Figure Legends

Figure 1: PiB-PET voxelwise rate of change across the mean follow-up period of 20 months.

Top: Mean values of PiB-PET rate of change across the mean follow-up period of 20 months according to each clinical group and rendered onto a 3D surface using the Anatomist/BrainVISA software (www.brainvisa.info).

Bottom: SPM glass brain render of the statistical voxelwise comparisons by clinical group on the PiB-PET rate of change images (two sample t-tests) thresholded at p < 0.001 uncorrected (k>50 voxels).

AD = Alzheimer's disease; MCI = Mild Cognitive Impairment; HC = Healthy Controls.

Figure 2: Voxelwise ANCOVA on the PiB-PET rate of change images using clinical status, clinical conversion and PiB status as categorical predictors.

Top: Mean values of PiB-PET rate of change across the mean follow-up period of 20 months according to each PiB status group (PiB+, PiB-) rendered onto a 3D surface using the Anatomist/BrainVISA software (www.brainvisa.info). Top left: SPM glass brain render of the regions showing a PiB-PET rate of change significantly positive (higher than zero) within the PiB- group using a voxelwise one sample t-test and thresholded at p < 0.001 uncorrected (k>50 voxels).

Bottom: SPM glass brain render and slice renders of the main effect of the PiB status on PiB rate of change images thresholded at p < 0.001 uncorrected (k>50 voxels). Note that the other main effects and interactions were not significant (see text for details).

PiB+= high global neocortical amyloid burden; PiB-= low global neocortical amyloid burden.

Figure 3: Histogram of the distribution of the global neocortical PiB-PET rate of change values amongst the healthy controls.

The vertical purple rectangle illustrates the PiB Accumulation status cut-offs (+0.014 $SUVR_{pons}/year$ - +0.022 $SUVR_{pons}/year$) used to determine two subgroups: Accumulators (> +0.022 $SUVR_{pons}/year$) and Non-Accumulators (< +0.014 $SUVR_{pons}/year$).

Figure 4: Plot of the global neocortical PiB-PET rate of change across the mean follow-up period of 20 months according to the baseline global neocortical PiB-PET values.

Vertical black bar indicates the PiB status cut-off (0.71 $SUVR_{pons}$) used to determine the PiB status (PiB+ vs. PiB-).

The horizontal grey rectangle illustrates the PiB Accumulation status cut-offs (+0.014 SUVR_{pons}/year - +0.022 SUVR_{pons}/year) used to determine the PiB Accumulation status (Accumulators vs. Non-Accumulators).

AD-AD = Alzheimer's disease diagnosis at baseline and at follow-up; MCI-AD = Mild Cognitive Impairment diagnosis at baseline-Alzheimer's disease diagnosis at follow-up (converters); MCI-MCI = Mild Cognitive Impairment diagnosis at baseline, still MCI at follow-up (non-converters); MCI-HC = Mild Cognitive Impairment diagnosis at baseline-Classified as "Healthy controls" at follow-up (non-converters); HC-AD = Healthy Controls at baseline-Alzheimer's disease diagnosis at follow-up (converters); HC-MCI = Healthy Controls at baseline- Mild Cognitive Impairment diagnosis at follow-up (converters); HC-HC = Healthy controls at baseline, still HC at follow-up (non-converters).

Figure 5: Voxelwise ANCOVA on the PiB-PET rate of change images in Accumulators using clinical status, clinical conversion and PiB status as categorical predictors.

Top: Mean values of PiB-PET rate of change in Accumulators across the mean follow-up period of 20 months according to each PiB status group (PiB+, PiB-) and rendered onto a 3D surface using the Anatomist/BrainVISA software (www.brainvisa.info).

Bottom: SPM glass brain render and slice renders of the main effect of the PiB status on PiB-PET rate of change images in Accumulators thresholded at p < 0.001 uncorrected (k>50 voxels). Note that the other main effects and interactions were not significant.

PiB+= high amyloid burden; PiB-= low amyloid burden.

Figure 6: Estimated course of fibrillar amyloidosis: from no A β burden to mean A β burden in PiB+ Alzheimer's disease patients.

The dynamics of PiB accumulation are estimated using the median PiB rate of change observed in the PiB- Accumulators ($+0.030 \text{ SUVR}_{pons}/\text{year}$: bold green line; Inter-Quartile Range: $+0.024 - +0.042 \text{ SUVR}_{pons}/\text{year}$: green area) to reach the PiB+ status threshold (from a baseline $+0.50 \text{ SUVR}_{pons}$ to $+0.71 \text{ SUVR}_{pons}$), and then the median PiB rate of change observed in the PiB+ Accumulators ($+0.041 \text{ SUVR}_{pons}/\text{year}$: bold green line; Inter-Quartile Range: $+0.028 - +0.059 \text{ SUVR}_{pons}/\text{year}$: green area) to reach the mean neocortical A β burden in AD (from a baseline $+0.71 \text{ SUVR}_{pons}/\text{year}$: green area) to reach the mean neocortical A β burden $+0.71 \text{ SUVR}_{pons}/\text{year}$ to $+1.02 \text{ SUVR}_{pons}/\text{o}$. As a whole, it would take about $+0.71 \text{ SUVR}_{pons}/\text{year}$ to $+1.02 \text{ SUVR}_{pons}/\text{o}$. As a whole, it would take about $+0.71 \text{ SUVR}_{pons}/\text{o}$ to $+1.02 \text{ SUVR}_{pons}/\text{o}$. As a whole, it would take about $+0.71 \text{ SUVR}_{pons}/\text{o}$ to $+1.02 \text{ SUVR}_{pons}/\text{o}$. As a whole, it would take about $+0.71 \text{ SUVR}_{pons}/\text{o}$ to $+1.02 \text{ SUVR}_{pons}/\text{o}$. As a whole, it would take about $+0.71 \text{ SUVR}_{pons}/\text{o}$ to $+1.02 \text{ SUVR}_{pons}/\text{o}$. As a whole, it would take about $+0.71 \text{ SUVR}_{pons}/\text{o}$ to $+0.71 \text{ SUVR}_{pons}/\text{o}$ to $+0.71 \text{ SUVR}_{pons}/\text{o}$. As a whole, it would take about $+0.71 \text{ SUVR}_{pons}/\text{o}$ to $+0.71 \text{ SUVR}_{pons}/\text{o}$ to $+0.71 \text{ SUVR}_{pons}/\text{o}$. As a whole, it would take about $+0.71 \text{ SUVR}_{pons}/\text{o}$ to $+0.71 \text{ SUVR}_{pons}/\text{o}$ to $+0.71 \text{ SUVR}_{pons}/\text{o}$ to $+0.71 \text{ SUVR}_{pons}/\text{o}$. As a whole, it would take about $+0.71 \text{ SUVR}_{pons}/\text{o}$ to $+0.71 \text$