines in A9–F9 and A’’–F’’ indicate the LRN and ECN territories, respectively. The
respective positions of the LRN and ECN are placed according to landmarks derived from wt cultures (see Figure 1). 1.2DIV wt mms neurons have left
the rhombic lip (RL) and have almost reached the midline (A). Neurons settle after 5DIV in two sub-nuclei of the contralateral LRN (A9, LRNc) and in
the ECN (A’’). In contrast, Pax6Sey/Sey mms neurons are initially delayed (B), and then settle in a scattered LRNc (B9) but not in the ECN (B’’). After
transplantation of a Pax6Sey/Sey RL (beige area in C) onto a wt brainstem (grey area in C), two LRN sub-nuclei are formed (C9), but no ECN (C’’), whereas,
transplantation of a wt RL (grey area in D) onto a Pax6Sey/Sey brainstem (beige area in D), results in a scattered LRNc (D9) and a normal ECN (D’’).
Transfection of the Pax6Sey/Sey RL with Pax6(-5a) results in a rescue of the ECN (E’’), but not of the LRNc phenotype (E9). shRNA down regulation of
Pax6 causes a loss of the ECN (F’’), however, the LRNc remains unaffected (F9). Responder constructs used are: (H) for (A–D), (I) for (E), and (J) for (F),
respectively. A9, B9, and E9 are red fluorescence images of the nuclear DsRednls protein; all other images are green fluorescence images of the
cytoplasmic EGFP. (K) Quantification of settled LRN and ECN cells after 5DIV. There are no significant differences between the total number of
migrating cells in wt and Pax6Sey/Sey cultures. (L) Quantification of neurons settling in the ECN territory after 5DIV in cultures. Standard Student’s t test
was used to assess the significance of changes as indicated by a p-value of ,0.001; values are 6SEM. (Scale bar is 0.44 mm in [D–I’’].)
doi:10.1371/journal.pgen.1002099.g003

Pax6 Controls Cell Migration in the Brainstem
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but a disorganized LRN (Figure 3E9), whereas, the Pax6(+5a)

variant was ineffective (not shown). Thus, in the RL Pax6 splice

variants differ in their biological activity, similar to the embryonic

cortex [35]. Lastly, we diminished the endogenous Pax6 mRNA by

using siRNAs. Transfection of siRNAs or over expression of

shRNA constructs directed against Pax6 (Figure S4) resulted in a

massive reduction of ECN cells in wt explants (Figure 3F’’),

whereas, control constructs had no effect (not shown). The effect

was quantified by counting labeled cells that had settled in the

ECN (Figure 3L). Taken together, these experiments demonstrate

that our model system enables the simultaneous visualization and

manipulation of tangentially migrating cells in the mouse

brainstem. In addition, we have shown that Pax6 plays numerous

distinct roles in the formation and migration of mossy fiber

producing neurons. Moreover, the combination of a binary model

and organotypic culture assays facilitates a quick discrimination

between cell-autonomous and non-autonomous effects.

Axonal pathfinding receptors guide mms neurons
We identified several genes whose expression was altered in

Pax6Sey/Sey mms neurons (Figure S5; see also Materials and Methods).

To gain more insights into the function of these putative Pax6

downstream targets all genes were over-expressed or their

expression level was diminished with shRNAs. Those genes which

showed the most noticeable effects are summarized in Table 1.

The altered migration and settling behavior of Pax6Sey/Sey ECN/

LRN neurons suggested that migration cues were changed in Pax6Sey/

Sey embryos. The most prominent candidates are ligand/ receptor

couples of the Slit/ Robo- and Netrin/ Dcc- pathways [36,37]. Expression

of Netrin1, Dcc, and Robo1,2 and 3 was unaltered in migrating

Pax6Sey/Sey mms neurons (Figure 4A, 4A9, Figure S2, and data not

shown). However, Slit1 and Slit2 which were expressed in the

hypoglossal nuclei were both lost in Pax6Sey/Sey embryos (Figure 4B,

4B9 and Figure S2) [5,10]. Motorneurons of the hypoglossal nuclei

are in close proximity to the LRN settling territories suggesting that

Slit1 and Slit2 expression provided from these neurons may

determine the place of LRN settlement. To test this hypothesis we

performed transplantation experiments and shRNA driven knock-

down of the Slit-receptor Robo3 in migrating mms neurons. Both

types of experiments resulted in a disorganized LRN similar to the

phenotype observed in Pax6Sey/Sey mice (Figure 4C-4H). The above

results indicate that factors provided from the hypoglossal nucleus,

(most likely Slit1 and Slit2) determine the place of LRN settlement.

These data also explain the cell non-autonomous role of Pax6 during

this process. Hypoglossal neurons are Pax6 negative, but are

completely lost in Pax6Sey/Sey embryos (Figure S2) [5,10]; hence, Slit1

Table 1. Summary of phenotypes obtained in organotypic cultures.

gene
Pax6Sey/Sey

expression phenotype

Pax6 (Q) : unaltered migration

: (shRNA or siRNA or EnR) migration delay, ECN loss, midline arrest

Slit1,2 (nXII:Q) : unaltered migration

: (ablation of the Slit1-positive hypoglossal nuclei): sub-marginal migration, LRN disruption

Robo3 < : (shRNA) sub-marginal migration, LRN disruption

Dcc < : enlarged ECN

: (shRNA or siRNA) migration delay, ECN loss, altered migration path

Unc5h1 Q(RL only) : reduced cell migration and cell death

Unc5h3 < : migration delayed, altered migration path

: (shRNA) unaltered migration

Neurod1 < : migration delay, altered migration path

(EnR): no migration

Neurod2 < : migration delay, altered migration path

(EnR): no migration

Pou4f2 Q : growth cone stop at midline, altered ipsi-/contra-lateral settlement

: (shRNA) midline arrest of cells

Pou4f1 q : unaltered migration

: (shRNA) unaltered migration

Math1 < : growth cone stop at midline, altered ipsi-/contra-lateral settlement

Gap43 Q : normal migration

: (shRNA) altered ipsi-/contra-lateral settlement

Shh < : no migration

Chordin Q : unaltered migration

Mafb Q : unaltered migration

Q: gene downregulated in the Pax6Sey/Sey mms; <: gene expressed similarly in the wt and the Pax6Sey/Sey mms; q: gene upregulated in the Pax6Sey/Sey mms; ?:
overexpression via TRE responder constructs; : knockdown via siRNAs or shRNA constructs, ablation of expression domain, or functional knockdown by fusion to the
repressor domain of engrailed (EnR); nXII: hypoglossal nucleus;
Genes showing no or only minor mms migration phenotypes after over-expression:
Apbb2, Calpactin LC, Diras2, Gata3, Gli1, Hermes, Hip1, Internexin, Irx2, Irx6, Isl2, L1Cam, Math5, Nell2, Neurod6, Nfl, Ngn1, Ngn2, Nrp1, Olf1, Persyn, Pou6f1, RgmA,
RgmB, Sema 7a, Stathmin, Syt4, Syt13.
doi:10.1371/journal.pgen.1002099.t001
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and Slit2 are most likely not direct targets of Pax6. Additional

experiments suggest that Slit1 and Slit2 may also act as repellent to

push mms neurons to the marginal migration route during the initial

phase of migration (data not shown).

Pou4f2 controls ipsilateral versus contralateral settling of
LRN neurons and causes a migrational arrest at the midline

Two POU transcription factors were among the genes whose

expression pattern was altered in the mms of Pax6Sey/Sey embryos.

Pou4f2 (also: Brn3b) was strongly expressed in about 18.6%

(64.6%, n = 3) of E14.5 and 23.3% (66.2%, n = 3) of E15.5 wt

mms neurons but was completely lost in the Pax6Sey/Sey mms

(Figure 5A, 5A9, 5B, 5B9). Pou4f1 (also: Brn3a) was expressed

between E13.5 and E15.5 in a subset of mms neurons, but was up-

regulated in the E14.5 and E15.5 Pax6Sey/Sey mms (Figure 5C, 5C9).

Expression of Pou4f1 and Pou4f2 in Pax6Sey/Sey IO neurons was

unaltered (Figure 5A, 5A9, 5C, 5C9). Pou4f2 plays several roles in

specifying and guiding retinal ganglion cells and their axons. We

therefore asked whether Pou4f2 may accomplish similar tasks in

rhombic lip derived neurons. Pou4f2 was only expressed in a subset

of wt mms neurons. We therefore over-expressed Pou4f2 in all

migrating mms neurons. Remarkably, growth cones of all Pou4f2

over-expressing neurons were arrested at the midline for about 1.5

days (60.5 days, n = 17), whereas the majority axons in control

cultures crossed the midline instantly (Figure 5D, 5F). Interesting-

ly, in control cultures the growth cones of some neurons also

appeared to be arrested at the midline: 5% (63%) at 1DIV, 15%

(66%) at 2DIV, 25% (65%) at 3DIV, and 6% (63%) at 4DIV

(n = 11). This correlates well to the peak of Pou4f2 expression at

E14.4 and E15.5 (in cultures: 2DIV and 3DIV). Over-expression

of Pou4f2 had also a noticeable effect on the settling behavior of

LRN neurons. Quantification of LRN neurons at 5DIV revealed

that Pou4f2 expressing LRN neurons preferably settled at the

ispilateral side (LRNc/LRNi = 0.8 6 0.1, n = 17; Figure 5G, 5M)

compared to control cultures in which the majority of LRN

neurons settled at the contralateral side (LRNc/LRNi = 2.5 60.1,

n = 50; Figure 5E, 5M). Similar relations were obtained at 6DIV

and 8DIV suggesting that Pou4f2 over-expression altered the

migration behavior of mms neurons and did not cause a delayed

settlement of these neurons. The effect was specific to Pou4f2 and

could not be mimicked by over-expression of Pou4f1, Pou4f3 or

Pou6f1 (Figure 5M and data not shown). Together these data

suggest that Pou4f2 acts through a novel mechanism which induces

an arrest of growth cones at the midline to regulate the ratio of

ipsilaterally versus contralaterally settling neurons.

We altered expression levels of about 25 potential Pou4f2 retinal

target genes [38–40] and of these two showed an effect on the

migration behavior of mms neurons. Over-expression of Gfi1, a

zinc finger transcription factor, reduced the contra-/ipsi-lateral

ratio of LRN neurons (Figure 5M). In contrast, the down-

regulation of Gap43 by shRNA constructs caused a higher contra-/

ipsi-lateral ratio of LRN neurons (Figure 5M and Figure S4).

Gap43 is slightly reduced in the Pax6Sey/Sey mms (Figure S5). In

addition, mis-expression of Pou4f2 resulted in a massive down-

regulation of Pou4f1 in transfected, but not in control, rhombic lips

(Figure 5N), suggesting that the loss of Pou4f2 in Pax6Sey/Sey mms

neurons leads to an up-regulation of Pou4f1 (Figure 5C, 5C9).

Pou4f1 over-expression or down-regulation, however, did not alter

migration behavior of mms neurons (Figure 5M).

Pou4f2 is expressed only in a subset of Pax6 positive mms neurons

suggesting that other factors together with Pax6 may co-regulate

Pou4f2. In the developing retina Pou4f2 expression depends on two

transcription factors: the bHLH protein Math5 and the zinc finger

gene Wt1 [41–44]. Wt1 was found to be expressed in the rhombic

lip, though, in a region just dorsally to the Pax6 positive domain

(Figure 5J). Math5 was neither expressed in the rhombic lip nor in

migrating mms neurons, however, a close homologue, Math1, was

expressed in neuronal precursors at the rhombic lip and in a subset

of early migrating mms neurons [22,23] (Figure 5K). Thus, Math1,

but neither Math5 nor Wt1, was the most likely candidate to

regulate Pou4f2 or Pou4f1 expression in mms neurons. Consistent

with this, mis-expression of Math1, but not of Wt1 (+ and – KTS

splice variants) or Math5, led to a midline arrest of migrating mms

neurons and a reversed settling behavior of LRN neurons

Figure 4. The Slit-Robo pathway controls the settlement of LRN
neurons. (A,A9,B,B9) In situ hybridization of E13.5 coronal wt (A, B) and
Pax6Sey/Sey (A9,B9) vibratome sections. The Slit receptor Robo3 is
expressed in neurons at the basal and alar plate and in the mms (A).
In Pax6Sey/Sey embryos basal and alar plate expression of Robo3 is
identical to the wt expression (A9). However, Robo3 expression in the
Pax6Sey/Sey mms again demonstrates that mutant cells are delayed in
midline crossing (white arrow in A9). In wt embryos Slit2 is expressed in
a small group of cells at the midline, in the hypoglossal nuclei
(arrowheads in B), in two small groups of cells at the site of the future
LRN (black arrow in B), and at the ventricular zone of the rhombic lip. In
Pax6Sey/Sey embryos the hypoglossal nuclei and therefore also the
hypoglossal Slit2 expression are lost, whereas, other sites of Slit2
expression are unchanged (B9). shRNA driven knockdown of Robo3
results in a scattered LRN, suggesting that the Slit-Robo pathway
controls the settling of LRN neurons (C). Control constructs had no
effect on the LRNc (C9). To determine whether a local or a longitudinal
distribution of guidance cues regulates the settling of LRN neurons into
two sub-nuclei transplantation experiments were performed. After
electroporation brainstem cultures were cut along the midline and the
contralateral side was shifted to a posterior direction (D). The positions
of the inferior olive (IO) and the hypoglossal nuclei (nXII) are indicated.
The extent of the shift was determined by Etv1 in situ hybridization
which specifically labels IO neurons (open arrows in F). (G) In a typical
experiment in which the shift was larger than 500 mm neurons settled
randomly in the contralateral LRN, suggesting, that cues close to the
inferior olive, e.g. the hypoglossal nuclei, serve for the correct guidance
of LRNc neurons. In control experiments in which there was no shift (E),
LRNc neurons settled in a wt pattern and formed two groups of
neurons (H). (Scale bar is 1.3 mm in [A,A9,B,B9]; 0,7 mm in [C,C9]; 0.6 mm
in [F]; 0.44 mm in [G,H].)
doi:10.1371/journal.pgen.1002099.g004
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(Figure 5H, 5I, 5M). Mis-expression of Math1 resulted in an up-

regulation of Pou4f2 and a down-regulation of Pou4f1 (Figure 5O,

5P). Together, these data suggest, that Pou4f2 expression in

rhombic lip derived mms neurons depends on Pax6 and Math1 and

that Pou4f2 may regulate Pou4f1 and Gap43 in mms neurons.

In summary, our work led to the identification of a gene cascade

acting in tangentially migrating neurons of the brainstem, in which

Pou4f2 plays a central role to induce a previously unknown

mechanism that controls midline crossing behavior. Furthermore,

our results imply that our model system is applicable to quickly

analyze genetic hierarchies in Pax6 positive cells and may therefore

serve as a general tool.

Discussion

Tg(PAX6-tTA) mice as a model for Pax6 function, cell
migration, and axonal pathfinding processes

The extraordinary complexity of cell determination, migration

and wiring processes in the developing mammalian brain creates a

major challenge for developmental neurobiologists. Here, we

introduced a simple yet powerful technology to quickly analyze

any gene potentially involved in these processes. Our model is of

threefold use: first to study the function of Pax6 and of Pax6

downstream genes in their genuine environment, second to

investigate genes involved in general patterning, axonal pathfind-

ing and cell migration processes, and third to enable the analysis of

tissue-specific gene functions. The Tg(PAX6-tTA) model complements

and improves existing approaches and has certain benefits: it

combines cell specific transfection protocols and organotypic

culture assays, thus, facilitating the quick analysis of genes in a

natural tissue environment. The experimental design and the

binary nature of the Tg(PAX6-tTA) model is fundamentally simple

and has several advantages over systems that are based purely on

transgenic animals. First, the electroporation and subsequent

culture of embryonic tissues allows the screening of large number

of genes without the need of generating new transgenic animals for

each construct. In fact, less than 10% of the constructs we have

tested revealed phenotypes. Thus, only those genes showing

Figure 5. Pou4f2 induces a midline arrest of neurons in the mms. Immunohistochemical labeling of Pou4f2 on coronal wt (A) and Pax6Sey/Sey

(A9) E14.5 sections counterstained with DAPI (B and B9, respectively); high magnifications of the ventral mms are shown as indicated in (L). Pou4f2 is
expressed in E14.5 wt embryos in neurons of the inferior olive (IO) and in a fraction of migrating mms neurons (white arrows in A and B). In Pax6Sey/Sey

embryos Pou4f2 is expressed in the IO but not in neurons of the mms (A9,B9). In situ hybridization of coronal wt (C) and Pax6Sey/Sey (C9) E15.5 sections
reveals that Pou4f1 expression is massively up-regulated in Pax6Sey/Sey embryos (arrow in C, C9). Over-expression of Pou4f2 (F) and of Math1 (H), but
not of control constructs (D), result in a complete arrest of growth cones at the midline (black arrows in F and H) after 2DIV. In control cultures after
5DIV few cells settle in the ipsilateral LRN (LRNi) (E), whereas, in cultures over-expressing Pou4f2 or Math1 a significant higher proportion of cells
settles in the LRNi (G, I). (J, K) Distribution of Wt1, Pax6 and Math1 on coronal wt E14.5 sections as indicated in (L). (J) Immunohistochemical labeling
of Pax6 (green) and Wt1 (red) indicates that Wt1 is expressed in the roof plate dorsally to the rhombic lip and that Pax6 and Wt1 are non-overlapping.
(K) In situ hybridization with Math1 indicates that Math1 is expressed at the rhombic lip and in a subset of cells emanating from the rhombic lip
(arrowhead in K). (M) Quantification of mms neurons settling in the LRN; values are given for the proportion of cells settling in the LRNc or LRNi. The
significance of changes is indicated by a p-value of ,0.001; values are 6SEM. Over-expression of Pou4f2, Math1, and Gfi1 resulted in a higher ratio of
LRNi cells and down-regulation of Gap43 led to a lower ratio of LRNi cells. (N-P) In situ hybridization of sectioned cultures after over-expression of
Pou4f2 or Math1. Pou4f1 expression is reduced in Pou4f2 and in Math1 transfected rhombic lips (open arrows in N,P), but not in the control rhombic
lip (open arrowheads in N,P). Pou4f2 is up-regulated in Math1 transfected (open arrow in O) but not in control (open arrowhead in O) rhombic lips.
(Scale bar is 110 mm in [A, A9, B, B9, J, K]; 1,4mm in [C, C9, N, O, P].); 440 mm in [D–I].)
doi:10.1371/journal.pgen.1002099.g005
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positive results in culture assays may be used subsequently to

generate transgenic lines. Of note however, some of the

phenotypes reported here, for example, the midline arrest or the

altered ipsi- to contra-lateral ratio, would have been missed in

purely transgenic systems. Second, variation of the electroporation

protocol allows transfections ranging from just a few cells to a

complete Pax6 expression domain with thousands of cells. Hence,

our approach allows adjustment according to the needs: either to

monitor single migrating cells or to determine global patterning

effects. In addition, neighboring cells and non-electroporated

contra-lateral sides serve as internal controls. The usefulness of our

system critically depends on the tightness of the TRE based

promoter and on the ability of the constructs to express two genes

simultaneously. To ascertain the tightness of our system we used

repeated electroporations and high DNA concentrations (up to

5 mg/ml). Even under these extreme conditions we were never able

to detect any reporter gene expression in Pax6 negative cells at any

developmental stage. Thus, under the conditions used in this

report the combination of Tg(PAX6-tTA) mice and TRE based

promoters allow expression of reporter gene constructs only in

Pax6 positive cells. It is also important to note, that our strategy to

use a YAC based technology combined with an internal ribosomal

entry site (IRES) resulted in moderate levels of reporter gene

expression which were in the range of physiological concentra-

tions. To ensure the simultaneous expression of two reporter genes

we tested several types of TRE constructs. Only our approach, to

use two consecutive TRE based promoters led to the activation of

nearly equal amounts of two genes at the same time in the same

cell. A bidirectional TRE element that previously had been shown

to work in transgenic animals failed in our system [45]. One

obvious difference is that in transgenic animals typically multiple

copies of constructs are stably integrated into the genome,

whereas, in our assay transfections were transient.

Pax6 loss of function phenotypes are often highly complex

involving massive malformations in the affected organs. Pax6 is

expressed in neuronal precursors of the telencephalon, commis-

sural neurons in the dorsal spinal cord, in adult neuronal stem

cells, the early eye cup, in the pancreas, in precursors and in

migrating cells of several tangential and radial migration streams

of the rhombencephalon and of the forebrain [5,6,10,11,14,

28,46,47]. In addition to its technical advances, the Tg(PAX6-tTA)

model represents a novel, highly versatile technology to study the

function of Pax6 or any other gene in these tissues. As a paradigm,

we have dissected the role of Pax6 in tangentially migrating cells of

the brainstem. In principle, however, this system shall be

applicable to any Pax6 positive tissue and we have initial evidence

that our model allows to specifically target Pax6 positive

telencephalic precursor cells, cerebellar granule cells, the devel-

oping retina, the rostral migratory stream, the pontine migration

and ventral precursor cells of the brainstem and spinal cord

(Figure S1 and data not shown). With the help of this model it

should therefore be possible to systematically analyze cell fate

decisions and the migratory behavior of Pax6 expressing cells at

any developmental stage.

Several studies have revealed that Pax6 is required for hindbrain

and spinal cord development [5,7,10,14,15]. Our work adds that

Pax6 also controls the determination and migration of rhombic lip

derived neurons (for a summary see Table 1 and Figure 6). Pax6

functions twofold: first, Pax6 controls guidance cues which push

migrating mms neurons to the marginal path and which control the

settling pattern of LRN neurons. The most likely sources of these

cues are the hypoglossal nuclei which are located close to the

midline and in proximity to the LRN. Slit1 and Slit2 are expressed

in the hypoglossal nuclei and the Slit receptor Robo3 is expressed in

migrating mms neurons [48]. Slit expression provided by the

hypoglossal nuclei may therefore act as repellent to push mms

neurons to a marginal migration route and may also specify the

settlement of neurons in the LRN. The loss of Slit-expressing

hypoglossal nuclei in Pax6Sey/Sey embryos [5,10] causes a major

reduction of the repellent (a minor source of Slit is still present in

midline cells). Consequently, migrating mms neurons would use a

more sub-marginal migration route and settle less organized in

Pax6Sey/Sey embryos. Furthermore, Slit expression at the RL may be

involved during the initial phase of mms migration. Secondly, Pax6

functions cell-autonomously in migrating mms neurons to control

the determination, the timing of migration, and midline crossing.

Several genes show altered expression in Pax6Sey/Sey mms neurons

(Table 1: Pou4f1, Pou4f2, Unc5h1, Mafb, Chordin) and may convey

individual aspects of migration.

We and others find that several transcription factors relay Pax6

downstream effects in dorsal brainstem neurons: Ngn1 in precursor

cells ventral to the RL [16], and Pou4f1, and Pou4f2 in migrating

neurons (this report). Mis-expression of Ngn1 or Ngn2 in Pax6Sey/Sey

embryos failed to rescue the migration defects observed in the Pax6

mutant (Table 1). Neither did the mis-expression or down-

regulation of these genes generate small eye - like migration defects

in wt embryos (Table 1). On the other hand, Pou4f2, which is lost

in the mms of Pax6Sey/Sey embryos (Figure 5B and also in the

pontine migration and in the cerebellum, data not shown), alters

migration behavior of mms neurons. Together these data suggest

that Pou4f2 may regulate genes involved in pathfinding processes,

whereas, Ngn1 acts earlier in the cell determination process.

There are striking similarities in gene expression pattern

between sensory neurons and RL derived neurons. We found

that at least two thirds of the genes which are co-expressed with

Pax6 and Pou4f2 in retinal ganglion cells are also co-expressed with

these genes in mms neurons. Furthermore, genetic hierarchies seem

to be analogous: in the retina Math5 controls Pou4f2, which then

acts upstream of Pou4f1 [38,41–43], whereas, in RL derived

neurons Math1, a close homologue of Math5, initiates related

pathways. General genetic pathways are conserved between

retinal and RL derived neurons and our model may therefore

help to elucidate some of the phenotypes observed in Pou4f1-/- and

Pou4f2-/- mice. Both mouse models have revealed distinct axonal

pathfinding errors [39,49–52]. Mis-expression of Pou4f2 (or Math1)

in RL derived neurons stalls growth cones at the midline for

several hours. To our knowledge, this is the first report of such a

midline arrest and it may thereby be a paradigm for a novel

mechanism controlling midline crossing. The arrest does neither

induce a growth cone collapse nor does it inhibit midline crossing

per se as all neurons generate axons that cross the midline after a

‘‘waiting period’’. These axons all migrated into the cerebellum

like those of control cultures. Gfi1 mis-expression and Gap43

knockdown were able to partially mimic the Pou4f2 induced

phenotype, however, additional unknown targets or a combinatory

code may be needed to elicit the full phenotype.

As Pou4f2 was only expressed in about 1/4 of wt mms neurons,

the loss of Pou4f2 in Pax6Sey/Sey embryos mimics only minor aspects

of the Pax6Sey/Sey phenotype. The down regulation of Pou4f2 by

shRNA constructs resulted in a severe midline disturbance of

neuronal processes at similar to the phenotype observed in Pax6Sey/Sey

cultures, whereas, in control cultures neuronal processes crossed the

midline instantly (data not shown). Comparable phenotypes were

also observed in Pax6Sey/Sey cultures, in cultures transfected with Pax6

shRNA constructs, and in Pax6Sey/Sey brainstem sections.

Tangentially migrating neurons follow similar navigational cues

as developing axons [14,19,48,53–58]. Hence, tangentially

migrating neurons of the mms provide an excellent system to
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study axonal pathfinding and neuronal cell migration processes.

Migrating mms neurons are easily accessible as they navigate along

the pial surface. Our model takes advantage of the superficial

migration of these neurons and provides a straightforward assay to

specifically label and manipulate these cells without affecting their

surroundings. Members of most families of guidance receptors

(Netrin receptors, Slit receptors, Semaphorins, Eph receptors, and

Ephrins) are expressed in migrating mms neurons [48,53,54]

(Engelkamp, unpublished) and at least two of these pathways are

essential for the correct guidance of mms neurons: the Slit/ Robo -

[48] and the Netrin/ Dcc- pathways [53,56,57] (see also Table 1).

Our system should therefore also have important implications for

the study of the signal cascades entailed in these pathways.

In summary, we have established a novel model system which

allows the simultaneous visualization and manipulation of

neuronal subpopulations. As a prototypical model we have

focused on the role of Pax6 in migrating brainstem neurons. Yet,

our results imply that our model system is applicable to a range of

other cells in the developing brain and may therefore serve as a

general tool to quickly study axonal pathfinding, neuronal cell

migration or patterning processes.

Materials and Methods

Animals
The Small Eye allele [4] was maintained on a CD1 background.

Embryos were obtained from matings of heterozygote (Pax6Sey/+)

mice. 0.5 denotes the morning when the vaginal plug was found.

Experiments were always performed on matching pairs of control

(wt) and Pax6Sey/Sey embryos that were carefully staged. All

phenotypes described were confirmed on at least six individual

Pax6Sey/Sey embryos obtained from different crossings. There was no

noticeable phenotypic difference between Pax6Sey/+ and wt embryos

and therefore, in our experiments wt designates wt and Pax6Sey/+

embryos. For brainstem cultures, matings between heterozygote

Tg(PAX6-tTA) and wt CD1 mice or between heterozygote Pax6Sey/+/

Tg(PAX6-tTA) and heterozygote Pax6Sey/+ mice (to generate Pax6Sey/Sey

cultures) were used. Genotyping was performed by PCR with

primers directed against the Tet repressor (upper: GCG-

CTGTGGGGCATTTTACTTTAG; lower: CCGCCAGCCCC-

GCCTCTTC). All animal procedures were carried out in

accordance to the guideline approved by institutional protocols.

Generation of Tg(PAX6-tTA) mice
YAC Y593 [30] was modified such that exons 8 to 11 of the

Pax6 gene were replaced by homologous recombination with a

construct containing the following elements in 59 to 39 order:

Pax6k30 – IRES – tTA – loxP – LYS2 – loxP – Pax6k32. Pax6k30 and

Pax6k32 corresponded to the sequences 29.792 to 30.296 and

31.587 to 32.095 of the Pax6 cosmid cFAT5 (NCBI accession

no. Z95332), respectively, and were generated via PCR. The IRES

(internal ribosomal entry site) was derived from pIRES-EGFP

(Invitrogen), however, the original ATG-11 start codon was

reconstituted to enhance translational initiation. tTA (Tet-On-

system), a fusion of the tetracycline repressor and the activation

domain of VP16, was derived from pUHD15-1neo (Clontech).

The LYS2 gene from S. cerevisiae was derived from pAF107, which

was obtained from B. Dujon, Institute Pasteur, Paris, France [59].

LoxP sequences were generated via PCR. All constructs were

sequence verified. Homologous recombination in yeast was

performed using standard techniques. The integrity of the

recombined YAC was then verified by PCR and southern

blotting. Preparation of the YAC DNA and the generation of

transgenic mice were as described [30].

In situ hybridisation
In situ hybridization was performed on free floating vibratome

sections as previously described [14]. Probes for Math1 [60], Neurod1

and Neurod2 [61], Pax6 [47], Unc5h3 [62] and Slit1, Slit2 [63] were

Figure 6. Summary of phenotypes observed in Pax6Sey/Sey RL derived neurons. (A) In Pax6Sey/Sey embryos the mms migration is delayed,
some neurons migrate sub-marginally, neurons are arrested at the midline, the ECN is lost, the LRN is disrupted, and the IO is enlarged [16].
Additionally, the aes is reduced resulting in an absence of the pontine nuclei and granule cells of the cerebellum migrate ectopically into the inferior
culliculus [14]. To search for genes expressed in mms neurons a large scale in situ hybridization screen was performed and a summary of the
expression data of selected genes is shown in (B). The color code indicates expression of individual genes during migration of mms neurons: dark
grey marks expression at the RL, beige before midline crossing, red during midline crossing, blue after crossing the midline and light grey marks
expression during settlement in the ECN and LRN. Genes, which show altered expression levels in Pax6Sey/Sey embryos are marked in red. (C) A gene
cascade in which Pax6 and Math1 positively regulate Pou4f2 expression leads to a repression of Pou4f1 expression. mms: marginal migration stream
forming the external cuneate (ECN) and lateral reticular (LRN) nuclei; sms: sub-marginal migration stream forming the inferior olive (IO); aes: anterior
extramural migration stream forming the pontine and pontine reticulotegmental nuclei; egl: external granule cell layer of the cerebellum; RL: rhombic
lip; FP: floor plate.
doi:10.1371/journal.pgen.1002099.g006
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obtained from H. Zoghbi, A. Bartholomä, R. Hill, S. Ackerman,

and M. Little, respectively. Probes for Dcc and RgmB were as

published [34,64]; other probes were obtained by RT-PCR. The

PCR products were subcloned and their identities were confirmed

by sequencing. The general staining patterns of all probes matched

published expression patterns. Probes were as follows: Etv1 (bp 853–

1820 of NM_007960); Fgfr2 (bp 343–1192 of NM_201601); Pou4f1

(bp 1321–2199 of NM_011143), Pou4f2 (bp 216 – 1762 of S68377);

Robo3 (bp 3648–4673 of NM_011248). Several genes which are

down- or up-regulated in Pax6Sey/Sey embryos were identified with

the help of a large scale in situ screen using .300 putative

candidates. Individual probes are available on request.

Recombinant constructs
The vector for the co-expression of two constructs in Tg(PAX6-tTA)

mice contained the following elements in 59 to 39 order: MCSI –

TRE – PminCMV – IntronA - BGHPolyA – MCSII – TRE -

SV40PolyA; MCS = multiple cloning sites; TRE = 7 repeats of the

tetracycline responsive element, PminCMV = minimal CMV

promoter, and IntronA were from ptetOi-MCS (obtained from

Martin Spiegel, Tübingen); SV40polyA and BGHPolyA =

polyadenylation signals (derived from pTetOi-MCS and pRc/

CMV, Invitrogen, respectively). Fluorescent markers to label

migrating cells were a modified EGFP or DsRed2 (Clontech). Full

length clones for Gfi1, Math1, Math5, Ngn1, and Ngn2 were obtained

from the German Resource Center for Genome Research (RZPD)

and sequence verified; clones for all other genes were obtained by

RT-PCR and confirmed by sequencing. Fusions with a triple HA-

tag or the engrailed repressor domain (EnR) were generated by

PCR. shRNA constructs were generated in the psiSTRIKE vector

(Promega) using the Promega Web tool for designing the hairpin

oligonucleotides. In the psiSTRIKE vector shRNAs are expressed

under control of the U6 RNA polymerase promoter. Efficiency of

shRNA knockdown was demonstrated in HEK293 cells using the

psiCHECK/ Dual Luciferase system according to the manufactur-

ers protocol (Promega). All constructs were sequence verified.

Brainstem cultures
Responder constructs (2-4 ml at 0.5 mg/ml in GBSS/ 0.01%

Methyl Fast, Sigma) were injected into the fourth ventricle of

E12.5 wt and Tg(PAX6-tTA) mouse embryos by using glass needles.

Electroporation was then performed with forceps-like electrodes

with platinum ending (Ø = 0.5 mm) (one Electrode above the right

RL and the other under the left jaw). Conditions were 8 pulses at

50V, 50msec with a pulse interval of 1sec. We used the square

pulse generator EPI2500 (L. Fischer, Heidelberg). After electro-

poration, the hindbrain (rhombomeres 1–8 including the cerebel-

lar anlage) was dissected, opened at the roof plate and cultivated

with the ventricular site onto MillicellCM filters (Millipore) in

culture medium (DMEM/F12 (1:1); 0.6% Glucose; 0.02 mM

Glutamine; 5 mM HEPES; 5% Fetal Calf Serum; 5% Horse

Serum) at 37uC and 5%CO2.

Immunohistochemistry
Depending on the antibodies used, brainstem preparations were

fixed with 4% or 0.2% PFA in PBS for 12 hours at 4uC.

Cryosections were cut at 14 mm. Primary and secondary

antibodies used for staining were as follows: mouse monoclonal

(mAb) a-Pax6 ([10], 1:1000, DSHB); rabbit pAb a-Pou4f2 (also

Brn3b, 1:300, Covance); rabbit pAb a-Kcnj6 (also Girk2, 1:300,

Chemicon); rabbit a-Wt1 (Santa Cruz); rabbit a-VP16 (Clontech);

a-HA-tag (1:100, Roche) and a-mouse and a-rabbit secondary

antibodies conjugated with Alexa488 or Alexa596 (Molecular

Probes). Quantification of Pou4f2 positive mms neurons was done

on every 3rd of serial sections double stained for Pax6 and Pou4f2.

Image analysis
Images were taken at a Zeiss Axiophot microscope equipped with

a Spot camera, at a confocal Zeiss LSM microscope, or at a Leica

MZ12 equipped with a camera device. Images were processed using

the MetaView software (Universal Imaging Corporation) and

Adobe Photoshop. To perform statistical analysis the position of

the ECN and the LRN were determined in wt un-manipulated

cultures by in situ RNA staining of Pax6 and Kcnj6. The resulting

territories were then overlaid onto the electroporated cultures with

the help of three landmarks: a) the position of the rhombic lip; b) the

position of the floor plate; and c) the position of the superior and

inferior olivary complexes, which both are visible in phase contrast

images of the cultures. This procedure allowed classifying 97% of

labeled neurons on the contralateral side and 90% on the ipsilateral

side as either ECN or LRN neurons. The remaining 3% (or 10% for

the ipsilateral side) of labeled cells were scattered neurons mainly in

between the ECN and the LRN. Quantification of growth cones

arrested at the midline in wt cultures was done by counting all

growth cones in a 25 mm wide territory at the midline. Continuous

observations of cultures implied that mms growth cones traveled at

an average speed of at least 500 mm/day, suggesting that within any

25 mm interval only 5% of growth cones should be detected if

migration would not pause. Quantification of the volume of the

inferior olive was done with AxioVision (Zeiss).

Supporting Information

Figure S1 Pax6, tTA and EGFP expression in tg(PAX6-tTA)

embryos. (A,B,E,F,I,J) In situ hybridizations of coronal vibratome

sections of tg(PAX6-tTA) transgenic embryos. Alternating sections

were stained for either Pax6 (A,E,I) or tTA (B,F,J). In the

developing eye, Pax6 and tTA are co-expressed in the neural retina

(nr), the lens, and the surface ectoderm (s.e.) which generates the

future cornea. In the forebrain, both genes are co-expressed in the

cortex (ctx), the ventral diencephalon (di), and the epithalamus

(epi). In the cerebellum, Pax6 and tTA are co-expressed in granule

cells of the external granule cell layer (egl). (C,D,G,H,K,L)

Electroporation of EGFP reporter constructs into tg(PAX6-tTA)

transgenic embryos. After electroporation tissues were cultured for

one or two days on MilliporeCM filters. Reporter gene expression

is activated in the developing retina, but not in the surrounding

tissue (C); (D) Higher magnification of retinal precursor cells. (G)

Electroporation of the telencephalon at E13.5 results in a specific

labeling of the Pax6 positive cortex (ctx, blue dotted line), but not

of the Pax6 negative striatum (red dots) or other surrounding

tissues. (H) Electroporation of the E18.5 anterior telencephalon

reveals precursor cells with the typical appearance of radial glial

cells; vz, svz, iz and cp denote the ventricular, subventricular, and

intermediate zones, and the cortical plate, respectively. (K) In the

developing cerebellum EGFP expression is seen in granule cells

which leave the transfected region and start to migrate parallel to

the cerebellar surface. (L) Higher magnification of (K). Scale bar:

0.6 mm in [A,B]; 1.9 mm in [E,F]; 0.8 mm in [I,J]; 400 mm in

[C,H, K]; 1.7 mm in [G]; and 150 mm in [D,L].

(TIF)

Figure S2 Pax6Sey/Sey Brainstem defects. The hypoglossal nucleus

(black arrows) is lost in Pax6Sey/Sey embryos as shown by Slit2, Isl1,

L1Cam, and Unc5h3 labelling (A–D). Migrating mms neurons

(white arrows) take a submarginal route in Pax6Sey/Sey embryos as

shown by Robo3, Dcc, and Cntn2 (also: Tag1) staining (E–I). Zic1

marks mms neurons which ectopically settle in the IO territory of
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Pax6Sey/Sey embryos (J). Red arrows indicate positions of the ECN

and LRN and red arrowheads indicate ectopic settlement of mms

neurons in Pax6Sey/Sey embryos. (Scale bar is 0.3mm in [A, A9];

0.2 mm in [B, B9, C, C9, D, D9, F, F9, H, H9]; 0.9 mm in [E, E9];

1 mm in [G, G9]; 1.2 mm in [I, I9]; 2 mm in [J, J9].)

(TIF)

Figure S3 Increased size of the Pax6Sey/Sey inferior olive. (A)

Complete series of coronal E14.5 wt and Pax6Sey/Sey brainstem

vibratome sections stained with Etv1 by in situ hybridization. (B)

Examples of the size determination of the inferior olivary nuclei.

Shown are two individual pairs of E14.5 embryos stained with Etv1

and one pair of E14.5 embryos stained with Pou4f2. Note that Etv1

is a specific marker for inferior olivary cells, whereas, Pou4f2 stains

mms and inferior olivary neurons and may therefore also include

mms neurons that have ectopically migrated into the inferior

olivary territory. Values are given in mm2 for the area taken by the

left plus right inferior olivary sub-nuclei. (C,D,E,F) In situ

hybridization of coronal wt (C,D,E) and Pax6Sey/Sey (F) E14.5

(C,D) and E18.5 (E,F) vibratome sections. Fgfr2a (C) and Unc5h3

(D) label both: migrating mms neurons and IO neurons. RgmB

labels equally the dorsal and principal sub-nuclei of the wt and the

Pax6Sey/Sey inferior olive suggesting a normal patterning of the

mutant inferior olivary nucleus. Scale bar: 0.44 mm in [A];

0.7 mm in [C,D]; 0.55 mm in [E,F].

(TIF)

Figure S4 Efficiency of shRNA and siRNA gene knockdown.

(A–D) Efficiency of RNA knockdown. The fold repression was

determined by the degree of silencing of Renilla luciferase-

targeting construct relative to the firefly luciferase control.

Averages of two to four individual experiments are shown as

indicated. (E) The target sequences of shRNA constructs as

indicated by their positions in Pax6 (accession # NM_123627),

Robo3 (AF060570), Pou4f2 (S68377), and Gap43 (NM_008083)

cDNAs. Dharmacon siRNA SMART pools consist of a pool of 3

individual siRNAs; the sequence is not provided.

(TIF)

Figure S5 Altered gene expression in the Pax6Sey/Sey hindbrain.

Differential expression of putative Pax6 downstream genes in the

RL (A,B), the mms (C–H) and the cerebellum (I–K). The dotted

line in B, B9 demarcates the boundary between the rhombic lip

(open arrowhead) and the remaining alar plate. White arrows in I–

K indicate the external granule cell layer (egl). (Scale bar is

0.4 mm in [A, A9]; 0.2 mm in [B, B9]; 0.7 mm in [C, C9, D, D9, E,

E9, F, F9, I, I9, J, J9, K, K9]; 0.3 mm in [G, G9, H, H9].)

(TIF)
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