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Abstract

In the PREPA observational study, we investigated the factors influencing pharmacoki-

netic and pharmacodynamic variability in the response to fluindione, an oral anticoagulant

drug, in a general population of octogenarians inpatients.

Measurements of fluindione concentrations and INR (International Normalised Ratio)

were obtained from 131 inpatients initiating fluindione treatment. Treatment was adjusted

according to routine clinical practice. The data was analysed using non-linear mixed effect

models, and the parameters were estimated using MONOLIX 3.2.

The pharmacokinetics of fluindione was monocompartmental, while the evolution of INR

was modelled according to a turnover model (inhibition of vitamin K recycling). Interindi-

vidual variability was very large. Clearance decreased with age and with prior administration

of cordarone. Patients who underwent surgery before the study had lower IC50, leading to

an increased sensitivity to fluindione.

Pharmacokinetic exposure is substantially increased in elderly patients, warranting a

lower dose of fluindione.
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codynamics; International Normalised Ratio (INR)
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1 Introduction

Evidence-based clinical practice guidelines recommend vitamin K antagonists in the preven-

tion of stroke in atrial fibrillation [1, 2], in the treatment of venous thromboembolism [3], in

patients with mechanical valve and in the first 3 months following bioprotheses implantation [4].

Despite their proven benefit, studies attest to their underutilisation particularly among elderly

individuals [5, 6]. Antivitamin K agents (AVK) act by inhibiting the reduction reactions by

which the vitamin K is recycled, in turn decreasing the synthesis of vitamine K-dependent co-

agulation factors (factors II (prothrombin), VII, IX, X, protein C, and protein S) [7]. The two

main classes are coumarin derivatives, including warfarin and acenocoumarol, and indanedione

derivatives, including fluindione and phenindione. Fluindione constitutes about 80% of AVK

prescriptions in France [8].

AVK are characterised by a large between-, but also within-patient variability in the dose-

response relationship. The therapeutic window is narrow, so that clinicians must walk a thin line

between suboptimal dosage risking thromboembolic events and higher doses potentially risking

bleeding episodes. The frequency and seriousness of haemorragic adverse events varies in the

literature, depending on the population, the prescribed therapeutic range, the other treatments

co-administered and the duration of treatment with AVK [9]. The Adverse Event Reporting

system of the US Food and Drug Administration provides evidence that warfarin is among the

top 10 drugs with the greatest number of serious adverse events. In France, where the present

study was performed, iatrogenic events due to oral anticoagulant drugs represent the first cause

of hospital admission for drug-related adverse event [10], totalling about 17000 admissions a year,

and an estimated 3000 to 5000 deaths [11]. A meta-analysis of available clinical trials in patients

anticoagulated for venous thromboembolism, reported a case-fatality rate of major bleeding of

13.4% in all patients (95% confidence interval 9.4 to 17.4%) [12]. Haemorragic events are overall

more frequent and more severe in elderly patients compared to the general population [13]. The

contribution of age per se to this increased risk is somewhat controversial, some studies pointing

to an increase of the incidence of haemorragic events as a function of age [9] while others do

not find it significant [14], but the fact that severity increases with age is undisputed [15] so

that scores developed to predict the risk of bleeding include age over 65 as an independent

risk factor [2, 16]. The main risk factors known to bring about haemorragic complications

are level of anticoagulation, poor quality of monitoring, lack of patient eduction, associated

comorbidities and comedications, including interactions with drugs interfering with haemostasis,

and being in the first months of treatment [9, 14, 17]. Variability in International Normalised

Ratio (INR) levels is also higher in elderly patients [18, 19]. A large part of this variability

can be explained by changes in the dose-concentration relationship (pharmacokinetics, PK),

or in the concentration-response relationship (pharmacodynamics, PD). Measurement of AVK
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concentrations can contribute to a better understanding of these two components by separating

these two contributions.

In the present paper, we describe the findings from the PREPA study, investigating the

pharmacokinetics and pharmacodynamics of fluindione in octogenarians using non-linear mixed

effect models. The primary objective of PREPA was to study the factors influencing the source

of variability in the response to fluindione in elderly inpatients starting fluindione, with a special

interest in comorbidities and comedications.

2 Results

2.1 Data

151 subjects were recruited in PREPA, 131 of whom provided PK/PD data and were included

in the present PK/PD analysis. Table 1 shows the demographic and biologic variables recorded

in this population.

The prescribed therapeutic range for INR was [2-3] for all the patients included in the study.

The elderly patients included in the PREPA study were generally polymedicated: on the first

day of the study, they received on average 8 different medications in addition to fluindione. In

this study, initial dosing of fluindione was conservative: the initial dose was 5, 10 and 15-20 mg

in 28, 94 and 10 subjects respectively. The median duration of stay in the study was 8 days

(range 2 to 31 days). The last dose of fluindione was 5 mg or less for 32 subjects, 7.5-10 mg

for 54 patients, 12.5-15 mg for 30 patients and 17.5-22.5 mg for 15 patients. There were large

variations between the initial and final dose (correlation 0.25), with the dose unchanged in 44

subjects (34%) while 32 had a lower dose (24%) and 55 a higher dose (42%). This study was

not designed to evaluate a maintenance dose of fluindione, and only 52 patients (40%) left the

study with an INR between 2 and 3.

Ten subjects (8%) experienced bleeding during the study, as described elsewhere [20]. Nine of

these patients also received heparin prior to initiating fluindione treatment, and severe bleeding

occurred in 5 of them, always associated with the heparin treatment. The tenth subject, who

suffered from hemorroids and constipation, started heparin on day 2 and experienced minor

bleeding the next day, which resolved quickly.

2.2 Base model building

The PK dataset included 493 concentrations of fluindione, and the PD dataset 477 measure-

ments of INR. A one-compartment model without lag-time provided an adequate fit to the PK

data, based on tests and diagnostic graphs. Although the estimation error for the absorption

rate constant ka was reported as reasonable, its interindividual variability (IIV) was large, and
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this parameter proved relatively unstable from run to run, especially at later stages when co-

variates were included in the model. Because there was little information about the absorption

phase, we considered a model where ka was fixed without variability. In a study in healthy

volunteers, fluindione was found to be quickly absorbed, with an average Tmax of 2.0 h (range

0.5-6.0 h) [21], while the elimination half-life was 35 h (SD 6.5 h). Based on these figures, we

fixed ka to 2.42 hr−1. This improved model stability, and provided similar estimates of V and

CL. IIV was estimated for CL and V, without covariance.

An indirect response model for 1/INR was found adequate in the PK/PD analysis. INR

values increase from baseline value of 1 in a normal patient, and the estimate of the additive

part of the combined error model converged to a very small value. Therefore the residual

variability for the INR model was modelled as proportional. A diagonal covariance matrix was

used to model IIV. The Hill coefficient was significantly different from 1, and assuming a linear

model instead of the Imax model also degraded the fit. Models including precursors were also

tested to account for time delays but did not improve the fit or the likelihood.

2.3 Covariate model building

Covariates were first included on V and CL. Using the individual parameters estimates from

the base model, the following covariates were found to have an influence on V, CL or both, and

were considered for inclusion in the model: gender, weight, age, surgery, atrial fibrillation, renal

function, Mini-Mental State (MMS) score, as well as administration of cordarone and deroxat.

After pruning down the model, the following relationships remained: the volume of distribution

V was found to increase with weight, and to be higher in men; clearance CL on the other hand

was found to decrease with age, and to be lower in patients who received cordarone during the

study. We also explored the relationships between parameters and time-varying comedications

by considering each occasion as a separate subject. None of these comedications was found to

influence the two PK parameters.

For the PD parameters, the following candidate relationships were found: CLCR, nonagerian,

surgery and protamine on I0, deroxat on Imax, CLCR, surgery and protamine on kout, nonagerian,

surgery and protamine on C50, Activities of Daily Living (ADL) score, surgery and deroxat on

γ. In the final model, patients recovering from cardiac surgery were found to have reduced C50

and γ, translating to higher sensitivity. These patients were younger but age did not remain in

the model. Deroxat increased γ.

The variability on Imax was poorly estimated and was removed from the final model. In most

models we found I0 to be very close to 1, but the assumption I0=1 led to a significant increase

in the statistical criterion.
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2.4 Final model

Table 2 shows the parameter estimates for the base and final model (the range obtained

by multiple imputation is given in Supplementary Table S2, showing the robustness of the

estimates). There was a small decrease in the estimates of the variabilities of all parameters

except kout when including covariates in the model, however the IIV remained large. Relative

standard errors were less than 10% for the main parameters, and within a 10-30% range for

the variability of the random effects. Compared to women, men had an apparent volume of

distribution increased by about 25%. The increase of V with weight was relatively small, since

an increase of 10 kg in weight translates to about 9% increase in V. The decrease of CL with

age is more relevant, since we expect a 90 year old patient to have a clearance reduced by 30%

compared to a 80 year old patient, and patients who received cordarone had a 20% decrease in

clearance. Prior surgery both increased the sensitivity to fluindione, reflected by a 50% reduction

in IC50, and decreased the sigmoidicity coefficient γ by about 50% so that the increase in the

concentration-response curve is more gradual in these patients. The influence of deroxat on γ

was the opposite, with a steeper curve for these patients indicating an on/off type of response.

We performed a small stability study to assess the ability of the sparse design to estimate

the PK parameters, and found that CL and V could be correctly estimated (see Supplementary

Material), consistent with the low correlations reported between the estimates of the PK pa-

rameters (-0.16 for the correlation between the estimates of V and CL). The correlations were

higher between the PD parameters of the Imax model (corr(IC50,Imax)=0.6 and corr(IC50,γ)=-

0.73), suggesting that the design may not be as informative for the PD. All other correlations

were lower than 0.35. The robustness of the estimates was checked by changing seeds and initial

conditions. Shrinkage was large for most parameters, reflecting the relative lack of information

in this sparse design: V (44%), CL (32%), IC50 (47%), kout (63%), I0 (86%) and γ (80%). The

ǫ-shrinkage was 31% for PK and 39% for PD.

Diagnostic plots are shown in figures 2 and 3. Graphs of the npde (normalised prediction

distribution errors) versus time and dose, which are more appropriate than VPC because of the

heterogeneous design [22, 23], are shown in Figure 3; prediction bands have been overlayed to

indicate model predictions. The two upper graphs show the npde versus time, for fluindione

(left) and INR (right), and indicate good model adequacy for fluindione, while for INR the model

slightly underpredicts the last time-point. The two lower graphs show the npde versus model

predictions; the model can be seen to perform adequately on average both for PK and PD, while

variability is sometimes under or overestimated. Individual graphs are shown for 12 subjects

from different clinical departments (Figure 4: fluindione concentrations; Figure 5: INR). The

dotted line in the individual plots for INR show the target therapeutic range, while vertical bars

are drawn to show the doses received (the scale for doses is on the right-hand axis). For most

6



Comets et al.

subjects, the model is able to reproduce both PK and PD measurements adequately, describing

even complex profiles. In a few cases, (eg subject 1086, topmost panel, right), the PK is very

well predicted but the PD shows unexplained fluctuations, with INR starting to decrease despite

stable doses and concentrations.

Using the steady-state approximation with the population parameters, we found that doses

of 7.5 and 10 mg ensure an INR within the therapeutic range for a typical patient (weight 65 kg,

age 85 kg), regardless of gender. IIV however is large, and often at least 2 doses provide an

INR within the range. Table 3 shows dose recommendations depending on individual covariates,

obtained by simulations under the model. In each setting, when taking into account IIV, this

average dose is valid in about 20% of the simulations, while a dose within +/-2.5 mg of this

dose is recommended in about 50% of the simulations.

3 Discussion

Fluindione is an AVK used mostly in France, where it is regarded as an interesting alternative

to the warfarin; contrary to warfarin, fluindione is not a racemic mixture and its longer half-life is

considered to help stabilise INR levels [24]. As other anticoagulant drugs however, it is a difficult

drug to adjust. In a previous study called ADAP, we investigated the pharmacokinetics and

pharmacodynamics of fluindione in a general population of patients initiating treatment [25, 26].

In these younger patients (mean 60 years, range 29–89), we demonstrated not only large IIV,

but also, through a follow-up study recording dose changes and evolution of anticoagulation

after discharge from the hospital, a sizeable intraindividual variability. This variability led to

fluctuations in the anticoagulation level even in patients thought to be stabilised when leaving

the hospital [27].

In the present study, we used a PK/PD model closely related to the one developed in ADAP.

The main differences are the absorption model, which was previously assumed to a bolus dose

and which we fixed here, and the use of a Hill model to represent drug effect. The estimates

of CL and V were very close to the value estimated assuming an IV bolus, but the statistical

criterion was slightly better with an oral absorption phase. The estimates of the PK parameters

however are quite different from previously [25, 26]. In the final model, V was estimated to be

around 8 L, while CL was 0.1 L.hr−1. In the ADAP study on the other hand, we estimated these

parameters to be respectively 37 L and 0.49 L.hr−1. Both sets of parameters however give the

same estimate for half-life, 56 h versus 52 h previously. The increased exposure was also apparent

in the measured concentrations: in the ADAP study, subjects received daily doses of fluindione,

with starting doses of 15 to 20 mg, and concentrations after 5 days of treatment were around

0.8 to 1.2 mg.L−1, while in PREPA concentrations at day 5 range from 1 to over 8 mg.L−1

as shown in figures 1 and 4. In addition, starting doses were lower, most patients receiving
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10 mg initially or less. Thus, compared to the previous study, we observe a marked increase in

the exposure to fluindione. Since fluindione is administered orally, the reported V and CL are

apparent parameters, so an explanation to this discrepancy with previous results is a difference

in bioavailability between the two studies. However, this would require a more than four-fold

increase in bioavailability in elderly patients compared to the younger population previously

studied. Fluindione is to some extent cleared by the liver, with the hepatic metabolism of

fluindione appearing to be mediated by CYP2C9 [28], but is mainly renally excreted, so that we

do not expect first-pass effect to be a major determinant of drug concentrations; the increase in

drug exposure would then be driven by a dramatic increase in the absorption process. Changes

in plasma protein binding could be another possibility. For all drugs eliminated primarily by the

liver total exposure is independent of protein binding but, like fluindione, oral drugs eliminated

by nonhepatic high extraction ratio routes exhibit changes in unbound drug exposure when

protein binding changes. This would not be expected to affect exposure to such an extent since

fluindione does not exhibit a particularly high extraction ratio [29]. The smaller volume of

distribution might be the consequence of the combination of a lowered volume of tissue with

an increase of the fraction unbound in tissue (V=Vp + Vt fu/fut), both clinically relevant in

an elderly population with a lipophilic drug [30]. Modification, either increase or decrease, of

transit times in this heavily medicated population could also explain an increase in the fraction

absorbed by changing the dissolution of fluindione; indeed, 117 patients (89%) received drugs

modifying transit, and slower intestinal transit times are frequently observed in the elderly. The

alteration in PK exposure could therefore be due to a combination of factors [30] and warrants

further exploration in a controlled study.

Dose reduction with age is also observed for other oral anticoagulants [18, 24]. The latter

study, although admittedly retrospective, included over 22 000 patients, and found that patients

aged 80 years or older required doses one-third to one-half of those given to patients younger than

50. For fluindione, Mahé et al. observed in a retrospective study that patients over 75 years old

required a lower dose of fluindione than younger patients for a comparable INR [31], which can be

interpreted as due to modifications in exposure in the light of our results. For the PD parameters,

we found an estimate of IC50 about 60% higher than in the ADAP study (2.18 mg.L−1 instead

of 1.35 mg.L−1), but still within the same range, suggesting that elderly patients have a similar

sensitivity to fluindione despite having an increased exposure. The present study provides a

rationale explaining the findings of others that lower doses are required in elderly patients, by

linking them to PK, and underscores the importance of having both PK and PD measurements

in order to separate pharmacokinetic and pharmacodynamic changes. kout on the other hand

was noticeably smaller (0.03 versus 0.18 hr−1), indicating a slower turnover than in younger

patients.

We used the model and parameter estimates to predict a dose that should be given in order to
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maintain an INR within the therapeutic range at steady-state. Consistent with the observation

that the concentrations were higher in this population of elderly patients than in the population

we previously studied [25, 26], the model predicted relatively low doses, suggesting a daily 10 mg

dose, or an alternance of 5 and 10 mg doses, should be a safe starting dose for most patients.

This is also in line with the maintenance doses observed in the retrospective study by Mahé [31].

Fluindione however is still packaged as 20 mg pills, which are in practice difficult to divide for

routine treatment.

The present study was targeted towards elderly patients during hospitalisation, since this

population is both more likely to receive anticoagulant drugs and more fragile, being often

polymedicated and with comorbidities. These patients are therefore more susceptible to bleeding

and dose adjustment for oral anticoagulants is particularly difficult [32]. Given its observational

nature and the short duration, the PREPA study was not specifically designed to investigate

risk factors for clotting or bleeding; a more detailed analysis of the 8 bleeding events which

occurred in the subset of patients with atrial fibrillation can be found in [20]. A major objective

of the present study was to identify covariates that could explain some of the variability in the

response. We found the pharmacokinetic parameters to be influenced by gender, weight and age,

as well as prior administration of cordarone (amiodarone) while the only covariates influencing

pharmacodynamic parameters were prior surgery and administration of deroxat. We did not

find any relationship with time-varying comedications, but this may be due to the heterogeneity

of the population and to the small sample size. Cordarone has been reported to increase the

haemorragic risk [33], which could relate to the 20% reduction we find, translating into an

increased exposure. We did not find a relationship with anti-infective agents (antibiotics and

anti-fungal drugs) as in that study; nearly half of the patients received an antibiotic at some point

during treatment, but it is possible that the analysis could not pick up a relationship especially if

the influence is delayed, since we considered only an on/off type of relationship. Also the sample

size was too small to consider each drug separately so we pooled the different antibiotics and

the different dosages for the analyses. About a third of the patients took part in the optional

pharmacogenetic study. We found no relationship between the 3 genetic polymorphisms and PK

or PD parameters. The influence of CYP2C9 on PK through metabolism has been described

for warfarin [34]; for fluindione, a recent study in healthy volunteers showed a lower clearance

in carriers of the *3 allele [28], while the influence on the response is expected to be related to

VKORC1 [35, 28]. We were not able to confirm these relationships here, perhaps due to the

small number of subjects.

Most patients did not remain in the study long enough to reach a stable INR. However, even

within the duration of their stay, we noted that dose changes occurred too often and sometimes

irrationally. In particular, the long time-course of INR evolution after AVK did not appear well

anticipated by the prescribing clinicians. This is apparently partly due to a lack of follow-up,
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as doses are frequently modified based only on the latest INR, without considering the pattern

of doses given and INRs measured since the beginning of the treatment. In several countries

specialised anticoagulation clinics have been set up to help manage anti-vitamin K drugs and

have been shown to improve management of anticoagulation treatment [8]; a pilot clinic now

exists in France [36]. A perspective of the present work could be to develop a software helping

clinicians to anticipate the future evolution of anticoagulation, by producing plots based on

individual INR measurements and dosing regimen [37, 38].

In conclusion, the PREPA observational study highlighted that dose adjustement for AVK

agents is still a major issue, especially in the elderly. The complexity of INR dynamics and the

resulting delay between the time-course of the drug and the clinical variations of anticoagulation

levels make it difficult to anticipate changes in INR, so that adjustements in doses must be

made after taking into account the evolution over several days and not a single measurement.

Elderly patients should be treated as a special population presenting a noticeably increased

pharmacokinetic exposure to the drug. They should receive significantly lower doses and the

onset of treatment should remain conservative.

4 Methods

4.1 Data

The PREPA study was a prospective, observational multicenter study conducted between

September 2005 and September 2007, recruiting consecutive patients hospitalised in 6 medical

and 1 surgical (cardiac) acute-care units from 3 French hospitals. Patients, 80 or older, were

prescribed fluindione after at least 2 weeks off oral anticoagulants. Exclusion criteria were:

contraindication to fluindione treatment due to hypersensitivity to indanedione derived drugs,

incompatible comedication, inclusion in another therapeutic trial, expected length of stay in

hospital less than 3 days. The study was approved by the Ethics committee from Hospital

Européen Georges Pompidou (HEGP), and all participants provided written informed consent

in accordance with the Declaration of Helsinki. The clinical trial has been registered on the

public registry ClinicalTrials.gov.

Patients were followed by clinicians according to the local clinical practices. In particular,

doses were adjusted based on routine measurements of INR, without using any dosing algorithm.

Fluindione was administered in the evening, usually around 6 p.m. Blood samples for the mea-

surement of INR were taken in the morning, according to the usual practice in the participating

centers for therapeutic monitoring: before the first administration of fluindione (day 0), and

after 2, 4, 6 and 8 doses of fluindione; additional samples were obtained twice a week after that

for therapeutic monitoring. The date of each sample was recorded by the nurse, and the time

of the sample when it was outside of the window 9-11 a.m. Each time a blood sample was
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taken for the measurement of INR and coagulation factors, an additional 5 mL blood vial was

drawn for measuring fluindione concentrations, except at day 0, where fluindione concentrations

were measured only in patients who had received a dose of an oral anticoagulant within the two

weeks immediately preceding the first dose of fluindione in the study. As an ancillary optional

study, which required a separate informed consent, an additional blood sample was taken for

genotyping. Genetic polymorphisms for two CYP2C9, which are known to influence the phar-

macokinetics of warfarin [34] and acenocoumarol [35], as well as a genetic polymorphism in the

gene coding for vitamin K epoxide reductase complex subunit 1 (VKORC1) [39], the target

of AVK treatment and involved in the response [40], were determined. Analytical details are

available in the Supplementary material.

For each patient, the following variables were recorded at the inclusion visit by a clinician

involved in the study: age, gender, weight, weight changes within the 6 months preceding the

inclusion visit, ADL, Charlson comorbidity score, MMS, reason for fluindione treatment, ther-

apeutic range for INR, major comorbidities, cardiac surgery. A number of biological variables

were also measured at baseline: albumin, C-reactive protein (CRP), haematocrit levels, proti-

daemia, natremia. Creatinine clearance (CRCL) was computed from age (year) and creatinine

clearance using the following formula [41]:

CRCLMDRD(µmol/l) = 186 (0.0113 CREAT)−1.154 Age−0.203 (1)

Renal function was classified as normal (CLCR≥60 ml/mn), moderately impaired (CLCR be-

tween 30-60 ml/mn) and severely impaired (CLCR<30 ml/mn).

Patients were defined as suffering from malnutrition when they had recent severe weight loss

(over 10% of weight), a body mass index lower than 18, or albumin levels lower than 30. Finally,

high levels of CRP (CRP>50 mg.L−1) were considered to be a sign of current hypercatabolism.

One important objective in this group of elderly inpatients was to describe and take into

account the many comedications these patients received. Comedications given to each patient

were recorded at the initial visit, and changes were documented throughout the study. Comed-

ications received were classified according to their influence on INR, using the classification

proposed by Holbrook [42] (given in Supplementary Table S2). Drugs were first classified ac-

cording to whether they increase the thrombotic risk or the haemorragic risk; the second group

was divided further into drugs increasing the INR (class B2) versus drugs acting independently

(class B1). Nonsteroidal anti-inflammatory drugs (group B12) and diuretics were also considered

for their potential effect on pharmacokinetic parameters. For each class and each subject, we

defined a daily indicator variable. Cordarone, amiodarone and deroxat, because of their long

half-life, were considered separately and assumed to remain active for 1 month (cordarone and

amiodarone) and 15 days (deroxat). Only therapeutic classes which were received by at least 10

and at most 122 patients were considered in the analysis.
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4.2 Model building

Non-linear mixed effect models were used in this analysis; the jth observation in subject i,

yij, is modelled as:

yij = f(xij, ψi) + g(xij , ψi)ǫij (2)

where ψi denotes the individual parameters, f the structural model and g the residual error

model (ǫij ∼ N (0, 1)). We assume that ψi depends on individual covariates ci, a vector of fixed

effects µ and a vector of individual random effects ηi through a function h:

ψi = h(µ, ci, ηi) (3)

The parameters were estimated through the Stochastic Approximation EM algorithm (SAEM)

implemented in the MONOLIX software [43] (version 3.2, release 1), running on a Linux PC

(Kubuntu 10.10). All other statistical analyses were performed in R (2.11) [44].

Base model selection. We first studied the PK of fluindione alone. The residual variability

was modelled using a combined error model. The structural model was built by selecting the

best model amongst one and two-compartmental models with first or zero-order absorption,

with or without lag-time.

The evolution of INR was modelled using a turnover model, describing the evolution of

coagulation factor activity F (t) = 1/INR(t) through the following equation:

dF (t)

dt
= Rsyn

(

1− Imax
C(t)γ

C(t)γ + ICγ
50

)

− kout F (t) (4)

The model was parameterised in terms of kout and INR0 = 1/F0 where, in the absence of drug,

we have the relationship: F0 kout = Rsyn.

Imax was assumed to follow a logit distribution while all the other parameters had a log-

normal distribution. For each parameter we tested whether IIV could be removed from the

model, and we also tested correlations between parameters by introducing covariances. To

select structural and variability models, we used appropriate likelihood ratio tests (LRT), based

on the log-likelihood computed using importance sampling.

Covariate model building. We examined the relationships between parameters and covari-

ates, first in the PK model alone, then in the PK/PD model. Covariate model building was done

by exploring the relationships between covariates and estimated individual parameters (obtained

as the conditional modes of the individual distribution) through linear regression for the contin-

uous covariates and parametric tests for the categorical covariates; all candidate covariates were

included in a full model, using power functions for continuous covariates; the model was then

pruned down by removing covariate effects for which the p-value of the Wald test was larger
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than 0.05, starting with the covariates which had the largest p-value. A non-significant Wald

test indicates a high estimation error for the corresponding parameter. The same approach was

used for the full PK/PD model with the best PK model, re-estimating all parameters. The final

PK/PD model was evaluated using standard diagnostic graphs provided by MONOLIX. We also

computed the shrinkage, as, for the kth- parameter:

Shk = 1−
var(η̂

(k)
i )

ω2
k

(5)

where η̂
(k)
i is the estimated kth random effect in subject i. The ǫ-shrinkage was computed

separately for PK and PD:

Shǫ = 1− var(IWRESij) (6)

where IWRES denotes the individual weighted residuals. In the presence of high shrinkage,

diagnostic plots based on individual estimated parameters are less informative [45].

Covariates missing in more than 14 subjects (10%) were excluded from the analysis; the

other missing covariates were imputed to the mean value for continuous variables and to a value

randomly sampled for the discrete covariates. The final model was checked using multiple im-

putation [46], using the package mice for R [47]. An additional exploratory analysis investigated

relationships between the PK/PD parameters and the genetic covariates in subsets of the data.

Steady-state dose. Fluindione is provided as 20 mg tablets, which can be cut in four 5 mg

pieces; dosage is often alternated (eg 10 mg one day and 5 the next). An estimate of the steady-

state dose for a given patient can be obtained through the following equations, where Css denotes

the average concentration that would be obtained for regular doses given every 24 hours, and

INRss denotes the steady-state INR that would be reached assuming the concentration remained

equal to Css:

Css =
D

24 CL

INRss =
I0



1−
Imax

1 +
(

24 CL IC50
D

)γ





We used the second equation to predict INRss given a set of PK/PD parameters, for doses

ranging from 2.5 to 30 mg per day; a dose was considered to be adequate if INRss was within

the desired therapeutic range of 2-3. We also defined a recommended dose by using 1000 Monte-

Carlo simulations taking into account IIV; for each simulation, the recommended dose was the

dose yielding the INRss closest to 2.5. An associated probability is the percentage of simulations

recommending that dose.
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of the study was the Institut de la Santé et de la Recherche Médicale (INSERM, Paris, France).

Estelle Mottez (INSERM) was instrumental in taking care of the promotion of the study.

The Centre d’Investigation Clinique (CIC) of the Bichat hospital (Paris, France) kindly ensured

the monitoring of the study. We would like to thank in particular Dr Hayk Papayan and Valérie

Vignali for their involment in the study follow-up. We would also like to thank the Centre

de Ressources Biologiques (CRB Bichat) and especially Dr Joëlle Benessiano for taking care of
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List of Figures

Figure 1: PKPD data collected in the 131 patients from the PREPA study: (top) concentration

of fluindione versus time in the study (in days); (bottom) INR versus time in the study. Dotted

lines delineate the therapeutic range for the patients in PREPA (2-3).

Figure 2: Goodness-of-fit plots: (top) observed versus predicted fluindione concentrations;

(bottom) observed versus predicted INR. The plots on the left were obtained with population

parameter estimates, while the plots on the right were obtained with individual parameter

estimates. The solid line represents the unity line around which points are expected to scatter

evenly.

Figure 3: Goodness-of-fit plots: npde with prediction intervals, for fluindione (left) and INR

(right) versus time (top) and predictions (bottom). The blue areas correspond to the prediction

intervals for the median (central band) and for the limits of the 95% prediction interval; the

thin dotted lines represent the predictions of the median and the limits, while the thick red lines

show the corresponding observed values.

Figure 4: Individual fits for 12 subjects, fluindione concentrations. Patient numbers starting

with 1 indicate patients recruited in the cardiology department, with 3 or 4 one of the two

geriatric departements, and with 5 the internal medicine department.

Figure 5: Individual fits for the same subjects, INR, superimposed with the daily dosing pattern

as vertical bars (scale for doses are on the right-hand axis).
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Table 1 : Demographic and biologic variables in the 131 patients from the PREPA study.

Variable

Median (range)

Age (yr) 85 (80-98)

Weight (kg, missing N=14) 65 (32-112)

ADL (-, missing N=6) 5.5 (1.5-6.5)

Creatinine clearance (ml/mn, missing N=3) 68 (11–179)

Gender Women: 87 (66%) Men: 44 (34%)

Surgery (cardiac surgery

before fluindione treatment) Yes: 52 (40%) No: 79 (60%)

Indication for fluindione

Atrial fibrillation 84 (64%)

Venous thromboembolism 27 (30%)

Heart valve prosthesis 43 (33%)

Most frequent comorbidities

Congestive heart disease 79 (60%)

Renal impairment 50 (38%)

Chronic pulmonary disease 28 (21%)

Peripheral vascular disease 22 (17%)

Diabetes 20 (15%)

Albumin (missing N=65) Normal (> 35): 29 30-35: 18 <30: 19

CRP (missing N=68) Normal (< 5): 13 5-50: 29 50-100: 13

≥ 100: 8

Absolute weight loss (missing N=14) 2-5 kg: 24 Over 5 kg: 21

Malnutrition (missing N=1) Yes: 27 No: 1031

Renal function (missing N=16) Normal: 27 Moderate: 66 Severe: 22

CYP2C9 *2 (missing N=86) Wild: 32 Het: 12 Mut: 1

CYP2C9 *3 (missing N=91) Wild: 31 Het: 7 Mut: 2

VKORC1 (missing N=89) CC: 11 CT: 21 TT: 10

1 for 76 subjects classified as not suffering from malnutrition and 10 with malnutrition, one or

several of the variables used to define malnutrition were missing and assumed normal



Table 2 : Parameter estimates for the PK/PD model without covariate (base model) and for

the final model. Interindividual variability is given as coefficient of variation (CV), and the

relative estimation error (RSE) is also shown.

Base model Final model

Parameter Mean (RSE %) CV % (RSE %) Mean (RSE %) CV % (RSE %)

ka (hr−1) 2.42 (-) - 2.42 (-) -

V (L) 9.06 (5) 41 (10) 8.24 (5) 36 (10)

βV,men - - 0.24 (41) -

βV,weight - - 0.57 (35) -

CL (L.hr−1) 0.12 (5) 47 (8) 0.10 (8) 42 (8)

βCL,age - - -3.26 (30) -

βCL,cordarone - - -0.18 (49) -

I0 (-) 1.11 (2) 10 (21) 1.10 (2) 7 (31)

kout (hr
−1) 0.03 (14) 80 (15) 0.03 (13) 85 (13)

IC50 (mg.L−1) 1.71 (10) 56 (10) 2.18 (11) 53 (10)

βIC50,surgery - - -0.54 (25) -

Imax (-) 0.89 (6) - 0.94 (7) -

γ (-) 1.70 (15) 53 (16) 1.71 (15) 40 (21)

βγ,surgery - - -0.46 (34) -

βγ,deroxat - - 0.88 (31) -

aPK (mg.L−1) 0.19 (15) - 0.20 (14) -

bPK (-) 0.09 (16) - 0.08 (17) -

bPD (-) 0.14 (5) - 0.13 (5) -

Removed: 1 weight was centered on 60 kg

Removed: 2 age was centered on 90 yr

The following parameter-covariate relationships were estimated, with i denoting the individual:

Vi = V

(

WEIGHTi

60

)βV,weight

Men
βV,men

i eηV,i

CLi = CL

(

AGEi

90

)βCL,age

Cordarone
βCL,cordarone

i eηCL,i

IC50,i = IC50 Surgery
βIC50,surgery

i eηIC50,i

γi = γ Surgery
βγ,surgery

i Deroxat
βγ,deroxat

i eηγ,i

(7)

where for instance Meni is 1 if i is a man and 0 if a woman. Weight was centered on 60 kg,

while age was centered on 90 yr.



Table 3 : Recommended dose depending on different patient profiles, defined as the dose

yielding a steady-state value closest to 2.5. The last column represents the percentage of time

that the corresponding dose is selected over the 1000 Monte-Carlo simulations performed, to

take into account the IIV.

Profile Recommended dose (mg) Probability

80 year old man, 60 kg 7.5 17%

80 year old woman, 60 kg 7.5 17%

80 year old man, 50 kg 7.5 16%

80 year old man, 70 kg 10 17%

90 year old man, 60 kg 5 22%

80 year old man, 60 kg, after cardiac surgery 5 24%

80 year old man, 60 kg, given cordarone 5 22%

80 year old man, 60 kg, given deroxat 5 19%
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Supplementary material

Analytical methods

Analytical methods. For patients recruited in the Bichat and Angers university hospi-

tals, INR was assayed on-site in the corresponding Laboratoire d’Hémostase, which both use a

STARE coagulometer (Diagnostica Stago, 92600 Asnières, France) and thromboplastin STA R©-

Neoplastin CI with an international sensitivity index (ISI) of 1.63 (batch number 100675, Diag-

nostica Stago) during the whole study. The samples from the 4 patients in the Beaujon hospital

were centralised at the Bichat hospital. INR was calculated from the prothrombin time (PT)

as:

INR =

(

Patient PT

mean normal PT

)ISI

(8)

The two Laboratoires d’Hémostase both perform routine controls, which included for the study

period successively C06, C07, C08 (Asqualab, Stago) that were daily checked on the coagulome-

ter. PT coefficient of variation was between 1.7-2.4% during this period.

Determination of fluindione concentrations. The samples for the measurement of fluin-

dione concentrations were frozen at -20◦C, and shipped at regular intervals throughout the study

to the Laboratoire de Pharmacologie-Toxicologie in the Angers university hospital. Plasma

fluindione was assayed with use of an HPLC–UV system Surveyor (ThermoFinnigan), with

ChromQuest software [48]. The UV spectrophotometer was set at a wavelength of 280 nm .The

separation was achieved at 40◦C temperature, with a reversed-phase 100X 4.6 mm internal di-

ameter BetaBasic-8 column and 5 µm particle size packing (ThermoElectron). The mobile phase

composition was optimized to a 0.067 mol.L−1 dibasic sodium phosphate buffer (adjusted to pH

6.3 with phosphoric acid) and acetonitrile (82:18, vol/vol) mixture. The flow rate was set at

1.5 mL.min−1.The following extraction procedure was used: 100 µ1 of plasma from human hep-

arinized blood (spiked plasma used for calibration and controls; patients’ plasma samples) was

added to a 1.5 ml tube that contained 50 µL of 20 mg.L−1 internal standard solution (warfarin)

and 100 µL acetonitrile. The tube was vortexed for 30 seconds and centrifuged for 10 minutes at

3000g. A 150 µL volume of supernatant was transferred to another tube that contained 200 µL

of phosphate buffer; 25 µL of the mixture was injected into the HPLC system. The calibra-

tion curve was linear over the range 0.05 to 6 mg.L−1. The method was highly reproducible.

The coefficient of variation was 6.1% for a fluindione concentration of 0.1 mg.L−1, 2.8% for a

concentration of 0.5 mg.L−1, and 2.3% for a concentration of 4 mg.L−1 (10 measurements for

each concentration). The estimated limit of quantification was 0.1 mg.L−1 under the conditions

described above, with a signal-to-noise ratio of 3 and a coefficient of variation lower than 20%.



Determination of genetic polymorphisms. DNA was extracted from the blood samples

of patients consenting to the genetic ancillary study. For patients from the Bichat university

hospital, the sample was directly sent to the Centre de Ressources Biologiques (CRB, DNA

bank) of the hospital, and the DNA was extracted. For patients from the other two hospitals,

samples were frozen at -20◦C and sent every 3 months to the CRB for extraction and storage.

CYP2C9*2 and CYP2C9*3 (rs number 1799853 and 1057910, respectively) as well as VKORC1

genetic polymorphism for the 1173 C>T (rs number 9934438) were determined using custom

Taq Man allelic discrimination assays (Applied Biosystems, Foster City, CA, USA) as in [40, 28].

They were performed all together at the end of study. The post-PCR-generated fluorescence

intensity was quantified using an ABI 7000 Sequence detector System software version 1.2.3

(Applied Biosystems, Courtaboeuf, France). Each SNP genotyping procedure was performed in

duplicate (separate experiments) for each patient. In cases of discordant results, samples were

analyzed by DNA sequencing to confirm the genotype. Sequenced wild-type, homozygous and

heterozygous patient samples were used as controls. All PCR reagents were purchased from

Applied Biosystems.

We chose the VKORCI 1173 C>T SNP (rs9934438) to identify the major VKORCI haplotype

groups A and B. The C allele of the 1173 C>T SNP corresponds to the group B VKORCI

haplotype and the T allele to the group A VKORCI haplotype. This SNP is in complete linkage

disequilibrium with at least four other SNPs, which all individually allow the identification of

VKORCI haplotype groups [49, 50], which has been previously confirmed in a White French

population [40].

Assessing model sensitivity

The PREPA study was an observational study, and to minimise the burden on patients, sam-

ples were taken only at the usual time for therapeutic monitoring. Figure S1 shows the dose-

normalised fluindione concentrations versus time after the dose. Several patients skipped one

or several doses, usually because the clinician was concerned about a quick rise in the INR,

therefore for these patients the time after dose exceeds 24 hours, but most samples were taken

10 to 16 hours after the dose. The main plot displays the whole dataset, while the inset shows

a zoom for time after dose lower than 48 hours, in order to better show the variability. Note

that concentrations were normalised to the last dose taken before the measurement, so that for

patients with changing doses the apparent variability may be larger since it does not take into

account the whole dosing history. This figure shows that most of the samples were clustered

between 10 and 15 hours.

Because there was concern regarding the ability of this design to properly estimate the

parameters of the model, and also in light of the discrepancy with the results previously found

in the ADAP study, we performed a small study to assess the robustness of the parameter



estimates. Due to time constraints this study was performed only for the PK model. We

simulated 20 datasets with the population parameters estimated in the ADAP study and 20

datasets with the parameters estimated with the base model (without covariates) in the PREPA

study. We then estimated the parameters of the PK model starting with initial estimates close to

those of the ADAP study. The results are displayed in Supplementary Table S3, and show that

despite the sparse design, the parameter estimates in both cases are close to the simulated values.

There was more variability in the estimates from the datasets simulated with the parameters

from the ADAP study (25% variability between runs versus 5%), partly because the IIV was

larger in ADAP than in PREPA, but it was possible to clearly distinguish between the two sets

of parameters.



Supplementary tables

Table S1: Drug classification used for the covariate analysis of the comedications in the PREPA

study (from reference [42]).

Drugs increasing the thrombotic risk

A1 enzymatic inducers (decreasing INR)

A2 other drugs inhibiting coagulation

Drugs increasing the haemorragic risk

B11 anti-vitamin K agents

B12 aspirin, non-steroidal anti-inflammatory drugs

B13 heparins

B14 other drugs

B21 enzymatic inhibitors

B22 antibiotics with a negative effect on the intestinal flora

B23 drugs acting through another mechanism



Table S2: Range of parameter estimates for the covariate effects, obtained by multiple impu-

tation (K=5 imputed datasets), compared to the estimate in the dataset where missing weight

is imputed to the mean value.

Parameter Estimate Range MI

βV,men 0.24 (41) [0.17 – 0.25]

βV,weight 0.57 (35) [0.51 – 0.63]

βCL,age -3.26 (30) [-3.38 – -2.96]

βCL,cordarone -0.18 (49) [-0.19 – -0.17]

βC50,surgery -0.54 (25) [-0.75 – -0.52]

βγ,surgery -0.46 (34) [-0.68 – -0.50]

βγ,deroxat 0.88 (31) [0.81 – 2.03]



Table S3: Results from the simulation study: PK parameter estimates obtained on N=20

datasets simulated with the design of the original study, under two different set of parameters,

ADAP=parameters estimated in the ADAP study [25]; PREPA=parameters estimated in the

current study, with the base model (no covariates). We show the median and range of the

parameters estimated in the 20 datasets for each simulation.

Parameter ADAP PREPA

Simulated Estimated Simulated Estimated

Median [range] Median [range]

V (L) 37.1 38.8 [23.0–65.3] 9.06 9.38 [8.73–10.20]

CL (L.hr−1) 0.49 0.42 [0.26–0.74] 0.12 0.12 [0.10–0.14]



Supplementary figure

Figure S1: Dose-normalised fluindione concentrations versus time after dose. Main plot: whole

dataset; Inset: zoom for time after dose lower than 48 hours. When dose changes occurred, the

last non-null dose before the measurement was taken for normalising.
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