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Abstract

In the nematode Caenorhabditis elegans, cholinergic motor neurons stimulate muscle contraction as well as activate
GABAergic motor neurons that inhibit contraction of the contralateral muscles. Here, we describe the composition of an
ionotropic acetylcholine receptor that is required to maintain excitation of the cholinergic motor neurons. We identified a
gain-of-function mutation that leads to spontaneous muscle convulsions. The mutation is in the pore domain of the ACR-2
acetylcholine receptor subunit and is identical to a hyperactivating mutation in the muscle receptor of patients with
myasthenia gravis. Screens for suppressors of the convulsion phenotype led to the identification of other receptor subunits.
Cell-specific rescue experiments indicate that these subunits function in the cholinergic motor neurons. Expression of these
subunits in Xenopus oocytes demonstrates that the functional receptor is comprised of three a-subunits, UNC-38, UNC-63
and ACR-12, and two non–a-subunits, ACR-2 and ACR-3. Although this receptor exhibits a partially overlapping subunit
composition with the C. elegans muscle acetylcholine receptor, it shows distinct pharmacology. Recordings from intact
animals demonstrate that loss-of-function mutations in acr-2 reduce the excitability of the cholinergic motor neurons. By
contrast, the acr-2(gf) mutation leads to a hyperactivation of cholinergic motor neurons and an inactivation of downstream
GABAergic motor neurons in a calcium dependent manner. Presumably, this imbalance between excitatory and inhibitory
input into muscles leads to convulsions. These data indicate that the ACR-2 receptor is important for the coordinated
excitation and inhibition of body muscles underlying sinusoidal movement.
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Introduction

Acetylcholine activates ligand-gated ion channels in muscles and

is a major neurotransmitter in the brain, modulating a variety of

cognitive and addictive behaviors [1]. Ionotropic acetylcholine

channels result from the assembly of five individual subunits. Each

subunit has four membrane-spanning domains, with the second

transmembrane (TM2) domain lining the pore of the channel.

Subunits assemble to form a pentameric channel; some subunits,

such as a7, can form homopentameric channels [2], but most

receptors are heteromeric [3]. For example, the well-studied

muscle receptor in mammals contains two ligand-binding a
subunits and three non–a-subunits [4,5]. By contrast, the

composition and expression pattern of most neuronal acetylcho-

line receptors have not been well defined. The subunit

composition of a channel and the identity of the pore-lining

residues are crucial for ion selectivity, gating, desensitization,

ligand affinity, and pharmacology. Because of the diversity of

acetylcholine receptor subunits and promiscuous assembly under

nonnative conditions, it remains a major challenge to define the in

vivo compositions and, consequently, the cell-specific functions of

acetylcholine-gated channels.

The genome of the nematode C. elegans encodes 29 acetylcholine

receptor subunits [6,7]. The most well-studied receptor is the

levamisole-sensitive receptor expressed in the body muscle. The

levamisole-sensitive receptor is composed of three a-subunits,
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UNC-38, UNC-63, and LEV-8, and two non–a-subunits, UNC-

29 and LEV-1 [7–13]. This receptor functions as the main

excitatory postsynaptic receptor at neuromuscular junctions.

Genome-wide transgene expression studies indicate that a large

number of acetylcholine receptor subunits are expressed in

neurons [14]. However, candidate null mutations for many

acetylcholine receptor subunits cause few discernable defects.

The roles and compositions of most neuronal acetylcholine

receptors remain unknown, and reconstitution experiments have

not been performed.

In this study, we identify all five subunits of a neuronal

acetylcholine receptor and characterize its function in a neural

circuit controlling C. elegans locomotion. Our approach relied on a

mutant strain exhibiting severe convulsions due to overstimulation

of the muscles. Molecular characterization demonstrated that this

mutant strain possessed an activating mutation in an acetylcholine

receptor subunit, ACR-2. We identified the other components of

the ACR-2 receptor by screening for second-site mutations that

ameliorated the convulsive phenotype. Combined with cell-type

expression studies and receptor reconstitution in Xenopus oocytes,

these data led to a complete description of the subunit composition

of a neuronal acetylcholine receptor. We further demonstrated

that the ACR-2 receptor functions to maintain excitability of the

cholinergic neurons, by recording synaptic activity in the null and

activated mutants. The hyperactivating ACR-2 mutation leads to

enhanced neurotransmitter release from the cholinergic motor

neurons, and intriguingly, an inactivation of the GABAergic motor

neurons that receive inputs from the cholinergic motor neurons.

The imbalance in the excitation and inhibition within the motor

circuit disrupts coordinated body muscle contraction.

Results

An Activated Acetylcholine Receptor Subunit
C. elegans crawls by generating a sinusoidal wave that is

propagated from the head to the tail. These contractions are

generated by acetylcholine released from ventral cord motor

neurons. The cholinergic motor neurons form dyadic synapses,

simultaneously innervating the musculature and GABAergic

motor neurons [15]. The GABAergic motor neurons form

neuromuscular junctions on the opposite side of the animal and

thereby relax muscles on the opposite side of the body. In the

absence of GABA neurotransmission C. elegans hypercontract or

‘‘shrink’’ when stimulated to move by gentle touch [16]. We

isolated the mutation n2420 in a screen for mutants that shrink in

response to gentle touch. However, n2420 worms have an

additional phenotype not expressed by classic shrinker mutants:

they shrink spontaneously, referred to here as a ‘‘convulsion’’

(Video S1). Thus, the mutant combines the classic phenotype of a

loss of GABA function with spontaneous activation of muscle

contraction. The convulsion phenotype is recessive, although

n2420 is a semidominant gain-of-function mutation (described

below).

We mapped n2420 between lon-2 and unc-6 on chromosome X

(Figure 1A). Microinjection of the cosmid C46C10 rescued both

the spontaneous convulsions and uncoordinated behavior of acr-

2(n2420) animals. The rescuing activity was further narrowed to a

10-kb DNA fragment containing the acr-2 gene (Figure 1B). The

acr-2 gene encodes a 580–amino acid subunit of an ionotropic

acetylcholine receptor [17]. The predicted genomic organization

was confirmed by the sequences of four cDNAs that correspond to

the acr-2 locus (see Materials and Methods). acr-2 is the upstream

gene in an operon, with the closely related gene acr-3 immediately

downstream (Figure 1B) [18]. ACR-2 and ACR-3 are non–a-

subunits in the heteromeric receptor clade. They are closely

related to the UNC-29 and LEV-1 subunits of the levamisole-

sensitive receptor and more distantly to the vertebrate heteromeric

receptor subunits (Figure 1C).

The molecular lesion of acr-2(n2420) is consistent with its being

a gain-of-function mutation in the ion channel. The mutation in

n2420 results in a valine 309 to methionine substitution, which is at

the 139 position in the pore-forming TM2 domain of the ACR-2

subunit (TM2 numbering scheme as in [19]) (Figure 1D). The 139

position is thought to line the pore and contribute to ion selectivity

[20]. A similar mutation at the 139 position leads to neurodegen-

eration in the neuronal acetylcholine receptor DEG-3 [21]. A

corresponding mutation in the b-subunit of the muscle acetylcho-

line receptor is found in human patients with myasthenia gravis

[22]. This substitution generates a receptor with increased

sensitivity to acetylcholine, prolonged open times, and spontane-

ous activity in the absence of acetylcholine [22]. The pharmaco-

logical responses of the n2420 strain are consistent with an

activation mutation in an acetylcholine receptor. The convulsions

were reversibly suppressed by mecamylamine (Figure 2A, Video

S2), a noncompetitive open-channel blocker [23]. The mutant

animals were hypersensitive to aldicarb (Figure 2B), an acetylcho-

linesterase inhibitor that prolongs endogenous acetylcholine

stability in the synaptic cleft [7]. acr-2(n2420) animals were also

hypersensitive to the acetylcholine agonist levamisole (Figure 2C),

which activates a class of acetylcholine receptors expressed on

nematode muscles. The hypersensitivity to both aldicarb and

levamisole has been observed in several mutants that exhibit an

increased level of acetylcholine release and a reduced level of

GABA release onto the muscle [24].

The n2420 mutation genetically behaves as a weak semidom-

inant mutation. Heterozygous n2420 animals (n2420/+) are

slightly uncoordinated when moving backward. The dominant

phenotype is not caused by haploinsufficiency of this interval, since

hemizygous animals carrying a deficiency of the region in trans to a

wild-type chromosome (+/Df ) move normally (see Materials and

Author Summary

Neuronal acetylcholine receptors modulate a wide range
of activities in vertebrates and invertebrates. The activity
and sensitivity of these receptors to particular pharmaco-
logical agents is determined by the subunit composition of
the receptors. A rich diversity of acetylcholine receptors
are expressed in the nervous system of the nematode C.
elegans, and like their mammalian counterparts, their
subunit compositions are not understood. Here, we
identify an activating mutation in a neuronal acetylcholine
receptor subunit that causes convulsive body muscle
contractions. By isolating suppressors of the convulsive
phenotype, we are able to identify the genes required for
the assembly and function of this acetylcholine receptor.
Reconstitution studies in oocytes demonstrate that this
acetylcholine receptor is composed of five different
subunits. The contraction and relaxation of body muscles
are coordinated by the neurotransmitters acetylcholine
and GABA, respectively. In vivo recordings reveal that loss
of this ion channel leads to a decrease in the activation
state of the cholinergic motor neurons. By contrast,
hyperactivation of the ion channel leads indirectly to the
silencing of GABAergic motor neurons. The resulting
imbalance in the locomotory circuit causes convulsions
of the body muscle. This imbalance in excitation and
inhibition of the locomotion circuit mimics the neurolog-
ical features observed in epilepsy.

C. elegans ACR-2 Receptor Regulates Locomotion
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Methods). Nevertheless, the convulsion phenotype of n2420

mutants is recessive (Figure 2D). Homozygotes of n2420 contract

spontaneously at a frequency of 961 convulsions per minute,

whereas heterozygotes of n2420/+ do not exhibit convulsions. In

fact, animals that are heterozygous for acr-2(n2420) and a

deficiency of the region (n2420/Df) (see Materials and Methods)

or a null mutation (Figure 2D and described below) also lack

spontaneous convulsions, indicating that the mutation causes

altered gene function [25]. The convulsion behavior is not

observed in young larvae and is first visible at the L3 stage

(Figure 2E).

ACR-2 Regulates Excitation of Cholinergic Motor Neurons
To determine the site of action of acr-2, we constructed

transcriptional reporter genes by placing the fluorescent proteins

GFP or mCherry under the control of a 3.5-kb or a 1.8-kb acr-2

promoter region (see Materials and Methods). Both promoters

drove expression predominantly in the neurons of the ventral cord

from L1 larvae to adults (Figure 3A). Based on their birth times,

numbers, positions, and axon morphologies, these neurons were

determined to be cholinergic motor neurons of the VA, VB, DA,

and DB classes, and not the AS and VC classes [26]. GFP

expression driven by the longer acr-2 promoter was frequently seen

in the PVQ and DVC neurons in the tail and was infrequently

observed in a few head neurons (Figure 3A). Coexpression with

reporter genes for GABAergic neurons and interneurons con-

firmed that the acr-2 transcriptional reporters were not expressed

in the ventral cord GABAergic motor neurons or in the

interneurons expressing glr-1 or nmr-1 (Figure 3B). The acr-

2(n2420gf) convulsion defect was not rescued when we expressed

the ACR-2 protein in the GABAergic neurons (Figure 3C).

Expression of an acr-2 mini-gene in which the genomic sequences

from exon 2 through 39 UTR was replaced by acr-2 cDNA, driven

under the 1.8-kb short promoter, could rescue the convulsion

defect to a similar degree as the full-length acr-2 (Figure 3C). These

data suggest that ACR-2 functions in the cholinergic ventral cord

motor neurons.

We next sought to obtain null mutations in acr-2 by performing

a genetic screen for suppressors of acr-2(n2420gf) convulsions (see

Materials and Methods). We identified 30 suppressors that

exhibited dominant suppression of the convulsion (Figure 2D).

They were mapped to the X chromosome and were found to be

tightly linked to acr-2(n2420gf). Sequencing of the DNA revealed

that 26 of these linked suppressors contained mutations in the acr-2

gene itself (Figure 4A, Table S1). Mutations in the other four

linked suppressor strains have not yet been identified in the acr-2 or

in the immediately downstream acr-3 open reading frames. The

identification of acr-2 intragenic second-site suppressor mutations

further supports the conclusion that acr-2(n2420gf) results in a

hyperactive receptor.

The analysis of the molecular lesions in the acr-2 intragenic

mutations indicates that eight are likely to be strong lossof-function

or null mutations, since they introduce stop codons or alter splice

junctions that would result in truncated or nonfunctional products.

For example, two independent isolates (n2595 and n2651)

introduce an opal stop at Trp175 about halfway through the

extracellular domain (Figures 4A and S1), likely representing null

mutations in acr-2. Among the other 16 intragenic revertants with

amino acid substitutions, 13 affect amino acid residues in the

extracellular domain (Figure 4A). Some of these mutations alter

candidate ligand-binding residues (such as n2603 and n2581),

consistent with the idea that these intragenic revertants abolish the

activity of acr-2(n2420gf). Two intragenic mutations (n2594 and

n2604) are located in the M2-M3 linker, a region that affects

gating of acetylcholine receptors [27].

The acr-2 loss-of-function mutants are healthy but exhibit

slightly sluggish locomotion. The speed of young adult animals was

determined using a worm-tracking system. The average velocity of

acr-2(n2595 n2420) worms was reduced by 28% compared to that

of the wild type (Figure 4B). This defect was not caused by

background mutations, since this phenotype could be rescued by a

wild-type transgene. We also obtained a deletion allele acr-

2(ok1887) that removes the 59 region of the gene (Figure 4A). By

movement, acr-2(ok1887) was indistinguishable from acr-2(n2595

n2420). Both acr-2(n2595 n2420) and acr-2(ok1887) mutants were

fully sensitive to levamisole, the muscle receptor agonist, but were

moderately resistant to aldicarb (Figure 2B and 2C). The overall

axon morphology and synapses of the cholinergic motor neurons

are grossly normal in acr-2(lf) animals (unpublished data). These

data suggest an impairment in acetylcholine release in acr-2 null

mutants.

To determine the nature of the synaptic defect in acr-2 null

mutants, we performed patch-clamp recordings of the muscle

under voltage-clamp conditions. Acetylcholine release was mon-

itored by quantifying miniature postsynaptic currents (‘‘minis’’).

Each miniature current is caused by neurotransmitter release from

a single, or very few, synaptic vesicles from a motor neuron. Under

standard conditions, acetylcholine and GABA currents are isolated

pharmacologically [28]; however, we wished to preserve interac-

tions between cholinergic and GABAergic motor neurons, so we

used recording conditions in which these inputs into muscles could

be distinguished without resorting to the use of drugs. Specifically,

intracellular solutions were used in which the equilibrium potential

for chloride was 259 mV, and the equilibrium potential for

cations was 0 mV (see Materials and Methods). At 260 mV,

acetylcholine-induced minis would be inward currents, and

GABA-induced minis not distinguishable, whereas at 210 mV,

GABA-induced minis would be outward currents, and acetylcho-

line-induced minis would be very small inward currents. In the

presence of 2 mM calcium in the external solution, the frequency

of acetylcholine minis was reduced to 60% in acr-2(n2595 n2420)

mutants and 62% in acr-2(ok1887) mutants compared to that of the

wild type (Figures 4C, 4D, S3A, and S3B). In addition, GABA

mini frequency was reduced to 70% in acr-2(n2595 n2420) and

67% in acr-2(ok1887) mutants compared to the wild type, although

this reduction did not reach significance (Figures 4C, 4D, S3A,

and S3B). The amplitude of minis remained unchanged in both

mutants (Figures S2 and S3C). These results indicate that in the

absence of acr-2 function, neurotransmission from the cholinergic

motor neurons is impaired, leading to a weak defect in locomotion.

The cholinergic motor neurons form synapses onto the GABAer-

gic motor neurons [15]. The mild effect on GABA neurotrans-

mission might be an indirect effect of reduced excitation from the

cholinergic motor neurons.

Figure 1. acr-2 locus. (A) Genetic position of acr-2 on the left arm of the X chromosome. (B) Representative cosmids and subclones used in germline
transformation rescue of acr-2(n2420gf). Rescue of spontaneous convulsion is indicated by a plus sign (+); and no rescue by a minus sign (2).
Canonical cosmids F38B6 and K11G12 are shown in parentheses. (C) ACR-2 is a member of the UNC-29 class non–a-subunits of the acetylcholine
receptor family [14]. (D) The n2420 mutation causes a valine-to-methionine change in the 139 position of the pore-forming second transmembrane
domain (TM2, residues are colored in teal). The amino acid at the 139 position is oriented toward the pore; orange mark residues lining the pore [20].
doi:10.1371/journal.pbio.1000265.g001
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acr-2 Gain-of-Function Mutation Increases Acetylcholine
and Decreases GABA Transmission

Since loss of acr-2 function causes a decrease in cholinergic

motor neuron activity, then it is likely that the gain-of-function

mutation hyperactivates cholinergic neurons. The hypersensitivity

of acr-2(n2420gf) animals to aldicarb (Figure 2B) is consistent with

this idea. Our recordings of endogenous mini currents in the

dissected preparation supported this prediction, but we also found

that hyperactivity of the cholinergic neurons was highly sensitive to

calcium. We recorded the frequency of acetylcholine-induced mini

currents at three concentrations of calcium: 0.5 mM, 2 mM, and

5 mM. At 0.5 mM calcium, the acetylcholine mini frequency in

acr-2(n2420gf) animals was 150% compared to the wild type

(Figure 5A), demonstrating that the altered pore domain of this

mutant receptor caused an increase in activity in cholinergic

neurons. In 2 mM extracellular calcium, the frequency of

acetylcholine minis in acr-2(n2420gf) was not increased but was

similar to the wild type (Figure 5B). At 5 mM calcium, mini

frequency in the acr-2(n2420gf) cholinergic neurons was reduced to

30% compared to the wild type (Figure 5C). Thus, in acr-

2(n2420gf) animals, the cholinergic neurons are more active than

those in the wild type at low levels of calcium, but these motor

neurons are inhibited at very high levels of calcium in the mutant.

No discernable abnormalities in morphology and synapses of the

cholinergic motor neurons were observed in acr-2(n2420gf) animals

(Figure S4). Hyperactive acetylcholine neurotransmission is a likely

cause of the spontaneous muscle contractions observed in the gain-

of-function acr-2 mutant.

In addition to spontaneous muscle contraction, acr-2(n2420gf)

mutants behave as though they are impaired for GABA

transmission, that is, they shrink when touched. The shrinking

behavior could be the result of GABAergic neuron developmental

defects [29]. Neurogenesis and axon morphology were normal

based on GFP expression in the GABAergic neurons (unpublished

data). Synaptic development was assayed by quantifying synaptic

varicosities in the GABAergic motor neurons. Synaptic vesicle

clusters were marked by expressing GFP-tagged synaptobrevin in

the GABAergic neurons and fluorescent puncta along the ventral

cord were counted. The number of fluorescent clusters was similar

in acr-2(n2420gf) animals and the wild type (Figure S5A),

suggesting that there is no gross morphological defect of GABA

neuromuscular junctions.

We assayed synaptic function from GABA neuromuscular

junctions by recording minis in the muscles of acr-2(n2420gf)

mutants. Our electrophysiological recordings revealed a reduction

in GABA neurotransmission in the gain-of-function mutant.

However, unlike cholinergic motor neurons, the activity of

GABAergic motor neurons was reduced at all concentrations of

calcium tested. At 0.5 mM calcium, the mini frequency from

GABAergic neurons was only slightly reduced in acr-2(n2420gf)

animals, 78% compared to the wild type (Figure 5A). But at 2 mM

or 5 mM calcium, the mini frequency from GABAergic motor

neurons was reduced to about 15% (Figure 5B and 5C). This

reduction in neurotransmission from GABAergic motor neurons is

consistent with the shrinking behavior observed in these animals.

In addition to a reduction in activity from GABAergic motor

neurons, the shrinking behavior could be caused by a reduction

in postsynaptic sensitivity to GABA release. We therefore

assayed muscle sensitivity to exogenous GABA to determine

whether postsynaptic GABA responses are normal in acr-

2(n2420gf) mutants. We pressure-ejected GABA (100 mM) onto

body muscle cells and recorded currents from muscle cells of

wild-type or acr-2(n2420gf) animals. GABA-evoked outward

currents were similar in mean amplitude in the mutant

compared to the wild type (Figure S5B), suggesting that GABA

receptors are expressed and functional on the membrane of the

muscle. To further determine whether the receptors are localized

to synapses, we measured GABA-mediated mini amplitudes,

which is a measure of the number of receptors activated by the

release of GABA from synaptic vesicles at neuromuscular

junctions. Mini amplitudes were normal in acr-2(n2420gf)

mutants (Figure S5C), suggesting that clustering and function

of postsynaptic GABA receptors are normal in acr-2(n2420gf)

mutants. From these results, we inferred that postsynaptic

response to GABA is normal, but that neurotransmitter release

from the GABAergic motor neuron is impaired in acr-2 gain-of-

function worms. Because acr-2 is not expressed in GABAergic

neurons, depression of neurotransmission in GABAergic neurons

is likely to be an indirect effect of hyperactivated cholinergic

neurons expressing acr-2.

Extragenic Suppressors of acr-2(n2420gf) Identify a
Neuronal Acetylcholine Receptor

ACR-2 is a non–a-subunit and must interact with other

subunits to form a functional receptor. To identify the partners

of acr-2, we analyzed extragenic suppressor mutations of acr-

2(n2420gf) (see Materials and Methods). Ten suppressor mutations

were linked to chromosome X and fully suppressed convulsions of

the acr-2(n2420gf) strain. The mutants exhibited no obvious

movement defects when separated from the acr-2 gain-of-function

mutation. We mapped one of these mutations to a region between

+11.80 and +12.93 (see Materials and Methods). Within this

interval is the acr-12 gene, which encodes an acetylcholine receptor

a-subunit that is most similar to the LEV-8 (ACR-13) acetylcho-

line receptor subunit (Figure 1C). Analysis of the DNA sequence

revealed that all ten suppressors contained missense or nonsense

mutations in acr-12 (Figure 6A). An acr-12(ok367) deletion

mutation that removes a large part of the protein also fully

suppressed acr-2(n2420gf) convulsion (Figure 6A and 6C).

Furthermore, microinjection of a genomic fragment containing

the wild-type acr-12 gene into the suppressed acr-2(n2420gf) acr-

12(ok367) strain restored the convulsive phenotype in transgenic

animals (Figure 6C), thereby confirming the identification of the

acr-12 gene as the suppressor locus.

Nine extragenic suppressor mutations caused sluggish move-

ment when separated from acr-2(n2420gf), and the mutant animals

were resistant to the acetylcholine agonist levamisole (Table S1).

These mutations fully suppressed the convulsions of acr-2(n2420gf)

mutants (Figure 6B), but the double mutants remained uncoor-

dinated and resistant to levamisole (Table S1, and unpublished

Figure 2. Mutant phenotypes and pharmacological analysis of acr-2(n2420gf) mutants. (A) Suppression of the convulsions of acr-2(n2420gf)
mutants by exogenous mecamylamine (100 mM). The effects of mecamylamine are reversible. (B) acr-2(n2420gf) mutants are hypersensitive, and acr-
2(lf) mutants are moderately resistant to aldicarb. The graph shows the time course of the response of adult hermaphrodites to 0.5 mM aldicarb, from
three trials with ten animals per genotype per trial. *p,0.001 between wild type and mutants (two-way ANOVA). (C) acr-2(n2420gf) mutants are
hypersensitive to levamisole. The graph shows the time course of the response of 1-d-old hermaphrodites to 1 mM levamisole, from three trials with
ten animals per genotype per trial. *p,0.001 between wild type and acr-2(n2420gf) (two-way ANOVA). (D) Quantification of convulsion rates of 1-d-
old hermaphrodites of various genotypes. (E) Developmental onset of the convulsion phenotype of acr-2(n2420gf) animals occurs during the L3
stage. OA, 2-d-old adult; YA, 1-d-old adult.
doi:10.1371/journal.pbio.1000265.g002
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Figure 3. acr-2 is expressed and functions in the cholinergic ventral cord motor neurons. (A) Expression pattern from a 3.5-kb acr-2
promoter-driven Pacr-2-GFP transgene (juIs14) in an L1 (upper image) and an L4 larva. Middle image is a side view, and the bottom image is a ventral
view of an L4 larva. The number and positions of the cells and the sides of the commissures indicate that they are embryonically born DA and DB and
postembryonically born VA and VB neurons. Expression is also seen in DVC in the tail (arrow, middle panel). Scale bars indicate 10 mm. (B). The top
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data). Genetic mapping, complementation tests and DNA

sequence analyses demonstrated that these nine mutations were

alleles of two a-subunits, unc-38 and unc-63, and of two genes

required for transport of acetylcholine receptors to the cell surface,

unc-50 and unc-74 (Table S1) [8,30] (D. Williams and E. M.

Jorgensen, unpublished data).

Multiple lines of evidence indicate that the cellular focus of the

ACR-2 and the other acetylcholine receptor subunits is in the

cholinergic motor neurons and not in the muscles. First, the other

subunit genes that contribute to the levamisole-sensitive receptor

in the muscle, lev-8, unc-29, and lev-1, were not identified in the

suppressor screen, and mutations in these genes indeed did not

Figure 4. Acetylcholine neurotransmission is reduced in acr-2 null mutants. (A) acr-2 gene structure with the intragenic mutations identified
from the acr-2(n2420gf) suppressor screen. acr-2(n2595 n2420) contains a nonsense mutation at the codon for tryptophan 175 in addition to the
original gain-of-function mutation and is used as the null mutant in this figure. ok1887 removes the first three exons and inserts 420 bp of unrelated
DNA. Details of the nucleotide and amino acid changes are shown in Table S1 and Figure S1. Boxes indicate exons; lines, introns; M, transmembrane
domain; an asterisk (*) indicates mutations at the splice junctions; X indicates stop codon mutations. (B) Average speed of wild-type (3.9 mm/
min60.3 SEM, n = 16), acr-2(n2595 n2420) (2.8 mm/min60.1 SEM, n = 16), and acr-2(n2595 n2420) worms carrying a Pacr-2::acr-2 construct (4.0 mm/
min60.4 SEM, n = 16). An ANOVA test followed by a Dunn’s post test was used to analyze the data; *p,0.05. (C) Acetylcholine mini frequencies
recorded in 2 mM external CaCl2 from the wild type (21.9 events/s63.2 SEM, n = 5) and acr-2(n2595 n2420) (12.9 events/s61.6 SEM, n = 9) are
significantly different (*p = 0.015). GABA mini frequencies recorded in 2 mM external CaCl2 from the wild type (14.9 events/s65.4 SEM, n = 5) and acr-
2(n2595 n2420) (10.4 events/s62.2 SEM, n = 9) are not significantly different (p = 0.38). Data were analyzed using a two-tailed unpaired t-test. (D)
Representative traces of minis recorded at two holding potentials, 260 and 210 mV, on body muscle cells from wild-type and acr-2(n2595 n2420)
worms in 2 mM external CaCl2.
doi:10.1371/journal.pbio.1000265.g004

image shows nonoverlapping expression of Pacr-2-GFP (juIs14) (green) and Pttr-39-mcherry (juIs223) (red) marking the DD and VD GABAergic neurons.
The bottom images show nonoverlapping expression of the 1.8-kb promoter-driven Pacr-2-mcherry transgene (juEx2045) (red) and those of Pglr-1-GFP
(nuIs1) (green) or Pnmr-1-GFP (akIs3) (green), which label the command interneurons in the head (left panels) and tail (right panels) ganglia.
Transcriptional activity of the acr-2 1.8-kb promoter is not seen in any head neurons. Scale bars indicate 10 mm. (C) Quantification of cell-type–specific
transgenic rescue of the convulsion defects in acr-2(n2420gf) animals. Pacr-2::acr-2 contains the full-length genomic coding sequence driven by the
3.5-kb-long promoter. Pacr-2::acr-2(mini) contains cDNA that replaced genomic DNA from exon 2, driven by the 1.8-kb promoter. Punc-25::acr-2
contains the full-length genomic coding sequences driven by the 1.4-kb unc-25 promoter. n = 10, 10, 5, 10, and 8 for N2, acr-2(n2420gf), acr-
2(n2420gf);Pacr-2-acr-2(oxEx707), acr-2(n2420gf); Pacr-2-acr-2(mini) (juEx2336), and acr-2(n2420gf);Punc-25-acr-2(juEx32), respectively.
doi:10.1371/journal.pbio.1000265.g003
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suppress the acr-2(n2420gf) phenotype in double mutants

(Figure 6B). Second, mutations in the nicotine-sensitive muscle

receptor acr-16 did not suppress acr-2(n2420gf) (Figure 6B). Third,

specific expression of unc-63 cDNA in cholinergic neurons driven

by the 1.8-kb acr-2 promoter, but not in muscles (by the myo-3

promoter) or in GABAergic neurons (by the unc-25 promoter),

restored convulsions in unc-63(lf); acr-2(n2420gf) double mutants

(Figure 6C). Fourth, acr-12 is expressed in neurons, but not

muscles [31,32]. Specific expression of acr-12 in the cholinergic

motor neurons, but not GABAergic motor neurons, restored

convulsions in acr-2(n2420gf) acr-12(ok367) double mutants

(Figure 6C). Last, we tested mutations in other neuronally

expressed acetylcholine receptor subunits, including acr-5, acr-9,

acr-14, and acr-19, and found that none of them suppressed acr-

2(n2420gf) (Figure 6B and unpublished data). Together, these

results support the conclusion that UNC-38, UNC-63, ACR-12,

and ACR-2 are components of a receptor that functions in the

cholinergic motor neurons.

Reconstitution of an ACR-2–Containing Acetylcholine
Receptor in Xenopus Oocytes

To further verify the subunit composition of the ACR-2–

containing receptor (referred to as ACR-2R) and characterize its

pharmacology, we performed reconstitution experiments using

Xenopus oocytes. Previous attempts to reconstitute C. elegans

levamisole-sensitive acetylcholine receptors in Xenopus oocytes

demonstrated that the requirements for functional expression in

vitro recapitulate genetic requirements in vivo [13]. Specifically,

the ancillary proteins UNC-50 and UNC-74, and to a lesser extent

RIC-3, which are involved in the assembly and trafficking of

levamisole-sensitive acetylcholine receptors in worms [33], are

required for function of levamisole-sensitive acetylcholine recep-

tors in oocytes. The finding that loss-of-function mutations in unc-

50 and unc-74 suppress acr-2(n2420gf) suggests that these two

ancillary proteins also function in ACR-2R assembly and

trafficking. ric-3 animals were not identified in the acr-2(n2420gf)

suppressor screen, likely because these animals are severely

uncoordinated and unhealthy. We therefore constructed ric-3;

acr-2(n2420gf) double mutants and found that the convulsion

frequency was dramatically reduced (Figure 6B), indicating a

requirement of ric-3 for acr-2(n2420gf) function. Consequently, we

coinjected cRNAs for acr-2, acr-12, unc-38, and unc-63, together

with unc-50, unc-74, and ric-3 cRNAs at equal molar ratios (see

Materials and Methods). This experiment yielded little or no

current (Figure 7D), suggesting that a factor was missing. Since the

closely related acetylcholine receptor subunit acr-3 is part of the

acr-2 operon (Figure 1B and 1C), it is likely that the ACR-2 and

ACR-3 subunits are coexpressed in the same cells. When the acr-3

cRNA was added to the previous injection mix, robust expression

of an acetylcholine-gated ion channel was observed (Figure 7A and

7D). Pharmacological characterization demonstrated that the

ACR-2R channel was weakly activated by nicotine and DMPP,

and almost completely insensitive to levamisole or choline, and

was efficiently blocked by mecamylamine (Figure 7A and 7C). The

estimated median effective concentration (EC50) of the ACR-2R

receptor was 14.161.2 mM, and the Hill coefficient was

1.2560.12 (Figure 7E).

To further analyze the impact of the acr-2(n2420gf) mutation on

receptor physiology, we replaced the wild-type cRNA of acr-2 with

a cRNA carrying the n2420 mutation, and analyzed the mutant

receptor (referred as ACR-2(V139M)R). Introduction of this point

mutation caused a 14-fold increase in current compared to the

wild-type ACR-2 subunit (Figure 7D). The pharmacological

profile of the ACR-2(V139M) receptor was also modified: 1)

response to 100 mM DMPP was strongly increased, and 2) choline

and levamisole caused modest receptor activation (Figure 7B and

7C). However, the acetylcholine EC50 was not significantly

changed (17.861.4 mM; Figure 7E), and no leak current could

be recorded. The ACR-2(V139M) receptor remained fully blocked

by mecamylamine, in agreement with the suppression of

convulsions of acr-2(n2420gf) by this drug (Figure 2A).

acr-3 was required in oocytes for expression of ACR-2R

receptors, but acr-3 was not identified as an extragenic suppressor

of acr-2(n2420gf). Moreover, a loss-of-function mutation in acr-3

did not affect the convulsion behavior caused by transgenic

expression of acr-2(V139M) (Figure S6). Hence, we analyzed the

properties of a putative ACR-2(V139M) receptor missing ACR-3.

Removing acr-3 cRNA from the injection mix only partially

reduced the average current size, which remained almost 4-fold

higher than what we observed with the full complement of wild-

type subunits (Figure 7D). This finding likely explains why

eliminating acr-3 in an acr-2(n2420gf) gain-of-function background

would not lower the convulsion phenotype enough for it to be

identified in our suppressor screen. In summary, our oocyte

reconstitution studies identified the complete molecular composi-

tion of ACR-2 channel and demonstrated that it is a bona fide

acetylcholine receptor.

Discussion

The vast number and overlapping expression of acetylcholine

receptor subunits make it challenging to decipher the in vivo

composition of functional acetylcholine channels. By analyzing

suppressor mutations of an activated ACR-2 acetylcholine

receptor, we were able to define the components of this neuronal

acetylcholine receptor. Our studies reveal four aspects of

acetylcholine receptor function in C. elegans. First, pharmacology

Figure 5. acr-2(n2420gf) mutants exhibit reduced GABA neurotransmission. (A) Representative traces (upper panel) and frequencies (lower
panel) of endogenous postsynaptic currents recorded at two holding potentials, 260 and 210 mV, from wild-type and acr-2(n2420gf) worms in 0.5 mM
external CaCl2. The frequency of miniature postsynaptic currents from cholinergic neurons is increased in the gain-of-function mutant (wild type: 12.1
events/s61.1 SEM, n = 8; acr-2(n2420gf): 18.3 events/s62.2 SEM, n = 9; *p = 0.0307). The frequency of miniature currents induced by GABAergic motor
neurons was only slightly reduced in the gain-of-function mutant (wild type: 9.2 events/s62.3 SEM, n = 8; acr-2(n2420gf): 7.2 events/s62.1 SEM, n = 9;
p = 0.5342). Data were analyzed using a two-tailed unpaired t-test. (B) Representative traces (upper panel) and frequencies (lower panel) of endogenous
postsynaptic currents recorded at two holding potentials, 260 and 210 mV, from wild-type and acr-2(n2420gf) worms in 2 mM external CaCl2.
Acetylcholine currents frequencies recorded from the wild type (18.9 events/s62.3 SEM, n = 10) and acr-2(n2420gf) (18.7 events/s62.6 SEM, n = 14) are
not significantly different (p = 0.9555). GABA currents recorded from the wild type (9.9 events/s61.7 SEM, n = 10) and acr-2(n2420gf) (1.2 events/s60.6
SEM, n = 14) are significantly different (*p = 0.0007). Data were analyzed using a two-tailed unpaired t-test with Welch’s correction. (C) Representative
traces (upper panel) and frequencies (lower panel) of endogenous postsynaptic currents recorded at two holding potentials, 260 and 210 mV, from
wild-type and acr-2(n2420gf) worms in 5 mM external CaCl2. Acetylcholine currents frequencies recorded from the wild type (24.9 events/s63.4 SEM,
n = 8) and acr-2(n2420gf) (7.6 events/s62.7 SEM, n = 7) are significantly different (*p = 0.0017). GABA currents recorded from the wild type (13.4 events/
s62.0 SEM, n = 8) and acr-2(n2420gf) (2.3 events/s61.0 SEM, n = 7) are significantly different (**p = 0.0004). Data were analyzed using a two-tailed
unpaired t-test.
doi:10.1371/journal.pbio.1000265.g005
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and function of acetylcholine receptors is the result of combina-

torial subunit assembly in neurons and muscles. Second, a gain-of-

function mutation in the pore domain of the neuronal receptor

affects the pharmacology of the channel. Third, the ACR-2

neuronal receptor maintains motor neuron excitability in

locomotion. Fourth, the physiological consequences of the gain-

of-function ACR-2 receptor have revealed an unexpected

inhibitory relationship between the cholinergic and GABAergic

motor neurons within the motor circuit.

Composition and Characteristics of the ACR-2
Acetylcholine Receptor

The ACR-2–containing acetylcholine receptor in neurons is

closely related to the levamisole-sensitive acetylcholine receptor

that functions in C. elegans body muscle. Both receptors contain five

distinct subunits, including three a- and two non–a-subunits. The

UNC-38 and UNC-63 a-subunits are common to both receptors,

yet the pharmacological profiles of the two receptors are very

distinct (Table 1). ACR-2R receptors are slightly more sensitive to

acetylcholine than levamisole-sensitive receptors, with an EC50 of

14 mM as compared to 26 mM, respectively (this study and [13]).

Strikingly, levamisole has no effect on the ACR-2R neuronal

receptor but potently activates the levamisole-sensitive muscle

receptor. Nicotine weakly activates ACR-2R receptor but inhibits

the levamisole receptor (this study and [13]). In ionotropic

acetylcholine receptors, agonist binding sites are formed at the

interface between the (+) side of an a-subunit and the (2) side of

the adjacent subunit [4,5]. Binding sites for noncompetitive

agonists and antagonists have also been identified at the non-

a(+)/a(2) subunit interface [34]. If UNC-38 and UNC-63 are not

adjacent within receptor pentamers, the unique subunits (Table 1)

will modify the complementary surface of each binding site and

change the binding pocket and transduction residues for these

drugs.

Effects of V139M Mutation on ACR-2R Channel Activity
The gain-of-function mutation in acr-2 changes a valine to a

methionine at the 139 position of the pore-forming transmembrane

domain of the ACR-2 subunit. The 139 position is in the upper

half of the lumen and faces the pore [20]. A valine residue at this

position is highly conserved in acetylcholine receptors, suggesting

that it is important for proper receptor function. A V139M

mutation in the b1-subunit of the human muscle acetylcholine

receptor causes myasthenia gravis [22]. When expressed in HEK

cells, the receptors containing the b1(V139M)subunit exhibited

higher acetylcholine affinity than the wild-type receptor [22].

Single-channel recording indicated that the mutant channel had

longer open times and spontaneous openings. Patients with the

hyperactive receptor displayed progressive degeneration of muscle

end-plates that characterizes the myasthenic syndrome. The

importance of the valine residue at position 139 was also

investigated in the chick a7-subunit. This subunit forms a

homomeric nicotinic receptor that can be efficiently expressed in

Xenopus oocytes. Mutating this valine into a threonine causes an

almost 10-fold increase in the mean current amplitude and a 100-

fold increase in the acetylcholine affinity [35]. Since this mutation

affects a residue facing the pore lumen, increased current

amplitude could arise simply from changed channel conductance.

Figure 6. Mutations in acetylcholine receptor subunits sup-
press convulsions of acr-2(n2420gf) mutants. (A) acr-12 gene
structure with the loss-of-function mutations identified as extragenic
suppressors of acr-2(n2420gf). ok367 has a 1,368-bp deletion and is a
null allele of acr-12. Boxes indicate exons; lines, introns; TM,
transmembrane. (B) The convulsions of acr-2(n2420gf) mutants are
suppressed by loss-of-function mutations in unc-63, unc-38, unc-50, or
unc-74, but not in unc-29, lev-1, and several other acr genes tested. The
alleles used were unc-63(e384), unc-38(e284), unc-50(n2623), unc-
74(n2614), unc-29(x29), lev-1(e211), acr-16(ok789), acr-5(ok180), lev-
8(ok1519), ric-3(hm9), and lev-10(x17), all of which are null mutations.
Red columns represent ancillary proteins, and green columns represent
acetylcholine receptor subunits. A minimum of eight to ten animals per
genotype were scored. (C) Cell-type–specific transgenic expression of
acr-12 and unc-63 shows that both are required in the ventral cord
cholinergic motor neurons to suppress acr-2(n2420gf). The alleles used
were unc-63(e384) and acr-12(ok367). Pmyo-3 promoter drives expres-
sion in all body muscles, and Prab-3 drives expression in all neurons
[49]. The Pacr-2 promoter contains 1.8 kb of acr-2 upstream sequences
driving expression in A and B neurons (Figure 3A), and the Punc-25

promoter drives expression in the four RME and 19 D neurons [38]. The
colors of the columns represent grouping of genotypes. A minimum of
eight to ten animals per genotype were scored.
doi:10.1371/journal.pbio.1000265.g006
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Figure 7. Composition of the ACR-2R receptor reconstituted in Xenopus oocytes. (A) The ACR-2R receptor shows high sensitivity to
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However, the single V139T point mutation in the a7-subunit has

pleiotropic effects. Specifically, multiple channel conductances

were identified; moreover, the competitive antagonist DHbE was

converted into a partial agonist [35]. These effects were

interpreted as a change in the allosteric states of the channel as

it transitions to the desensitized state [36]. The V139M mutation

in the ACR-2 subunit causes similar defects. Recording of ACR-

2R expressed in Xenopus oocytes shows that mutating this valine

caused a dramatic increase in currents, similar to the chick a7-

subunit. ACR-2R receptor pharmacology is also changed; DMPP

elicits larger currents from the mutant channel than the wild-type

channel, whereas activation by nicotine is unaffected. These

phenotypes cannot be explained by a simple change in efficiency

of receptor assembly or increased channel conductance but rather

suggest that changes to the pore affect dynamic transitions

throughout the receptor.

Characterization of acr-2(n2420gf) mutant animals suggests that

the ACR-2(V130M) subunit generates a hyperactive channel in

vivo. Worms expressing the ACR-2(V139M) subunit exhibit

spontaneous convulsions, which can be reversed by the channel-

blocker mecamylamine. In addition, convulsions can be sup-

pressed by null mutations in genes encoding any of the subunits of

the receptor except the acr-3 gene. The nonessential role of ACR-3

can be explained by the observation that a functional channel is

formed in the absence of ACR-3 when the ACR–2 subunit

contains the V139M mutation. Although the mutant ACR-

2(V139M) channel is less active if it lacks the ACR-3 subunit, it

is still almost four times more active than the wild-type receptor.

The valine at the 139 position of the pore in the chick a7

acetylcholine receptor limits calcium influx [20,37]. Our record-

ings from the acr-2(n2420gf) mutant animals also show that

neuronal activity involving ACR-2(V139M)R is hypersensitive to

calcium levels. Thus, in vivo, the ACR-2(V139M) gain-of-function

channel might result in increased excitability of the neurons and

increased calcium influx, which could have broader effects because

of the action of calcium as a second messenger.

ACR-2 Channel Functions to Maintain the Excitability of
the Cholinergic Motor Neurons

ACR-2 is expressed and functions in the ventral cord

cholinergic motor neurons that provide the major excitatory

inputs to the body muscles involved in locomotion. Of these motor

neurons, VA and VB innervate the ventral muscles, and DA and

DB innervate the dorsal muscles [15]. These motor neurons are

required for the sinusoidal posture and locomotion of the worm.

Animals lacking ACR-2 are still capable of locomotion, but they

move more slowly. Our electrophysiological recordings from

muscles demonstrate that the ACR-2 receptor is required to

maintain normal levels of excitation in the cholinergic motor

neurons. The cholinergic motor neurons showed reduced

neurotransmitter release in acr-2(lf) animals, whereas these motor

neurons in acr-2(n2420gf) animals displayed normal morphology

and increased neurotransmitter release. ACR-2 could maintain

the activity state of these neurons by regulating presynaptic release

directly, perhaps as an autoreceptor, or indirectly through other

pathways.

Our data further provide functional evidence for inputs from

cholinergic motor neurons into GABAergic motor neurons. The

GABAergic neurons have processes adjacent to acetylcholine

neuromuscular junctions and based on electron micrograph

reconstructions of the nervous system appear to receive input

from cholinergic motor neurons at dyadic synapses [15]. Our data

are consistent with a stimulatory input from cholinergic neurons to

GABAergic neurons. In acr-2 loss-of-function mutants, a reduction

in cholinergic motor neuron activity is coupled with a reduction in

GABAergic motor neuron activity.

The gain-of-function mutation in acr-2 also exhibits nonauton-

omous effects on the GABAergic motor neurons. The acr-

2(n2420gf) mutant was originally identified because it exhibited a

spontaneous shrinking behavior. Shrinking typifies mutants with

defects in GABA transmission. Consistent with this phenotype,

physiological recordings from dissected animals demonstrated that

GABA transmission was greatly reduced in acr-2(n2420gf) mutants.

However, other mutants that eliminate GABA function, such as

mutations in the biosynthetic enzyme for GABA or in the GABA

receptors do not exhibit spontaneous hypercontractions [38,39].

In addition, other mutations with hyperactivation of the

cholinergic motor neurons, such as mutations in Goa or in the

calcium-activated potassium channel [24,40], do not show the

convulsive shrinking behavior. The convulsive nature of the acr-

2(n2420gf) mutant rather relies on the simultaneous activation of

the cholinergic motor neurons and the nonautonomous suppres-

sion of activity in the GABAergic motor neurons. In these

mutants, homeostatic mechanisms within the motor circuit do not

seem to compensate for the imbalance in network activity; in fact,

the imbalance in excitation and inhibition is most severe at

Table 1. Comparison of ACR-2R and levamisole-sensitive
receptors.

ACR-2R (Neuronal) Levamisole Receptor (Muscle)

Alpha UNC-38 UNC-38

Alpha UNC-63 UNC-63

Alpha ACR-12 LEV-8

Non-alpha ACR-2 UNC-29

Non-alpha ACR-3 LEV-1

ACh EC50 14 mM 26 mM

Levamisole No effect Agonist

Nicotine Weak agonist Antagonist

Ach, acetylcholine; EC50, median effective concentration.
doi:10.1371/journal.pbio.1000265.t001

acetylcholine and is insensitive to levamisole or choline. Mecamylamine completely blocks the current. The ACR-2R receptor includes all five subunits.
(B) The ACR-2(V13’M)R receptor shows high sensitivity to acetylcholine and an increased sensitivity to DMPP, and weakly responds to levamisole and
choline. The ACR-2(V13’M)R receptor includes all five subunits. (C) Quantification of the relative efficacies of cholinergic agonists compared to
acetylcholine. Numbers above the bars represent the numbers of oocytes recorded for each condition. Example of traces are shown in (A and B).
Replacement of ACR-2(+) by ACR-2(n2420) increased agonist efficacy for DMPP, choline, and levamisole, whereas nicotine efficacy was unchanged.
ACh: 100 mM acetylcholine; Nic: 100 mM nicotine; DMPP: 100 mM DMPP; Cho: 1 mM choline; and Lev: 100 mM levamisole. (D) Inclusion of ACR-3
greatly increases the current of the ACR-2R. cRNAs for acr-12, ric-3, unc-38, unc-50, unc-63, and unc-74 were coinjected for each condition. Average
peak current for acr-2 + acr-3 coinjection was 111668 nA (n = 34). (E) Dose–response curves for acetylcholine action on the ACR-2 and ACR-2(V13’M)
receptors show that EC50 is comparable. All recordings were made with 1 mM external CaCl2. Error bars are standard errors of the mean. Asterisks
indicate that data are significantly different at p,0.05 (*) or p,0.01 (**). ACh: acetylcholine; Nic: nicotine; DMPP: 1,1-dimethyl-4-phenylpiperazinium;
Cho: choline; Lev: levamisole; Mec: mecamylamine.
doi:10.1371/journal.pbio.1000265.g007
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physiological levels of calcium. The convulsive behaviors of acr-

2(n2420gf) bear similarities to the neurological features underlying

some forms of epilepsy [41]. For example, genetic mutations in

nicotinic acetylcholine receptors have been linked to frontal lobe

epilepsy [42]. In the future, it will be interesting to determine the

mode of ACR-2–mediated neurotransmission and how changes in

motor circuit properties suppress or contribute to such imbalances.

Materials and Methods

Genetics
All C. elegans strains were grown at 20uC as described [43]. The

wild-type strain N2 was mutagenized with EMS following

standard procedures [43]. The n2420 mutation was isolated based

on its shrinker behavior from among the F2 progeny of animals

carrying approximately 6,000 mutagenized haploid genomes. The

n2420 mutation was backcrossed against N2 multiple times. It was

mapped to the X chromosome by linkage to lon-2; also, n2420

males showed spontaneous shrinking behavior. Further three-

factor mapping placed n2420 between dpy-8 and unc-6: from

n2420/dpy-8 unc-6 heterozygotes, 18/19 Dpy non-Unc segregated

n2420, and 1/18 Unc non-Dpy segregated n2420. We tested two

deficiencies uDf1 and stDf1 that remove the region containing acr-2

and observed that n2420/Df animals exhibited wild-type move-

ment as did Df/+ animals.

Suppressors of n2420 were isolated as following: ten EMS-

mutagenized n2420 L4 P0 animals were placed on a large NGM

plate and were transferred to fresh plates daily for 2 d. Young

adult F2 animals were collected from each P0 plate and placed

away from the bacteria food on a new plate. After 1 h, worms that

had crawled into the food were collected. Only one to two such

animals per plate were saved to ensure independence of isolates.

We screened an estimated 120,000 mutagenized haploid genomes.

Fifty-three suppressor mutants were backcrossed with N2. A list of

the strains containing suppressor mutations is in Table S1. We

identified those that did not segregate the n2420 mutant

phenotype after backcrossing as presumptive intragenic mutations,

for which we determined DNA sequences of acr-2 locus.

Extragenic suppressor mutations segregated n2420-like animals

and were grouped into levamisole-resistant or levamisole-sensitive

classes. Complementation tests with known levamisole-resistant

mutants were performed using standard procedures, and DNA

sequence determination of the suppressor mutants subsequently

confirmed gene identities. The acr-12(n2616) mutation was

mapped between X:11.80 (pkP6133) and X:12.93 (pkP6122) using

single-nucleotide polymorphisms between the N2 strain and the

Hawaiian strain CB4856 [44,45]. All acr-12 mutations were

confirmed by DNA sequence determination. Other double

mutants were constructed using standard procedures, and

genotypes were confirmed by allele sequence determination.

Information about these strains is shown in Table S2.

Molecular Biology
General molecular biology was performed according to

Sambrook et al. [46]. A pJB8-based cosmid library [47] was used

in the initial germline transformation rescue of the acr-2(n2420gf)

phenotype. Subclones pSC175, pSC176, and pSC178 were

generated from the rescuing cosmid C46C10 clone. Cosmid and

plasmid DNAs were injected at 10 ng/ml and 50 ng/ml,

respectively, using pRF4 as a coinjection marker following

standard procedures [48]. Multiple independent lines were

examined for rescue of the convulsion phenotype. For mutation

sequence determination, pairs of primers were used to amplify all

exons and exon–intron boundaries. acr-2 cDNAs were isolated by

screening a mixed-stage cDNA library prepared by P. Okkema,

using acr-2 genomic DNA as probe. Four independent clones were

isolated from 26106 plaques. Three had similarly sized inserts and

identical end sequences. Full sequences of the cDNA 21A clone

were determined, which confirmed the predicted gene structure of

acr-2.

Transcriptional acr-2 promoter-driven GFP (pSC205) or

mCherry (pCZGY847) constructs were made using 3.5 kb or

1.8 kb of acr-2 59 upstream sequences, respectively. The 3.5-kb

promoter also included the entire upstream gene F38B6.1 and

portion of F38B6.2; the 1.8-kb promoter included only the

promoter region of acr-2. Punc-25-acr-2 (pSC374) was constructed

by replacing the acr-2 promoter with 1-kb unc-25 promoter. Pacr-

12::acr-12 transgenes was generated using PCR-amplified acr-12

genomic DNA that included 1.4 kb of 59 upstream sequences, the

entire coding region, and 0.9 kb of 39 downstream sequences. unc-

63 cDNA was subcloned from pAF55 (Prab-3::unc-63) [49]. Punc-

25-acr-12 (pCZGY745), Pacr-2-acr-12 (pCZGY744), Punc-25-unc-

63(cDNA) (pCZGY745), and Pacr-2-unc-63(cDNA) (pCZGY744)

were constructed using the Gateway cloning technology (Invitro-

gen) (Table S2). The sequences of resulting DNA clones were

confirmed. Transgenic lines were generated using either plin-15(+),

pRF4, or Pttx-3-XFP as coinjection markers (Table S2). Integra-

tion of extrachromosomal arrays was preformed following

Trimethyl Psoralen-UV mutagenesis.

Quantification of Convulsion Rates
Ten to 20 L4 larvae were placed on freshly seeded NGM plates.

The following day, young adults were transferred to fresh plates

and recorded by video for 90 s, five frames per second. Videos

were scored by observers blind to genotype. A ‘‘convulsion’’ was

defined as an event involving the nose of the worm moved

backwards without the tail of the worm moving. For each strain,

video observation was performed on worms from at least two

independent experiments.

Pharmacology Analysis
All drug manipulations were performed according to published

procedures [7,8,21]. Drugs were purchased from Sigma-Aldrich.

For levamisole and aldicarb assays, 1-d-old adult hermaphrodites

were placed on plates containing the drug of chosen concentra-

tion, and the effects on animal movement were observed at 15- to

30-min intervals. Animals were scored as paralyzed when no body

movements were observed in response to poking. In mecamyl-

amine tests, the effects of the drug on acr-2(n2420gf) animals were

first assessed using a concentration series from 50 mM to 400 mM,

and the behavior of acr-2(n2420gf) animals was suppressed to

nearly wild type after 5 h on plates containing 100 mM to 400 mM

mecamylamine. Quantification of the convulsion rate was

performed on 1-d-old adult hermaphrodites. Animals were first

placed on seeded plates with no drug, and the convulsion rate was

recorded by video as above to set time 0. The animals were then

transferred to seeded plates containing 100 mM mecamylamine,

and the convulsion rate recorded every 60 min for 3 h. Animals

were then transferred to plates containing no drug and recorded

by video at 30 min afterwards.

Worm-Tracking Assay
Worm-tracking experiments were performed according to [50].

Standard NGM plates were prepared with the addition of 0.01%

bromophenol blue (Sigma-Aldrich) and were allowed to cool for at

least 5 h. Plates were then spread with 240 ml of 2% HB101

bacteria in M9 medium and were incubated overnight at room

temperature. The following day, five gravid worms were placed on
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each plate in a 5-ml drop of M9 medium. Assays were recorded at

a frequency of 1 frame/s for 10 min, starting when the drops of

M9 had absorbed. Video images were analyzed using ImageJ

software (NIH).

Electrophysiological Studies
Electrophysiological methods were adapted from previous

studies [28,51]. Adult nematodes were glued (Histoacryl Blue, B.

Braun) along the dorsal side of the body to the surface of a plastic

coverslip. A sharpened tungsten rod (A-M Systems) was used to

perform a lateral incision and to remove the viscera. The cuticle

flap was glued back to expose the ventral medial body wall

muscles, and the preparation was treated by collagenase type IV

for 20 s at a concentration of 0.5 mg/ml.

For Figures 4, 5A, 5B, S2, and S4, membrane currents were

recorded in the whole-cell configuration using an EPC-10 patch-

clamp amplifier (HEKA). Acquisition and command voltage were

controlled using the HEKA Patchmaster software. For Figures 5C

and S3, membrane currents were recorded using a RK-400 patch-

clamp amplifier (Bio-Logic). Acquisition and command voltage

were controlled using the pClamp9 software (Axon Instruments)

driving a 1322A Digidata (Axon Instruments). Data were analyzed

and graphed using Mini Analysis (Synaptosoft) and Microcal

Origin software (Microcal Software). The resistance of recording

pipettes was within 3–4.5 MV. Capacitance, resistance, and leak

current were not compensated. All experiments were performed at

room temperature.

The bath solution contained 150 mM NaCl, 5 mM KCl, 1 mM

MgCl2, 10 mM glucose, 15 mM HEPES, and sucrose to

340 mOsm (pH 7.35). External CaCl2 concentration was 0.5, or

2 or 5 mM, as indicated in each figure. For the 0.5 mM CaCl2
solution, the concentration of MgCl2 was increased to 4 mM in

order to help stabilize the membrane [52]. The pipette solution

contained 125 mM K gluconate, 20 mM KOH, 10 mM hepes,

1 mM MgATP, 3 mM NaATP, 5 mM EGTA, 15 mM KCl, and

sucrose to 335 mOsm (pH 7.2). GABA was diluted to 0.1 mM in

the bath solution containing 2 mM CaCl2 and was pressure-

ejected in the vicinity of muscle cells. All chemicals were obtained

from Sigma-Aldrich.

Electrophysiological Studies of X. laevis Oocytes
X. laevis oocytes were prepared, injected, voltage-clamped, and

superfused according to the procedure described in [13]. Each set

of recordings was done on the same day, 2 or 3 d after the cRNA

injections. Dose-response experiments were performed as de-

scribed in [13]. Values obtained at 500 mM and 1 mM were

excluded from the fit because of the open-channel block observed

at high acetylcholine concentrations. RNA isolation was per-

formed as described in [13]. cDNAs were obtained by reverse-

transcription PCR using the following primer combinations.

acr-2(+) and acr-2(n2420gf): oTB429 59-AAACTCGAGatgaa-

gaagacggtcaaaat-39 and oTB430 59-TTTGGGCCCttaagaataca-

tatcagac-39

acr-3: oTB439 59-AAACTCGAGatgcagaaaatatggttatt-39 and

oTB440-59-TTTGGGCCCtcatgaattcaacatttc-39;

acr-12: oTB431 59-AAACTCGAGatgctctataaaaaacg-39 and

oTB432-59-TTTGGGCCCtcacttcaagttccatgaac-39.

PCR fragments were digested with XhoI and Bsp120I

restriction enzymes and cloned into pTB207, an expression vector

for in vitro transcription that contains the 39 UTR of the Xenopus

laevis b-globin gene. The resulting plasmid clones are pTB244 acr-

2, pTB245 acr-2(n2420gf), pTB246 acr-12, and pTB247 acr-3. In

addition, we used the following clones described in [13]: pTB211

unc-38, p+TB212 unc-63, pTB215 ric-3, pTB216 unc-74, and

pTB217 unc-50.

cRNA was synthesized in vitro from linearized plasmid DNA

templates using the mMessage mMachine T7 transcription kit

(Ambion). Lithium chloride–precipitated cRNA was resuspended

in RNAse-free water and stored at 280uC.

Acetylcholine chloride (ACh), (2)-nicotine hydrogen tartrate

(Nic), 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), choline

bitartrate (Cho), (2)-tetramisole hydrochloride (levamisole, Lev),

mecamylamine hydrochloride (Mec) were purchased from Sigma-

Aldrich.

Supporting Information

Protocol S1 Supplementary materials and methods.
Found at: doi:10.1371/journal.pbio.1000265.s001 (0.02 MB

DOC)

Figure S1 Sequence alignment of ACR-2 with other non-
a acetylcholine receptor subunits. Green letter marks the

Val309 that is mutated to Met in acr-2(n2420gf). Purple letters

mark the amino acid positions that are mutated to stop codons in

several intragenic suppressors of acr-2(n2420gf). We used n2595 as

a null allele of acr-2. Red letters mark the amino acid substitutions

in other intragenic suppressors of acr-2(n2420gf). Details of the

nucleotide and amino acid changes in these acr-2 alleles are shown

in Table S1. Ce, C. elegans; Hu, human; TOR, Torpedo. GenBank

numbers are Hu_alpha3 (CAD88991), TOR_alpha (AAA96705),

TOR_gamma (AAR29362), and Ce_ACR-2 (AAK71377).

Found at: doi:10.1371/journal.pbio.1000265.s002 (0.36 MB PDF)

Figure S2 Mini amplitude is not altered in acr-2(n2595
n2420). Amplitude histograms (top) and cumulative amplitude

distribution (bottom) of acetylcholine (left) and GABA mini (right)

from the wild type (n = 5) and acr-2(n2595 n2420) (n = 9) in 2 mM

external CaCl2.

Found at: doi:10.1371/journal.pbio.1000265.s003 (0.21 MB PDF)

Figure S3 Acetylcholine neurotransmission is reduced in
acr-2(ok1887) mutants. (A) Representative traces of minis

recorded at two holding potentials, 260 and 210 mV, on body

muscle cells from wild-type and acr-2(ok1887) worms in 2 mM

external CaCl2. (B) Acetylcholine mini frequencies recorded in

2 mM external CaCl2 from the wild type (18.6 events/s62.3

standard error of the mean [SEM], n = 8) and acr-2(ok1887) (11.6

events/s61.4 SEM, n = 12) are significantly different (*p = 0.0144.).

GABA mini frequencies recorded from the wild type (9.8 events/s6

2.3 SEM, n = 8) and acr-2(ok1887) (6.6 events/s61.9 SEM, n = 12)

are not significantly different (p = 0.3003). Data were analyzed using

a two-tailed unpaired t-test. (C) Amplitude histograms (top) and

cumulative amplitude distribution (bottom) of acetylcholine (left)

and GABA mini (right) from wild-type (n = 8) and acr-2(ok1887)

(n = 12) worms in 2 mM external CaCl2.

Found at: doi:10.1371/journal.pbio.1000265.s004 (0.98 MB PDF)

Figure S4 Cholinergic motor neuron morphology and
synapses are not altered in acr-2(n2420gf) mutants. (A)

Cholinergic A- and B-type motor neurons visualized with Pacr-2-

GFP (juIs14) show normal position and morphology in acr-

2(n2420gf ) animals. Scale bar indicates 20 mm. (B) Pattern of

DA and DB synapses visualized by Pacr-2-SNB-1::GFP (juIs20) is

similar in acr-2(n2420gf) and wild-type animals. Scale bar indicates

10 mm. (C) Quantification of the SNB-1::GFP puncta number in a

segment of the dorsal cord. N indicates the number of animals for

each genotype. Statistics: unpaired Student t-test; error bars

indicate the standard error of the mean; n.s., not significant. See

Protocol S1 for image collection and analysis.
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Found at: doi:10.1371/journal.pbio.1000265.s005 (0.43 MB PDF)

Figure S5 GABA receptors are not altered in acr-
2(n2420gf) mutants. (A) Distribution of GABA synapses. Left

panel shows the expression pattern of GFP-tagged synaptobrevin

(Punc-25:GFP: synaptobrevin) in the dorsal cord of young adult

wild-type and acr-2(n2420gf) animals, just posterior to the vulva.

Quantification of the GFP puncta number is shown on the right.

For wild type: 1.9 puncta/10 mm 60.1 SEM, n = 8 and for acr-

2(n2420gf): 1.9 puncta/10 mm 60.1 SEM, n = 11. Scale bars

indicate 10 mm. Data were analyzed using two-tailed unpaired t-

tests. See Protocol S1 for image collection and analysis. (B)

Amplitude histograms (top) and cumulative amplitude distribution

(bottom) of acetylcholine (left) and GABA minis (right) from the

wild type (n = 10) and acr-2(n2420gf) (n = 14) in 2 mM external

CaCl2. (C) Representative traces and mean amplitude of currents

evoked by 0.1 mM pressure-ejected GABA on muscle cells from

the wild type (513.5 pA 652.5 SEM, n = 6) and acr-2(n2420gf)

(597.2 pA 653.7 SEM, n = 14) in 2 mM external CaCl2. Mean

amplitudes were compared using a two-tailed unpaired t-test.

Found at: doi:10.1371/journal.pbio.1000265.s006 (0.52 MB PDF)

Figure S6 Loss-of-function acr-3 mutations do not
suppress convulsions in transgenic animals expressing
acr-2(n2420gf). n = 10 animals per genotype. ns, not significant.

See Protocol S1 for transgene construction.

Found at: doi:10.1371/journal.pbio.1000265.s007 (0.35 MB PDF)

Table S1 Summary of suppressor mutations.
Found at: doi:10.1371/journal.pbio.1000265.s008 (0.04 MB

DOC)

Table S2 Strains and genotypes.

Found at: doi:10.1371/journal.pbio.1000265.s009 (0.03 MB

DOC)

Video S1 acr-2(n2420gf) convulsion.

Found at: doi:10.1371/journal.pbio.1000265.s010 (2.44 MB

MOV)

Video S2 Suppression of the convulsion defects of acr-
2(n2420gf) by mecamylamine.

Found at: doi:10.1371/journal.pbio.1000265.s011 (0.87 MB

MOV)
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