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This paper presents a fast algorithm for the computation of sliding conjugate symmetric sequency-ordered complex Hadamard transform (CS-SCHT). The algorithm calculates the values of window from those of window , one length-Walsh Hadamard transform (WHT) and one length-Modified WHT (MWHT). The proposed algorithm requires arithmetic operations, which is more efficient than the block-based algorithms of various transforms and the sliding FFT algorithm, but less efficient than the sliding WHT algorithms. Compared to the recently proposed sliding inverse SCHT (ISCHT) algorithm, the proposed algorithm is more efficient for real input but less efficient for complex input. The applications of the sliding CS-SCHT in transform domain adaptive filtering (TDAF) to complex signal channel equalization and real speech signal acoustic echo cancellation are also provided.

Hadamard transforms (UCHTs), which find their applications in many areas, such as multiple-valued logic design [START_REF] Rahardja | Complex composite spectra of unified complex Hadamard transform for logic functions[END_REF]. Aung et al. [START_REF] Aung | Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications[END_REF] introduced the so-called sequency-ordered complex Hadamard transform (SCHT), which find its applications in spectrum analysis [START_REF] Aung | Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications[END_REF], image watermarking [START_REF] Aung | A robust watermarking scheme using sequency-ordered complex Hadamard transform[END_REF], and shape-based image retrieval [START_REF] Wang | Shape description using sequency-ordered complex Hadamard transform[END_REF]. More recently, based on natural-ordered complex Hadamard transform (NCHT) [START_REF] Aung | Natural-ordered complex Hadamard transform[END_REF], the same authors [START_REF] Aung | Conjugate symmetric sequencyordered complex Hadamard transform[END_REF] introduced a new transform named conjugate symmetric SCHT (CS-SCHT) with the half spectrum property, which made it more suitable than SCHT for signal spectrum analysis. They further proposed a fast block-based decimation-in-sequency (DIS) algorithm for the computation of CS-SCHT [START_REF] Aung | Conjugate symmetric sequencyordered complex Hadamard transform[END_REF], and showed that it can be an alternative to DFT and DCT in some applications requiring lower computational complexity such as spectrum estimation and image compression.

When dealing with a nonstationary process, such as speech, radar, biomedical, and communication signals, the commonly used method is sliding orthogonal transform, which is defined by [START_REF] Kober | Fast algorithms for the computation of sliding discrete sinusoidal transforms[END_REF], [START_REF] Kober | Fast algorithms for the computation of sliding discrete Hartley transforms[END_REF] (1)

where is a window function, and is an orthogonal basis set.

represent the orthogonal transform of the windowed signal around time .

Since the computation of sliding transform is an intensive task, many fast algorithms have been proposed to speed up the computation efficiency [START_REF] Kober | Fast algorithms for the computation of sliding discrete sinusoidal transforms[END_REF]- [START_REF] Farhang-Boroujeny | Adaptive Filters: Theory and Applications[END_REF]. By using the radix-2 decimation-in-time (DIT) FFT structure, Farhang-Boroujeny et al. [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF], [START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF] derived a sliding FFT algorithm, which requires only complex multipliers to update the -point FFT for all bins and is very suitable for serial-in serial-out implemental structure. Jacobsen and Lyons [START_REF] Jacobsen | The sliding DFT[END_REF], [START_REF] Jacobsen | An update to the sliding DFT[END_REF] proposed the sliding DFT by using the circular shift property of DFT. Their algorithm is very different from sliding FFT and more suitable for parallelizing all bins to construct the parallel-in parallel-out structure. The research on the fast computation of sliding WHT is also very active [START_REF] Farhang-Boroujeny | Order of complexity transform domain adaptive filters[END_REF]- [START_REF] Moshe | Video block motion estimation based on gray-code kernels[END_REF]. Farhang-Boroujeny [START_REF] Farhang-Boroujeny | Order of complexity transform domain adaptive filters[END_REF] developed a radix-2 DIT sliding WHT algorithm. Hel-Or and Hel-Or [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF] proposed a radix-2 DIS fast algorithm, which evaluates the projection values of a length-WHT from that of two length-WHTs. Ben-Artzi et al. [START_REF] Ben-Artzi | The gray-code filter kernels[END_REF] further proposed a Gray Code Kernel (GCK) WHT algorithm, which is more efficient than the algorithms reported in [START_REF] Farhang-Boroujeny | Order of complexity transform domain adaptive filters[END_REF] and [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF] when a small number of projection values are computed. If all projection values are computed, their algorithm needs two more additions. Ouyang and Cham [START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF] presented a more efficient algorithm to compute the length-WHT of window from that of window and one length-WHT. More recently, Wu et al. [START_REF] Wu | Fast algorithms for the computation of sliding sequency-ordered complex Hadamard transform[END_REF] proposed two fast algorithms for the computation of sliding inverse SCHT (ISCHT) by using the structures of radix-2 and radix-4 DIS fast ISCHT algorithms.

Since most signals in radar, sonar, and communications have in-phase and quadrature components, i.e., they are complex signals, which have nonsymmetrical power spectral density with respective to and are more effectively processed by complex transforms [38, p. 224]. Even for some real input applications, they still need the phase information, for example, phase slope index (PSI) measure [START_REF] Nolte | Robustly estimating the flow direction of information in complex physical systems[END_REF], [START_REF] Yang | Extracting information on flow direction in multivariate time series[END_REF], phase based image retrieval [START_REF] Bartolini | Warp: Accurate retrieval of shapes using phase of Fourier descriptors and time warping distance[END_REF]. For more detail about the applications that need complex transform, please refer to [START_REF] Adali | Adaptive Signal Processing: Next-Generation Solutions[END_REF]. Hence there is a need to develop the sliding complex transforms.

In this paper, we focus our attention on the fast computation of sliding CS-SCHT. The proposed algorithm computes the values of window from those of window , one length-WHT and one length-Modified WHT (MWHT). A preliminary study was presented in [START_REF] Wu | Sliding conjugate symmetric sequency-ordered complex Hadamard transform: Fast algorithm and applications[END_REF], we expand this idea here and also provide a rigorous mathematical proof of the algorithm as well as an in-depth analysis of its computational complexity. Application to complex signal channel equalization and real speech signal filtering is discussed. The rest of the paper is organized as follows. In Section II, preliminaries about the sliding CS-SCHT are given. The proposed sliding CS-SCHT algorithm is described and the comparison results with other algorithms are provided in Section III. Transform domain adaptive filtering for complex signal channel equalization and real speech signal filtering is given in Section IV to illustrate the potential applications of sliding CS-SCHT. Section V concludes the paper. In Table I we give a list of variables and symbols used in this paper together with a brief description.

II. PRELIMINARY

Let and be respectively the complex or real input vector and the corresponding transformed vector of the th window, where the superscript denotes the transpose, the length-forward and backward sliding CS-SCHT are respectively defined as [START_REF] Aung | Conjugate symmetric sequencyordered complex Hadamard transform[END_REF] (

where the length is assumed to be a power of two, i.e., , the superscript denotes the Hermitian transposition.

is the order-CS-SCHT matrix whose elements are given by [START_REF] Voronenko | Algebraic signal processing theory: Cooley-Tukey type algorithms for real DFTs[END_REF] where , and . The dot " " denotes the inner product of two vectors. and are, respectively, the binary representation of and , being the index of the binary bit position. is a binary gray code of the bit reversal of and is the th bit of the binary bits of the highest power of 2 in where is the decimal number obtained through a bit-reversed conversion of the decimal .

From (4), we have [START_REF] Tao | Novel DCT-based real-valued discrete Gabor transform and its fast algorithms[END_REF] Let us introduce some notations:

(6) (7) (8) 
where and , are the th row and th column of CS-SCHT matrix, respectively.

, is the th row of . For example, (9) [START_REF] Boussakta | Fast algorithm for calculation of both Walsh-Hadamard and Fourier transforms (FWFTs)[END_REF] Let be the th CS-SCHT projection value for the th window: [START_REF] Sundararajan | Fast computation of the discrete Walsh and Hadamard transforms[END_REF] where is the length of the input data sequence. For the real input data, satisfies the following conjugate symmetric property: [START_REF] Falkowski | Ternary Walsh transform and its operations for completely and incompletely specified boolean functions[END_REF] where the superscript denotes the complex conjugate.

III. FAST ALGORITHM FOR SLIDING CS-SCHT

In this section, we first derive a relationship between the CS-SCHT and WHT matrices, and then propose a fast algorithm for computing the sliding CS-SCHT.

In [START_REF] Aung | Conjugate symmetric sequencyordered complex Hadamard transform[END_REF], Aung et al. derived a matrix decomposition of as follows: [START_REF] Bouguezel | A new class of reciprocal-orthogonal parametric transforms[END_REF] where is a permutation matrix, which permutes the NCHT matrix to CS-SCHT matrix , and

where is the identity matrix.

TABLE II FAST ALGORITHM FOR LENGTH-4 CS-SCHT

In the following, we derive another matrix decomposition of . Using ( 14) and the properties ( 19)

Equation ( 13) becomes [START_REF] Bi | Pipelined hardware structure for sequency-ordered complex Hadamard transform[END_REF] It can be proved that ( 20) is equivalent to

(the proof is shown in Appendix A) (21) 
where is defined in [START_REF] Rahardja | Complex composite spectra of unified complex Hadamard transform for logic functions[END_REF], is the order-WHT matrix, and

(22) (23) 
where is the reverse identity matrix, that is, all the elements of vice diagonal line are one, is the perfect (or ideal) shuffle permutation matrix [START_REF] Stone | Parallel processing with the perfect shuffle[END_REF], which can be implemented by linear time, in-place algorithms [START_REF] Ellis | Computing the cycles in the perfect shuffle permutation[END_REF], [START_REF] Jain | A simple in-place algorithm for in-shuffle[END_REF], and [START_REF] Kober | Fast algorithms for the computation of sliding discrete Hartley transforms[END_REF] For example, [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF] Since [START_REF] Geadah | Natural, dyadic, and sequency order algorithms and processors for the Walsh-Hadamard transform[END_REF] (26) [START_REF] Aung | Natural-ordered complex Hadamard transform[END_REF] can also be expressed as [START_REF] Jacobsen | The sliding DFT[END_REF] where is a diagonal matrix whose elements alternate between and . We are now ready to propose our fast algorithm, which computes the values of lengthsliding CS-SCHT of window from those of window and one length-WHT and one length-MWHT.

A. Fast Algorithm for

The proposed algorithm is shown in Table II, from which we have [START_REF] Jacobsen | An update to the sliding DFT[END_REF] (29) [START_REF] Mozafari | An efficient recursive algorithm and an explicit formula for calculating update vectors of running Walsh-Hadamard transform[END_REF] where is shown in [START_REF] Geadah | Natural, dyadic, and sequency order algorithms and processors for the Walsh-Hadamard transform[END_REF]. For complex input data, 2 multiplications with , 10 real additions, and a memory size of 10 are needed. For the real input data, from ( 12) and ( 28), we have [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF] (32) [START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF] Since and are real values, but is a complex value, for the implementation of , we can just read the real part of and then subtract the real value . Therefore, 1 multiplication with , 4 real additions, and a memory size of 5 are needed for real input data.

B. Fast Algorithm for

The proposed algorithm is shown in Table III, from which we have

(34) (35) (36) (37) (38) 
where and are shown in ( 10) and ( 23), respectively. For complex input data, 5 multiplications with , 26 real additions, and 36 size of memory are needed. For real input data, similar to the analysis of length-4 CS-SCHT, 3 multiplications with , 10 real additions, and 16 size of memory are needed.

C. Fast Algorithm for

By using the same strategy as for and , we have

(39) (40) (41) (42) 
where and are defined in [START_REF] Wu | Mixed-radix algorithm for the computation of forward and inverse MDCTs[END_REF]. , and are defined in ( 16), [START_REF] Aung | Conjugate symmetric sequencyordered complex Hadamard transform[END_REF], and [START_REF] Kober | Fast algorithms for the computation of sliding discrete sinusoidal transforms[END_REF], respectively.

The derivation of ( 39) is given in Appendix B. Fig. 1 shows the signal graph of the proposed algorithm, whose computational complexity and memory storage requirement are analyzed as follows:

1) The computation of ( 42) for needs only 2 real additions for complex input data (1 real addition for real input data). Note that the values of , have already been obtained during the computation of , respectively. A memory size of for complex input data ( for real input data) is required for storing . The input and for , needs memory for complex input data ( for real input data), which can be released after performing (42) since it will not be used in the following steps.

2) The computation of ( 41) needs one length-CS-SCHT, one length-WHT, which can be computed by the algorithms [START_REF] Farhang-Boroujeny | Order of complexity transform domain adaptive filters[END_REF], [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF]- [START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF], one lengthmodified WHT . Note that for the modified WHT, the input data is first multiplied by , resulting in the change of two inputs: replaced by and by . This change makes the implementation of not exactly the same as that of . It seems that the algorithms in [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF]- [START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF] are difficult to deal with the modified WHT. However, we notice that the two changed inputs are just that of necessary updated in the algorithm of [START_REF] Farhang-Boroujeny | Order of complexity transform domain adaptive filters[END_REF], which can be chosen to implement the modified WHT, costing 2 additional multiplications with when compared to WHT. For the implementation, size memory for complex input data is needed for storing the values , since is just row change operations of . (Size memory for real input data for .) We also assume that the memory storage requirements of lengthcomplex (real) CS-SCHT, length-complex (real) WHT, and lengthcomplex (real) modified WHT are , and , respectively. Note that the multiplication by or can be realized by switching the real and imaginary parts of the input with one sign changing, so that there is no memory requirement.

3) The computation of (39) needs multiplications with and real additions for complex input data ( multiplications with and real additions for real input data). The values of can be obtained by simply using the CS-SCHT block algorithm [START_REF] Aung | Conjugate symmetric sequencyordered complex Hadamard transform[END_REF]. For the implementation, we first distribute memory for for complex input data, which is then overlaid by after performing [START_REF] Nolte | Robustly estimating the flow direction of information in complex physical systems[END_REF]. (For the real input data, we should distribute memory for and .) Thus, the computational complexity and memory requirement of the proposed algorithm for complex and real input data is given by [START_REF] Wu | Sliding conjugate symmetric sequency-ordered complex Hadamard transform: Fast algorithm and applications[END_REF] (44) [START_REF] Ellis | Computing the cycles in the perfect shuffle permutation[END_REF] where and mean the multiplications and additions needed by lengthcomplex CS-SCHT, and mean the additions needed by length-complex WHT and MWHT, respectively, and the initial values are and . [START_REF] Jain | A simple in-place algorithm for in-shuffle[END_REF] (47) [START_REF] Sayed | Adaptive Filters[END_REF] where and mean the multiplications and additions needed by lengthreal CS-SCHT, and mean the additions needed by length-real WHT and MWHT, respectively, and the initial values are ; and . Since we use the algorithm presented in [START_REF] Farhang-Boroujeny | Order of complexity transform domain adaptive filters[END_REF] to compute the Modified WHT, we have

(49) (50) (51) (52)
In the following, we discuss two different ways for computing the length-WHT. The computational complexity and the memory storage requirements of the sliding WHT algorithms in [START_REF] Farhang-Boroujeny | Order of complexity transform domain adaptive filters[END_REF] and [START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF], we use in the following, are shown in Table V.

Scheme 1: Implementation of the Length-WHT by [START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF] and the Length-MWHT by [START_REF] Farhang-Boroujeny | Order of complexity transform domain adaptive filters[END_REF]: From ( 44), ( 45), ( 49), ( 50), and Table IV, we have (53) and (54) at the bottom of the page. From ( 47), ( 48), ( 51), (52), and Table V, we have (55) and (56) at the bottom of the page.

Scheme 2: Implementation Both the Length-N/4 WHT and the MWHT by [START_REF] Farhang-Boroujeny | Order of complexity transform domain adaptive filters[END_REF]: From ( 44), ( 45), ( 49), [START_REF] Tan | A comparison of DCT-based OFDM and DFT-based OFDM in frequency offset and fading channels[END_REF] and Table IV, we have (57) (58) From ( 47), ( 48), ( 51), (52) and Table V, we have (59) (60) It can be seen from ( 53) to (60) that Scheme 1 requires less number of additions and memory complexity than Scheme 2. However, Scheme 1 needs two different modules to implement length-WHT and MWHT, while Scheme 2 only needs one module which makes its implementation more simpler than the one of Scheme 1. Note that length-WHT can also be implemented by GCK algorithm [START_REF] Ben-Artzi | The gray-code filter kernels[END_REF], whose most important advantage is that it requires less computation complexity than [START_REF] Farhang-Boroujeny | Order of complexity transform domain adaptive filters[END_REF] and [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF] when only a small number of projection values are computed, however, two more additions are needed when all projection values are computed. Since in the proposed algorithm, all projection values are needed, so, it seems more suitable to use [START_REF] Farhang-Boroujeny | Order of complexity transform domain adaptive filters[END_REF] and [START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF] than GCK algorithm [START_REF] Ben-Artzi | The gray-code filter kernels[END_REF] in terms of computational complexity.

Compared to our previous conference paper [START_REF] Wu | Sliding conjugate symmetric sequency-ordered complex Hadamard transform: Fast algorithm and applications[END_REF], we mainly have the following four improvements: 1) We provided a rigorous mathematical proof of the algorithm and also applied the algorithm to complex signal channel equalization and real speech signal filtering. 2) We reanalyzed the computational complexity of sliding WHT in [START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF], which leads to the reduced computational complexity compared to [START_REF] Wu | Sliding conjugate symmetric sequency-ordered complex Hadamard transform: Fast algorithm and applications[END_REF]. 3) We provided the computational complexity analysis of sliding CS-SCHT algorithm for real input, for which the conjugate symmetric property can be used to reduce the computational complexity significantly. 4) The expression of [START_REF] Bartolini | Warp: Accurate retrieval of shapes using phase of Fourier descriptors and time warping distance[END_REF], which is the most important equation in the proposed algorithm, is optimized than that of (6) in [START_REF] Wu | Sliding conjugate symmetric sequency-ordered complex Hadamard transform: Fast algorithm and applications[END_REF], which leads to more regular and fast permutation operations.

Note that the proposed sliding CS-SCHT algorithm shares the same idea as that of sliding ISCHT one [START_REF] Wu | Fast algorithms for the computation of sliding sequency-ordered complex Hadamard transform[END_REF], that is, computing the projection values of window from those of window . However, the construction of CS-SCHT matrix is different from that of ISCHT matrix. In fact, the CS-SCHT matrix is generated based on the WHT matrix and direct block matrix operation while ISCHT matrix is generated based on the products of the row vectors of complex Rademacher matrices [START_REF] Aung | Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications[END_REF], [START_REF] Aung | Conjugate symmetric sequencyordered complex Hadamard transform[END_REF]. Therefore, the sliding fast algorithms for CS-SCHT and ISCHT are also different. The key of the proposed sliding CS-SCHT algorithm is to establish the relationships between length-CS-SCHT matrix and the length-WHTs, the latter can be computed by many mature sliding algorithms [START_REF] Farhang-Boroujeny | Order of complexity transform domain adaptive filters[END_REF], [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF]- [START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF]. However, the sliding ISCHT algorithm is based on the relationships between length-ISCHT matrix and the length-ISCHTs.

The comparison results of the proposed algorithm and the algorithms in [START_REF] Bouguezel | A new class of reciprocal-orthogonal parametric transforms[END_REF], [START_REF] Bouguezel | New parametric discrete Fourier and Hartley transforms, and algorithms for fast computation[END_REF], [START_REF] Aung | Conjugate symmetric sequencyordered complex Hadamard transform[END_REF], [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF], [START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF], [START_REF] Farhang-Boroujeny | Order of complexity transform domain adaptive filters[END_REF], [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF]- [START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF], [START_REF] Wu | Fast algorithms for the computation of sliding sequency-ordered complex Hadamard transform[END_REF] are shown in Tables IV (complex input) and V (real input). It can be seen from the tables that the proposed algorithm reduces significantly the real additions compared to the block CS-SCHT algorithm [START_REF] Aung | Conjugate symmetric sequencyordered complex Hadamard transform[END_REF], block parametric WHT algorithm [START_REF] Bouguezel | A new class of reciprocal-orthogonal parametric transforms[END_REF], and block parametric DFT/DHT algorithm [START_REF] Bouguezel | New parametric discrete Fourier and Hartley transforms, and algorithms for fast computation[END_REF], but at the cost of more memory requirement. For complex input, the proposed sliding CS-SCHT algorithm is less efficient than that of sliding ISCHT [START_REF] Wu | Fast algorithms for the computation of sliding sequency-ordered complex Hadamard transform[END_REF]; however, for real input, it is more efficient than that of [START_REF] Wu | Fast algorithms for the computation of sliding sequency-ordered complex Hadamard transform[END_REF] owing to the conjugate symmetric property of CS-SCHT shown in [START_REF] Falkowski | Ternary Walsh transform and its operations for completely and incompletely specified boolean functions[END_REF]. The proposed algorithm is more efficient than the [START_REF] Aung | Conjugate symmetric sequencyordered complex Hadamard transform[END_REF], SLIDING ISCHT [START_REF] Wu | Fast algorithms for the computation of sliding sequency-ordered complex Hadamard transform[END_REF], THE SLIDING FFT [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF], [START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF], AND RECIPROCAL-ORTHOGONAL DFT TRANSFORM [START_REF] Bouguezel | New parametric discrete Fourier and Hartley transforms, and algorithms for fast computation[END_REF] FOR . " " REPRESENTS REAL MULTIPLICATIONS, " " MEANS MULTIPLICATION WITH , " " MEANS REAL ADDITIONS. "ME" DENOTES MEMORY (WORDS). SUPERSCRIPT "#"DENOTES " " sliding FFT in [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF] and [START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF]. This is because the proposed algorithm only needs the multiplications with and real additions.

The proposed algorithm also requires less memory complexity than sliding FFT [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF], [START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF]. But it requires more computational and memory complexity than that of sliding WHT algorithms shown in [START_REF] Farhang-Boroujeny | Order of complexity transform domain adaptive filters[END_REF], [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF]- [START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF]. For comparison purpose, Tables IV and V show the real multiplications, multiplications with and real additions where one complex multiplication (or one rotational matrix) is implemented by four real multiplications and two real additions. Note that for the particularity of multiplications with we count once whatever multiplied by a complex number or a real number.

IV. TWO APPLICATION EXAMPLES

In this section, we provide two application examples of the sliding CS-SCHT.

Transform domain least-mean-square adaptive filters (TDLMSAF), introduced by Narayan et al. [START_REF] Narayan | Transform domain LMS algorithm[END_REF], exploit the de-correlation properties of some well-known signal transforms such as DFT, DCT, DHT and WHT, in order to pre-whiten the input data and speed up filter convergence (p. 413, [START_REF] Sayed | Adaptive Filters[END_REF]).

Similar to the DFT domain LMS adaptive filter [START_REF] Narayan | Transform domain LMS algorithm[END_REF], [START_REF] Sayed | Adaptive Filters[END_REF], the CS-SCHT domain LMS adaptive filter algorithm, shown in Fig. 2, is described as follows:

(61) (62) where denotes the complex conjugate operator, is the input signal vector, is the CS-SCHT domain coefficients. is the adaptive weight vector.

are the filter output signal, the desired signal, the error signal, respectively. is a positive step-size and is a diagonal matrix of the estimated input powers which is given by (63)

In the following, we apply the aforementioned transform domain LMS adaptive filters for both complex and real input. Note that the fast algorithms have been implemented using "C" programming language. The comparison results of execution time are carried out on a PC machine, which has an AMD single core CPU with speed of 3200 MHz and 4096 MB RAM. The run time of these algorithms have been calculated using MinGW GCC complier version 3.4.5.

A. Channel Equalization (Complex Input)

In this example, a quadrature phase shift keying (QPSK) signal of length 1024 is transmitted over the additive white Gaussian noise channel (AWGN channel). The channel introduces intersymbol interference using a finite impulse response type model. The transfer function of the channel can be expressed as (64) At the output of the channel, a white Gaussian noise sequence with variance is added. The input signal, which is the sum of the channel output and the noise sequence, is processed by the 32-tap equalizer (filter). The parameters are set as and . Fig. 3 shows the received signal scatter plot and the equalized signal scatter plot by sliding CS-SCHT based sequency domain equalizer (filter). Fig. 4 illustrates the learning curves for sliding FFT/ISCHT/CS-SCHT based adaptive equalizer (filter) using the aforementioned QPSK signal. Table VI shows the execution time of the sliding transforms of the corresponding adaptive equalizer (filters). It can be seen [START_REF] Aung | Conjugate symmetric sequencyordered complex Hadamard transform[END_REF], THE SLIDING ISCHT [START_REF] Wu | Fast algorithms for the computation of sliding sequency-ordered complex Hadamard transform[END_REF], THE SLIDING WHT [START_REF] Farhang-Boroujeny | Order of complexity transform domain adaptive filters[END_REF], [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF]- [START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF], THE SLIDING FFT [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF], [START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF], RECIPROCAL-ORTHOGONAL WHT [START_REF] Bouguezel | A new class of reciprocal-orthogonal parametric transforms[END_REF] AND DHT [START_REF] Bouguezel | New parametric discrete Fourier and Hartley transforms, and algorithms for fast computation[END_REF] Note that the QPSK signal is a complex one that is employed in many wireless network standards, such as IEEE 802.11a [START_REF]High-Speed Physical Layer in the 5 GHz Band-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications[END_REF] in which the DFT-based complex adaptive equalizer [START_REF] Tan | A comparison of DCT-based OFDM and DFT-based OFDM in frequency offset and fading channels[END_REF] is used for multicarrier demodulation. In this situation, we can simply substitute the DFT module by that of CS-SCHT with little change. However, if we want to use the WHT as the complex adaptive equalizer, similar to DCT-based system reported in [START_REF] Qureshi | Adaptive equalization[END_REF], it would be necessary to construct an intermediate complex transform by using two WHTs. This may lead to higher computational complexity and larger change to conventional DFT-based system.

B. Acoustic Echo Cancellation (Real Input)

According to the Computer Project VI (acoustic echo cancellation) in [START_REF] Sayed | Adaptive Filters[END_REF], we use a synthetic signal of 1400 samples that emulates the properties of speech. Concatenating 15 such blocks to form a loudspeaker signal and feed it into the echo path. Fig. 5 illustrates the measured impulse and frequency response sequence of an echo path in a room, which contains 1024 samples. In this example, we process the acoustic echo canceller with 512 taps TDLMSAF with and . We use the echo as an input signal and the loudspeaker signal as the desired signal to the adaptive filter. From the two application examples, we can see that, compared to other sliding transforms, the proposed sliding CS-SCHT seems to be more appropriate for the adaptive filtering system requiring low computational complexity when dealing with both complex and real signals. Compared to real transforms, the sliding CS-SCHT is more suitable for applications where the phase information is needed, for example, PSI measure [START_REF] Nolte | Robustly estimating the flow direction of information in complex physical systems[END_REF], [START_REF] Yang | Extracting information on flow direction in multivariate time series[END_REF], phase based image retrieval [START_REF] Bartolini | Warp: Accurate retrieval of shapes using phase of Fourier descriptors and time warping distance[END_REF]. Further research is still in progress on these applications.

Fig. 1 .

 1 Fig. 1. Signal flow graph of the length-sliding CS-SCHT transform.

Fig. 2 .Fig. 3 .

 23 Fig. 2. Block diagram of CS-SCHT domain adaptive filtering.

Fig. 4 .

 4 Fig. 4. Learning curves for sliding FFT/ISCHT/CS-SCHT based adaptive equalizer (filter) using a QPSK signal.from Fig.4that the learning curves for TDLMSAF using the sliding CS-SCHT algorithm, sliding ISCHT algorithm, and sliding FFT algorithm are exactly the same. The proposed Scheme 1 of sliding CS-SCHT algorithm (1.178 ms) allows us to save 40.0% in terms of computational time compared to block CS-SCHT one (1.962 ms), 28.8% compared to sliding FFT one (1.515 ms), and 79.7% compared to block FFT one (5.791 ms) in the process of sliding transformations. However, the proposed sliding CS-SCHT algorithm is 9.3% slower than sliding ISCHT one (1.069 ms).

Fig. 5 .

 5 Fig. 5. Impulse and frequency response of a room model.

Fig. 6 .

 6 Fig. 6. The top row shows the loudspeaker signal, the second row shows the corresponding echo and the last two rows show the resulting error and reconstructed signal for CS-SCHT based sliding window TDLMSAF.

Fig. 7 .

 7 Fig. 7. Learning curves for sliding transforms based TDLMSAF for acoustic echo cancellation. RWHT means reciprocal-orthogonal WHT. RDHT means reciprocal-orthogonal DHT.

Fig. 6

 6 shows the loudspeaker signal, the echo signal, the error signal and filtered signal after CS-SCHT based sliding window TDLMSAF. Because the 512-tap sliding algorithms use the first 512 tap signals as the first input block, so, the first 511 tap indices of error and filtered signals are zeros. Fig. 7 illustrates the learning curves for FFT, RDHT, WHT, RWHT, ISCHT, CS-SCHT based sliding window TDLMSAF for aforementioned echo cancellation scheme. Considering the independent parameters of the RWHT introduced in [13], we simply set all the parameters in to 0.75 and the first parameters in to 1.25. It can be seen from the Fig. 7 that the learning curves for TDLMSAF using the sliding CS-SCHT, sliding ISCHT, sliding FFT, sliding DHT, sliding WHT are exactly the same and are somewhat better than sliding RWHT. Table VII shows the execution time of the sliding transforms of the corresponding TDLMSAF. The proposed Scheme 1 of sliding CS-SCHT (0.901 s) saves 34.6% compared to block CS-SCHT (1.379 s), 42.1% compared to sliding FFT (1.557 s), 66.1% compared to RDFT (2.661 s), 11.5% compared to sliding ISCHT (1.018 s), % compared to sliding WHT (0.772 s), 25.0% compared to RWHT (1.202 s) and 68.2% compared to RDHT (2.831 s) in terms of the execution time.
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V. CONCLUSION

In this paper, we have presented a fast algorithm for computing the sliding CS-SCHT. The arithmetic complexity order of the proposed algorithm is , a factor of improvement is made over the block-based algorithm for the length-CS-SCHT. The proposed algorithm is also more efficient than the sliding FFT algorithm, but less efficient than the sliding WHT algorithms. Compared to the recently proposed sliding ISCHT algorithm, the proposed algorithm is more efficient for real input but less efficient for complex input. The application of the sliding CS-SCHT in TDAF to complex signal channel equalization and real speech signal acoustic echo cancellation has also been investigated. [START_REF] Aung | Natural-ordered complex Hadamard transform[END_REF] To demonstrate the equivalence between ( 21) and [START_REF] Bi | Pipelined hardware structure for sequency-ordered complex Hadamard transform[END_REF], it suffices to verify that the following two relationships are true:

APPENDIX A DERIVATION OF

Proof of (A1): Let and , be respectively the binary representation of the two integers and , let and be the product of and , by the definition, we have

Using (A4), we have

where is the integer corresponding to the bit reversed of . [START_REF] Nolte | Robustly estimating the flow direction of information in complex physical systems[END_REF] To prove [START_REF] Nolte | Robustly estimating the flow direction of information in complex physical systems[END_REF], we need the following lemma: Lemma 1: Let be the ( th, th) element of the matrix , then we have Proof: To prove the lemma, we need the following relationship (B1) where and is a binary gray code of the bit reversal of and is the th bit of the binary bits of the highest power of 2 in where is the decimal number obtained through a bit-reversed conversion of the decimal . By the definition, we have

where appeared in (B2) is the minimal value between 0 and such that . To prove (B1), two cases are distinguished. a)

is even, that is, . From (B2) and (B3), we have

Combination of (B5) and (B6) leads to (B1). b) is odd, i.e., . In this case, we have

It can be deduced from (B8) and (B9) that (B1) is also true for odd value of .

We are now ready to prove the Lemma. By the definition, we have (B10)

For

, we have (B11)

The proof of Lemma has been completed. Based on the above lemma, we provide the derivation of (39) in the following. The above equation can be expressed in a matrix representation as

Substituting ( 27) into (B21), we have (B23) Substituting ( 21) into (B22), we have (B24) Substituting (B24) into (B23), we obtain [START_REF] Bartolini | Warp: Accurate retrieval of shapes using phase of Fourier descriptors and time warping distance[END_REF]. The proof of (39) has been completed. Huazhong Shu (M'00-SM'06) received the B.S. degree in applied mathematics from Wuhan University, China, in 1987, and the Ph.D. degree in numerical analysis from the University of Rennes 1, Rennes, France in 1992.
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