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Abstract

In Bilateria, many axons cross the midline of the central nervous system, forming well-defined commissures. Whereas in
mammals the functions of commissures in the forebrain and in the visual system are well established, functions at other
axial levels are less clearly understood. Here, we have dissected the function of several hindbrain commissures using genetic
methods. By taking advantage of multiple Cre transgenic lines, we have induced site-specific deletions of the Robo3
receptor. These lines developed with the disruption of specific commissures in the sensory, motor, and sensorimotor
systems, resulting in severe and permanent functional deficits. We show that mice with severely reduced commissures in
rhombomeres 5 and 3 have abnormal lateral eye movements and auditory brainstem responses, respectively, whereas mice
with a primarily uncrossed climbing fiber/Purkinje cell projection are strongly ataxic. Surprisingly, although rerouted axons
remain ipsilateral, they still project to their appropriate neuronal targets. Moreover, some Cre;Robo3 lines represent potential
models that can be used to study human syndromes, including horizontal gaze palsy with progressive scoliosis (HGPPS). To
our knowledge, this study is one of the first to link defects in commissural axon guidance with specific cellular and
behavioral phenotypes.
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Introduction

At all levels of vertebrate nervous systems, axons cross the

midline to form commissural projections [1,2]. In the visual system

and the corpus callosum in the neocortex, the physiological

importance of brain commissures is well established in large part

due to the ‘‘split-brain’’ studies of Roger Sperry [3] and others.

However, the function of commissural projections in the hindbrain

and spinal cord has been more difficult to assess. Surgically

ablating specific commissures in the hindbrain has proved to be

difficult [4]. In addition, so far, no mutant has been created in

which these connections are disrupted in a region-specific manner.

Therefore, the function of specific commissures in a variety of

hindbrain systems remains uncertain.

By contrast, considerable progress has been made over the past

two decades in understanding how commissures form during

embryonic development. Genetic screens in Drosophila, Caenorhab-

ditis elegans, and mice, as well as biochemical approaches in

rodents, have shown that the molecular mechanisms regulating

commissure development are highly conserved in evolution [5]

and involve axon guidance molecules, including Netrins, Slits,

Semaphorins, Ephrins, Morphogens, and IgCAMs [6]. Their

functions are tightly regulated by ECM molecules, cytosolic

second messengers, receptor dimerization, and protein degrada-

tion in addition to transcriptional and posttranslational modifica-

tions [6,7].

To broaden our understanding of the function of hindbrain

commissures, we undertook to genetically rewire the hindbrain by

forcing select commissural tracts to remain ipsilateral, and then

examined the cellular and behavioral consequence of these

manipulations. We focused on Robo3, a vertebrate roundabout

receptor involved in the formation of hindbrain and spinal cord

commissures [8,9]. Robo3, also called Rig-1 (retinoblastoma

inhibiting gene 1), was isolated as the product of a gene up-

regulated in retinoblastoma-deficient mice [10]. In humans,

mutations in ROBO3 cause a rare syndrome called horizontal

gaze palsy with progressive scoliosis (HGPPS) [11,12]. HGPPS

patients have both an uncrossed pyramidal tract and dorsal
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column-medial lemniscus as well as severe scoliosis. Despite defects

in conjugate horizontal eye movements [13], they are reasonably

coordinated and do not present other obvious neurological deficits.

The cause of horizontal gaze palsy, one of two signature traits of

HGPPS syndrome, is still uncertain [11]. In addition, a subset of

HGPPS patients show an unexplained asymmetry of brainstem

auditory evoked potentials and activation of their auditory cortex

[13,14].

Studies in mice show that in hindbrain and spinal cord, Robo3

is required for commissural axons to cross the midline and that

commissural neurons, deficient in Robo3, extend their axons

ipsilaterally [8,9]. The genetic manipulation of Robo3 could thus

provide effective means to characterize roles for hindbrain

commissures and lead to understanding the etiology of the

HGPPS syndrome. Because existing Robo3 knockout mice die

perinatally, precluding behavioral analysis [9], we have undertak-

en the construction of a conditional allele of Robo3 and show that

viable animals lacking specific commissures can be obtained.

Results

A Reduced Internuclear Commissure in Robo3-Deficient
Mice Induces Abnormal Horizontal Compensatory Eye
Movements
In vertebrates, lateral eye movements are controlled by two

pairs of cranial motor nuclei, the abducens (VI) and the

oculomotor (III) nuclei, which project ipsilaterally to the lateral

and medial rectus muscles, respectively [15] (Figure S1).

Conjugate lateral eye movement requires bilateral coordination

of those muscles, which relies in part on abducens interneurons

that project to the contralateral oculomotor nucleus, forming the

abducens-oculomotor (III) internuclear commissural projection

(Figure S1). Furthermore, in functional magnetic resonance

imaging studies of HGPPS patients, nucleus VI is hypoplastic,

whereas cranial nerves III and VI are present bilaterally,

suggesting that this palsy may result from defects in commissural

systems [11]. We, therefore, analyzed the oculomotor system in

the existing Robo3-null mice (Robo32/2) [9] as well as in a Robo3-

conditional mouse that lacked Robo3 in rhombomere 5 (r5), the

rhombomere from which abducens neurons are derived. The

latter mice (Krox20::cre;Robo3lox/lox) were generated by creating

Robo3lox/lox mice (Figure S2) and crossing them with Krox20::cre

knock-in mice that express Cre recombinase in r3 and r5 [16].

Upon Cre-mediated excision of exons 12–14, a truncated Robo3

protein is produced, which lacks transmembrane and cytoplasmic

domains, thereby disabling it as a receptor. R3-r5–specific Robo3

inactivation was confirmed by performing whole-mount labeling

with a Robo3 exon-specific probe and Robo3 antibody on

embryonic day (E)12 embryos (Figure 1). As expected, severe

reduction of commissural projections in r3 and r5 was observed in

whole-mount (Figure 1; n=2/2) and coronal sections of

Krox20::cre;Robo3lox/lox E11–E12 embryos labeled with anti-neuro-

filament and anti-Robo3 antibodies (Figure 2 n=3/3). By

contrast, many commissural axons were still observed in adjacent

rhombomeres (Figure 2). A few Robo3-positive axons still crossed

the midline at the r3 and r5 level in Krox20::cre;Robo3lox/lox embryos.

These fibers most likely originate in commissural neurons located

outside of r3 and r5 [17] (see Discussion). In Krox20::cre;Robo3lox/lox

Figure 1. Rhombomere-specific deletion of Robo3.Whole-mount
control (A, C, and E) or Krox20::cre;Robo3lox/lox (B, D, and F) E12 embryos
hybridized with a Robo3 riboprobe covering exons 12–14 (A and B) or
immunostained with anti-Robo3 (C and D) or anti-neurofilament (E and
F) antibodies. (B) In Krox20::cre;Robo3lox/lox embryos, Robo3exon12-14

transcripts are not expressed in rhombomeres 3 (r3) and 5 (r5). (C
and D) Likewise, there is a severe reduction of Robo3 immunoreactive
commissural axons in r3 and r5. (E and F) Anti-neurofilament
immunostaining confirms the strong reduction of commissures in r3
and r5. The arrowheads in (F) indicate axons that abnormally follow the
midline. Scale bars represent 100 mm.
doi:10.1371/journal.pbio.1000325.g001

Author Summary

Coordination of the left and right sides of the body
requires the action of neurons whose axons cross the
nervous system midline. The precise contributions of
‘‘commissural’’ neurons to sensory and motor functions
remain poorly understood. To probe these crossing
circuits, we took advantage of the recent finding that
the Robo3 axon guidance receptor is required for midline
crossing by axons at most axial levels. A Robo3 conditional
knockout mouse line was generated, allowing Robo3 to be
deleted in selective neuronal populations. This led to
disruption of specific commissures in the sensory, motor,
and sensorimotor systems, and resulted in severe but
specific functional deficits. Surprisingly, although rerouted
axons do not cross the midline, they still project to their
appropriate neuronal targets, suggesting that midline
crossing is not required to complete the axonal guidance
program of those neurons. Moreover, some of the mouse
lines represent good models for human syndromes,
including horizontal gaze palsy with progressive scoliosis
(HGPPS), which is characterized by deficits in coordinated
eye movements. This study links defects in commissural
axon guidance with specific and dramatic behavioral
phenotypes.

Dissecting Commissures with Robo3
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embryos, the expression of the known floor plate–derived axon

guidance molecules, Netrin1, Sonic Hedgehog (Shh), Slit1, Slit2, and

Slit3 was not perturbed in r3 and r5 (Figure S3; n=2/2).

Unlike Robo32/2 null mice, which die at birth [9], Krox20::

cre;Robo3lox/lox mice are viable (n=29/29) and do not show any

obvious behavioral defects compared to Robo3lox/lox or wild-type

controls. To find out whether Robo3 is expressed in the abducens

nuclei, we performed in situ hybridization and analyzed GFP

immunostaining in Robo3+/2 heterozygous embryos in which GFP

was knocked-in to the Robo3 locus (n=3/3) [9]. We found that

from E12 to E14, Robo3 is expressed by a subset of neurons in the

abducens nucleus, but not in other cranial motor nuclei (Figure 3A

and 3B). Accordingly, in Robo3+/2 embryos, GFP was expressed

by Hb9 and BEN/SC1 immunopositive motor neurons (Figure 3C

and 3D; n=2/2). However, it was also detected in Hb9-negative

neurons (Figure 3D), most likely corresponding to commissural

interneurons projecting to the contralateral oculomotor nucleus.

To discern abducens axons from other oculomotor axons and

follow their trajectory, we next crossed Krox20::cre;Robo3lox/lox mice

to Hb9::GFP transgenic mice [18], which, in the hindbrain,

selectively express GFP in the VI and hypoglossus (XII) somatic

motor neurons (Figure 3E). Analysis of Hb9::GFP labeling and

immunostaining or in situ hybridization with motor neuron

markers (Hb9, BEN/SC1, Islet-1, ChAT, CGRP) revealed that,

from E12, the shape and mediolateral position of the abducens

motor nuclei were slightly altered in Robo32/2 (n=16/16) and

Krox20::cre;Robo3lox/lox mice (n=9/9; Figure 3F–3I and Figure S4).

However, abducens motor axons still selectively projected to the

lateral rectus muscle (n=3/3 in Robo32/2 and n=2/2 in

Krox20::cre;Robo3lox/lox; Figure 3J–3L). GFP-positive abducens

axons were never found to cross the midline, suggesting that, as

in controls, the projection remains ipsilateral. In addition, the

numbers of Hb9-positive VI neurons were similar in Krox20::cre;

Robo3lox/lox and control mice (211628 and 205619 neurons per

nucleus, respectively, p=0.8, n = 4 animals for each genotype;

Student t-test with Mann-Whitney hypothesis, see Materials and

Methods).

Commissural axons that crossed the midline at the level of the

abducens nucleus express Robo3 in E13 Robo3+/2 embryos

(Figure 4A–4C; n=3/3). To determine the need for Robo3, we

Figure 2. Rhombomere-specific deletion of commissures. Coronal sections at the level of r3, r5, and r6 of E11 control (A–C9) or
Krox20::cre;Robo3lox/lox (D–F9) embryos immunostained with antibodies against Robo3, neurofilament, and Hb9. The midline is indicated by an arrow,
and the Hb9-positive abducens motor neurons by an asterisk. In r3 and r5, there is an almost complete absence of Robo3 and neurofilament-positive
commissural axons in Krox20::cre;Robo3lox/lox (D–E9) compared to controls (A–B9). The density of neurofilament-positive axons is also strongly reduced.
By contrast, there is no obvious reduction of commissural axons or Robo3 expression in r6 (C, C9, F, and F9). Note that at E11, abducens shape and
position are not altered in mutants compared to controls (see Figure 3 for later stages). VII, migrating facial neurons and facial nerve. Scale bars
represent 60 mm.
doi:10.1371/journal.pbio.1000325.g002
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studied the abducens-oculomotor (III) internuclear commissural

projection by injecting 1,19 dioctadecyl-3,3,39,39 tetramethylindo-

carbocyanine (DiI) tracer unilaterally at the level of the III nucleus.

In control newborns (n=6/6), this injection resulted in retrograde

labeling of many neurons at the level of the contralateral abducens

nucleus and of their axons crossing the floor plate (Figure 4 and

Figure S5). On the other hand, in Robo32/2 (n=3/3; Figure S5)

and Krox20::cre;Robo3lox/lox (n=3/3; Figure 4E) newborn mice,

contralateral labeling was virtually absent, whereas some neurons

were retrogradely labeled in nucleus VI on the ipsilateral side. In

addition, in Robo32/2 embryos (n=3/3), no GFP-positive axons

were found to cross the midline at the level of the abducens nuclei

at E14 (unpublished data), and in E15 Krox20::cre;Robo3lox/lox

embryos (n=4/4), there was a severe reduction of neurofilament-

positive axons crossing the midline at the level of the abducens

nucleus (Figure 4F–4I). Together, these results indicate that

deletion of Robo3 either globally or specifically in r5 neurons

results in loss of the abducens-oculomotor (III) internuclear

commissural projection without markedly affecting the pathfinding

of abducens motor axons.

To analyze the functional consequence of the lack of the VI-III

internuclear commissure we studied compensatory eye movements

in adult Krox20::cre;Robo3lox/lox mice. The animals were provided

with a pedestal and subjected to optokinetic and/or vestibular

Figure 3. Normal projection of abducens motor axons in Robo3-deficient mice. (A to I) show coronal hindbrain sections at the level of the
abducens nucleus. (A and B) Robo3 transcripts are detected in the abducens nuclei of E12 (A) and E14 (B) embryos. The arrow in (B) points to the facial
nerve. (C) abducens neurons coexpress BEN and GFP in Robo3+/2 E14 embryo. The floor plate (asterisk) also expresses BEN. (D) Hb9/GFP double
labeling in E15 Robo3+/2 embryo. Note that some GFP+ cells (arrowhead) do not express Hb9. (E) abducens neurons (VI) and axons (arrow) express
GFP in E14 Hb9::GFP transgenic embryo. (F–I) The abducens nucleus has an abnormal shape and is closer to the floor plate in Robo32/2 (F) and
Krox20::cre;Robo3lox/lox (G) E14 embryos (compare with [E]). The arrow in (F) points to abducens axons. (H and I) This abnormal shape and position are
also observed in adult animals with ChAT/Hb9 double immunostaining. (J to L) Coronal sections of P0 mouse head at eye cup (ec) level. GFP-positive
abducens axons (arrows) still contact the lateral rectus muscle in Robo3-null embryo (K) and Krox20::cre;Robo3lox/lox mutant (L). Scale bars represent
100 mm, except in (D), where it indicates 50 mm.
doi:10.1371/journal.pbio.1000325.g003
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stimulation in both the horizontal and vertical plane (for Materials

and Methods, see [19], and Text S1 and Table S1 for statistics).

All three reflexes in the horizontal plane, including the horizontal

optokinetic reflex (OKR), the horizontal vestibulo-ocular reflex

(VOR) as well as the horizontal visual VOR (VVOR), showed

striking changes in the mutants (n=6) compared with control

(n=4) littermates (Figure 5A–5D). Conversely, all eye movement

reflexes in the vertical plane were unaffected (Figure 5E–5G).

During OKR, the impairments in the Krox20::cre;Robo3lox/lox mice

appeared to occur predominantly in the low-frequency range,

whereas during VOR, they were most prominent at higher

frequencies. These frequency-specific deficits reflect the potential

role of internuclear commissural connections in high-amplitude

eye movements, because OKR and VOR evoke high gain values

at the lower and higher frequencies, respectively [20]. This view is

further supported by the fact that the gain of eye movements in the

Krox20::cre;Robo3lox/lox mice decreased in a virtually linear manner

with respect to stimulus amplitude at higher amplitude values (e.g.,

for OKR, see Figure 5D; p,0.001 versus control mice curve;

ANOVA for repeated measurements). As a consequence, the

amplitude of the horizontal VVOR, which is high over the entire

frequency range because of its combined OKR and VOR nature,

was significantly affected in mutants at both the lower and higher

frequency ranges. The finding that all horizontal reflexes, but no

vertical reflexes, were disrupted suggests that the abducens-

oculomotor internuclear commissure was selectively affected.

Figure 4. Reduced internuclear commissure in Robo3 knockout mice. (A to I) show coronal hindbrain sections at the level of the abducens
nucleus, visualized by Hb9 immunostaining (in A, D, E, F, and H). (A, B, and C) illustrate the projection of abducens axons (arrowheads) across the
midline (dashed line) in Robo3+/2 E13 embryos. Some GFP+ axons originate from the abducens nucleus (VI) and are immunoreactive for Robo3 (B and
C). (D) The internuclear commissure (arrowhead) is also observed in P0 controls, following DiI injection at the level of the oculomotor nucleus III. (E)
This commissure is almost completely absent in P0 Krox20::cre;Robo3lox/lox mice (arrowhead). (VIIn): Genu of facial nerve. (F to I) At E15, many
neurofilament+ axons cross the midline at the VI level (arrowheads) in control embryo (F and G), whereas they are rare in Krox20::cre;Robo3lox/lox

embryo (H and I). Scale bars represent 100 mm, except in (G and I), where they indicate 50 mm.
doi:10.1371/journal.pbio.1000325.g004
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Ipsilateral aVCN-MNTB Projections and Impaired Auditory
Brainstem Responses in Krox20;Robo3lox Mice
Since Krox20 is also expressed in r3, we next tried to determine

which commissures could be affected at this level. Most auditory

brainstem nuclei send axons across the midline, allowing binaural

sound localization [21]. The projection from globular bushy cells

in the anteroventral cochlear nucleus (aVCN), the first central

auditory relay in the central nervous system, to the principal cells

of the median nucleus of the trapezoid body (MNTB) is one of the

most studied auditory commissures (Figure S6). We found that, at

E13–E15, when aVCN axons first cross the floor plate [22], aVCN

neurons expressed high-level Robo3 mRNA (Figure 6A and 6B)

and their axons expressed Robo3 protein (Figure 6C).

Genetic fate-mapping has shown that aVCN neurons are

generated in the rhombic lip at the r2–r3 level [23]. We therefore

studied aVCN-MNTB projections in Krox20::cre;Robo3lox/lox mice.

As previously described [24], DiI injections in the aVCN of P12

control mice labeled aVCN axons projecting to the contralateral

MNTB (n=4/4; Figure 6D and 6E), where they form character-

istic giant synapses called ‘‘calices of Held.’’ By contrast, in

Krox20::cre;Robo3lox/lox mutants, this projection was exclusively

ipsilateral, although typical calices of Held still formed on MNTB

neurons (n=4/4; Figure 6F and 6G). The numbers of labeled

calices were not significantly different between controls and

mutants (468633 and 480635 calices per side per animal,

respectively, p=0.7; n=4 animals for each genotype; Student t-test

with Mann-Whitney hypothesis). The aVCN ipsilateral projection

to the superior olive appeared normal, and the olivocochlear

bundle still crossed the midline (unpublished data). These results

also incidentally show that globular bushy cells originate

Figure 5. Impaired horizontal compensatory eye movements in Krox20::cre;Robo3
lox/lox mice. (A) During optokinetic stimulation horizontal

gains are reduced most prominently at the lower frequencies in in Krox20::cre;Robo3lox/lox mice (p= 0.043 ANOVA; n=6 versus n= 4 for controls; see
Table S1). (B) At higher frequencies, the VOR is severely impaired (p= 0.001 versus control mice curve; ANOVA for repeated measurements; Table S1),
confirming the importance of the commissural connections in large-amplitude eye movements. (C) When horizontal visual and vestibular inputs are
combined in the VVOR (visual vestibulo-ocular reflex), it results in lower gains over the entire range of frequencies tested (p=0.004 versus control
mice curve; ANOVA for repeated measurements). (D) OKR deficits are strongly correlated to the amplitude of stimulation. (E–G) In marked contrast, in
the vertical plane, no significant differences were observed in OKR (E), VOR (F), or VVOR (G), supporting the concept that primarily horizontal eye
movements require the presence of commissural connections (see Table S1 for all statistics). Error bars indicate standard error of the mean. Results
were obtained from four control and six Krox20::cre;Robo3lox/lox mice.
doi:10.1371/journal.pbio.1000325.g005
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exclusively from r3 and that the Robo3lox mice can be used for

genetic fate-mapping of hindbrain commissural neurons.

We next examined the consequence of the absence of a crossed

aVCN/MNTB projection on auditory brainstem responses (ABR;

see Materials and Methods) [25]. The detection thresholds of ABR

did not significantly differ in Krox20::cre;Robo3lox/lox versus control

mice and remained in the normal range from 5–40 kHz (Figure

S6). In all animals, all waves were detected once the stimulus level

was set above ABR threshold (Figure 6H). This indicates that

neither auditory sensitivity nor gross neural conduction were

affected. In control mice, the ABRs exhibited the four classical

waves (I–IV) ipsilaterally (Figure 6H; for wave interpretation, see

Figure 6. Uncrossed aVCN-MNTB projections and abnormal ABRs in Krox20::cre;Robo3
lox/lox mice. (A to C) Robo3 is expressed by neurons

of the cochlear nucleus (CN). Coronal sections of a E14 embryo (A) or side view of whole-mount E14 embryos (B and C) hybridized with a Robo3 probe
(A and B) or labeled with anti-Robo3 antibodies (C). The arrowheads in (B) indicate migrating pontine neurons. The arrow in (C) points to cochlear
axons. (D–G) Coronal sections of P12 mice injected with DiI in the cochlear nucleus (Hoechst counterstaining). In control (D and E), DiI-labeled axons
end in the ipsilateral superior olive (SO) and the contralateral MNTB, whereas in Krox20::cre;Robo3lox/lox mutant (F and G), all axons project ipsilaterally.
The arrow in (D and F) indicates the midline. (E and G) are high magnification pictures of the MNTB showing DiI-labeled calyces of Held (arrows). (H)
ABRs collected from the ipsilateral or contralateral mastoid electrode in response to 60 dB SPL clicks. Ipsilaterally, only three waves were observed in
mutant instead of four in controls. Mutant wave III exhibited a mean latency of about 4.3 ms, much longer than that of control wave III (3.6 ms; n= 13
controls versus n=12 mutants, average latency difference 0.77 ms for wave III; p,0.0001; unpaired Student t-test), yet too short for matching the
latency of wave IV in controls. Contralaterally, in mutants, the mean latency of IVc was 0.42 ms longer than in controls (n=12 controls versus n=8
mutants; p=0.006; unpaired Student t-test). The asterisk marks a recording artifact (see Materials and Methods). Scale bars represent 300 mm except
in (A), where it indicates 150 mm, and in (E and G), where it indicates 50 mm.
doi:10.1371/journal.pbio.1000325.g006
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Materials and Methods and Text S1). Only two waves (IIIc and

IVc) were recorded contralaterally, and their detection occurred

with enough delay to be ascribed to contralateral excitation. The

shape of mutant ABR waves was markedly different from controls.

First, only three waves were present ipsilaterally (Figure 6H). At

60 dB sound pressure level (SPL), the latencies and amplitudes of

waves I and II exhibited no significant difference relative to

controls, which was not surprising, because the mutation targeted

neural pathways beyond the cochlear nucleus. In contrast, in

mutants, the next visible wave (III) had a longer latency (Figure 6H)

than in controls. Moreover, in mutants, the IIIrd wave was not

followed by any identifiable waves. Secondly, the contralateral

wave IVc still occurred, but with a 0.42-ms average delay

compared to the normal IVc. Its magnitude tended to be reduced

although not significantly (n=12 wild type versus n=8 mutants;

p=0.06). In both mutants and controls, a similar dependency of

wave latency on stimulus level was observed (unpublished data).

These results show that in Krox20::cre;Robo3lox/lox mutants, the

ipsilateral projection of globular bushy cells to MNTB neurons

results in abnormal ABRs both ipsilaterally and contralaterally.

An Impaired Interolivary Commissure Affects Locomotion
Inferior olivary (IO) neurons are the source of climbing fiber

input on cerebellar Purkinje cells. During development, IO

neurons migrate tangentially from the rhombic lip towards the

floor plate. Upon reaching the floor plate, IO neuron cell bodies

stop and only their axons cross it. We showed previously that IO

axons are unable to cross the midline in Robo32/2 embryos and, as

a result, project to the ipsilateral cerebellum [8]. However, the

functional consequence of this ipsilateral rerouting of IO axons is

unknown. To attempt to generate mice lacking the interolivary

commissure, we crossed Robo3lox/lox conditional knockout with

mice in which Cre recombinase was knocked into the Ptf1a (Ptf1-

p48) locus (Ptf1a::cre) [26], which encodes a bHLH transcription

factor expressed by a majority of IO neuron progenitors. The

resulting Ptf1a::cre;Robo3lox/lox mice were viable, until at least 7 mo,

but from postnatal day (P)10 onwards, they exhibited profound

locomotor deficits (Figure 6A and 6B; see also Video S1) including

an ataxic gait (35/35 cases) that persisted into adulthood. When

locomotion was tested on the Rotarod, Ptf1a::cre;Robo3lox/lox mice

showed a significant deficit in motor performance (Figure 7A and

7B); the Ptf1a::cre;Robo3lox/lox mice fell off the Rotarod at highly

significant shorter latencies than controls (p,0.001, Mann-

Whitney U-test, n=7 mutants versus 9 controls). These motor

performance deficits in the Ptf1a::cre;Robo3lox/lox mice were so

severe that it appeared as if their ataxia was worse than that of

mice that have no cerebellar output at all. We therefore compared

their performance to that of Lurcher mice, which are characterized

by a degeneration of their Purkinje cells and therefore by a virtual

absence of the output from their cerebellar cortex [27,28].

Although not significant (p=0.2; Mann-Whitney U-test), the

impaired locomotion in the Lurcher mice on the Rotarod was

indeed milder than in the Ptf1a::cre;Robo3lox/lox mice (Figure 7A).

On the more discriminative Erasmus Ladder [29], the difference

in motor performance between Ptf1a::cre;Robo3lox/lox mice and

Lurcher mice was fully apparent (Figure 7C and 7D); both the step

time and the overall walking pattern (percentage of successful

walking trials) were highly significantly more affected in Ptf1a::

cre;Robo3lox/lox mice than in Lurcher mice (Ptf1a::cre;Robo3lox/lox versus

Lurcher mice for step time in all sessions: p,0.001, multiple

comparisons; for walking pattern in all sessions: p,0.001; Mann-

Whitney U-test; see also Table S2). These findings indicate that the

level of cerebellar ataxia induced by rewiring the climbing fiber

projection is more severe than that caused by a functional loss of

the cerebellar cortex, suggesting a pathological dominant-negative

effect in the Ptf1a::cre;Robo3lox/lox mice. Despite this clear functional

phenotype, the size and foliation of the cerebellum was unaffected

in Ptf1a::cre;Robo3lox/lox mice (Figure 7E–7J; n=3 mutants versus 3

controls). In addition, the distribution, morphology and immuno-

stainings of their Purkinje cells, molecular layer interneurons, and

granule cells (Figure S7) as well as the arborization of their

climbing fibers (Figure 7G and 7J) were unaffected.

When DiI was injected unilaterally in the cerebellum of

newborn controls, it retrogradely labeled IO neurons exclusively

on the side opposite to the injection in control mice (4 out of 4

cases; Figure 7K). In contrast, following injections in Ptf1a::cre;

Robo3lox/lox mice (8/8 cases; Figure 7L) about 67% of the DiI-

labeled IO neurons were situated on the side of the injection,

whereas 33% of the olivary axons projected contralaterally

(Figure 7L). Immunolabeling of E13 Ptf1a::cre;Robo3lox/lox embryos

(n=4) with antibodies to Brn3.2, a marker of a large subset of IO

neurons, showed that, as previously described in Robo32/2 mice,

the ipsilateral IO projection did not result from a migration of IO

cell bodies across the midline (Figure S8). The use of multiple IO

neuron markers (Brn3.2, CaBP, BEN/SC1, CGRP) revealed that

the lamellar organization of the IO was perturbed in Ptf1a::cre;

Robo3lox/lox mice (n=4; Figure S8), whereas the mossy fiber inputs

and their neuronal sources developed normally (Figure S7).

To confirm that the ataxic behavior of Ptf1a::cre;Robo3lox/lox mice

can be primarily attributed to the ipsilateral rerouting of a majority

of olivocerebellar axons, we crossed these mice to a Tau-lox-Stop-

lox-mGFP-IRES-nls-lacZ knock-in line [30] (here, called TaumGFP).

Upon Cre recombination in neurons, the Stop cassette is excised,

leading to the permanent expression of a myristoylated GFP in

axons and of b-galactosidase (bgal) in nuclei. This strategy made it

possible to identify the neurons that expressed Cre recombinase

in the Robo3lox background. In the inferior olive of Ptf1a::cre;

Robo3lox/lox E16 embryos (n=3), we found that 8762% of Brn3.2-

positive neurons also expressed bgal, whereas the remaining

Brn3.2-positive neurons were completely negative for bgal

(Figure 8A and 8B). This suggests that Cre is not expressed by

all IO neurons in the Ptf1a::cre line, and could explain the

maintenance of a contralateral contingent of IO axons in

Ptf1a::cre;Robo3lox/lox animals (see Discussion). To find out whether

Cre was expressed by spinal cord commissural neurons during

midline crossing, we studied bgal and GFP expression in thoracic

cross-sections of the spinal cord of E11–E13 TaumGFP embryos at

the level of the forelimbs (n=3; Figure 8C–8L). We found that in

the spinal cord of Ptf1a::cre;Robo3lox/+;TaumGFP E11–E13 embryos,

GFP-expressing axons were not immunoreactive for Robo3 and

that commissures were not GFP-positive, with the exception of a

very small ventral subset of axons (Figure 8). Interestingly, this

small subset of GFP axons still crossed the midline in Ptf1a::cre;

Robo3lox/lox;TaumGFP embryos (Figure 8; n=3). Moreover, Robo3-

immunoreactive commissural neurons did not express bgal (n=3

animals; unpublished data). The use of additional markers such as

TAG-1 and neurofilament confirmed that spinal cord commis-

sures were similar in control and Ptf1a::cre;Robo3lox/lox E13 embryos

(Figure S9). As shown previously [31], in Ptf1a::cre;Robo3lox/+;

TaumGFP E12–E16 embryos, we could not detect bgal or GFP

expression in the main sources of mossy fiber projection, the

pontine neurons, the external cuneatus nucleus, or the lateral

reticular nucleus (unpublished data).

Discussion

We show that a Robo3-conditional allele can be used to

genetically disrupt distinct commissural projections and force
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axons to project ipsilaterally. In all three systems studied here,

commissure rewiring induces severe and permanent dysfunction of

specific neuronal networks. Unlike surgical ablation of a given

commissure, this strategy ends up rewiring commissural neurons

on the ipsilateral side, but does not interrupt the activity of the

targeted circuit. We show that for the systems studied here,

ipsilaterally rerouted axons still connect to their proper targets.

Moreover, the fact that human HGPPS patients do not exhibit

major motor or cognitive impairments also suggests that the

ipsilateral axons are fully functional. However, it is difficult to link

the observed behavioral phenotypes exclusively to the loss of

contralateral connectivity as there is also a rerouting in the

targeting of these neurons that potentially could cause novel and

perturbed neuronal signals leading to a defect, which is not caused

by the lack of commissural connections per se but rather by the

new wiring.

Our results and others [8,9] suggest that Robo3 expression is

required for most, if not all, commissural axons to cross the floor

plate throughout spinal cord and hindbrain. The persistence of

commissural axons that continue to cross the floor plate in

domains expected to express cre recombinase in the Robo3

conditional lines presented here may be explained in a number

of ways. In Krox20::cre;Robo3lox/lox embryos, the few axons crossing

at r3 and r5 level may originate from neurons located in adjacent

rhombomeres as it is well known that many commissural axons

extend rostrally and caudally before crossing [17,32], and that

during development, mixing of neurons from adjacent rhombo-

meres does occur [33,34] (one example is provided by facial

branchiomotor neurons that migrate from r4 to r6 [35]). Another

reason for incomplete rerouting of commissural axons is that Cre

recombinase may not be expressed by all r3/r5 neurons, as is the

case for IO neurons in Ptf1a::cre;Robo3lox/lox knockout. Finally, cre

might be expressed too late, after these commissural axons have

crossed, an hypothesis we favor to explain the persistence of the

ventral subset of commissural axons in the spinal cord of

Ptf1a::cre;Robo3lox/lox embryos.

Although Robo3 is required for commissures to form in the

hindbrain and spinal cord, this receptor is not sufficient for

crossing as it is also expressed by many noncommissural neurons

in the forebrain and hindbrain [36], such as the abducens motor

neurons that project ipsilaterally. This opposite behavior of some

Robo3-expressing axons could be attributed to a differential

expression in commissural/noncommissural axons of Robo3

partners, possibly Robo1 and Robo2, or of a different Robo3

isoform. A recent study has shown that two Robo3 splice variants

that differ in their cytoplasmic tail have distinct activities (pro-

crossing and anti-crossing) in axons [37].

We found that deletion of Robo3 selectively in two hindbrain

rhombomeres, including that comprising the abducens nucleus,

yields mice that display selective horizontal eye movement defects

reminiscent of those in the human HGPPS patients [12–15].

Likewise, zebrafish Robo3 mutants exhibit oculomotor defect [38].

Since there is, to the best of our knowledge, no oculomotor center

originating from r3, our results in mice indicate that commissural

projections from r5, most likely internuclear oculomotor connec-

tions, serve to facilitate large amplitude, compensatory eye

movements in the horizontal plane. Our results also suggest that

the absence of this commissure is one of the primary causes of the

eye movement defects in HGPPS patients, who also suffer from a

mutation in the Robo3 gene [11,12]. Accordingly, abducens motor

axons project normally in Krox20::cre;Robo3Iox/lox mice. Moreover,

we found that horizontal eye movements are not perturbed in

Islet1::cre;Robo3lox/lox mice, which lack Robo3 in abducens motor

neurons (unpublished data). These results do not exclude the

possibility that oculomotor defects in HGPPS patients may also

involve other supranuclear centers such as the pons and

cerebellum, which could henceforth be studied in transgenic mice

by deleting Robo3 in appropriate regions using the conditional

allele.

We show that in mice, in the absence of Robo3, the aVCN-

MNTB projection is entirely uncrossed and that this results in

strong defects in ABR. The most striking feature of ABRs in

Krox20::cre;Robo3lox/lox mice is the presence on the ipsilateral side of

a much-delayed wave III not followed by any later wave. This

abnormal wave III could involve wrongly rewired neurons, and its

long delay suggests that the corresponding pathway does not

function in a strictly normal manner. Contralaterally, the

persistence of waves identifiable as IIIc and IVc may be attributed

to crossing pathways originating outside of r3–r5. Although there

are species differences in the organization of auditory circuits

[39,40], our results suggest that the trapezoid body could be

uncrossed in HGPPS patients, at least partially. It will be of

interest to determine whether sound localization is perturbed in

HGPPS patients, some of whom also seem to have abnormal ABR

[13,14].

Interestingly, HGPPS patients have a hypoplastic pons, an

uncrossed corticospinal tract [12,13], and most likely uncrossed

spinal cord and interolivary commissures. Yet these patients are

still coordinated and not ataxic. This contrasts with the severe

ataxic gait of Ptf1a::cre;Robo3lox/lox mice. In this mouse line, spinal

cord commissures and the corticospinal tract (unpublished data)

do not seem to be affected, and among embryonic precerebellar

neurons, cre recombinase is only expressed by IO neurons and not

by mossy fiber projection neurons. Possibly, a selective reduction

of the interolivary commissure results in a more dramatic

locomotion impairment than a nonselective rewiring of multiple

parts of the motor system in which, presumably, the different parts

of the nervous system are ultimately still connected to the correct

sides of the other relevant parts. Moreover, the selective reduction

of the interolivary commissure in the Ptf1a::cre;Robo3lox/lox mice also

Figure 7. Uncrossed inferior olivary axons cause ataxic gait. (A) Ptf1a::cre;Robo3lox/lox mice are severely ataxic, which is demonstrated by a
very short latency to fall in the Rotarod test (n= 7 mutants versus n=9 for controls). (B) Image of a 4-mo-old Ptf1a::cre;Robo3lox/lox mouse displaying
an ataxic gait. (C) The step time of Ptf1a::cre;Robo3lox/lox mice (light blue; n=6) on the Erasmus Ladder is longer than in controls (violet and red; n= 4;
p,0.001; multiple comparisons) or in Lurcher mice (orange; p,0.001; multiple comparisons). (D) Ptf1a::cre;Robo3lox/lox mice (light blue) also show
significantly less successful trials per session than Lurcher mice (orange) (p,0.001 for all sessions; Mann-Whitney U-test, one-tailed). A trial was
defined as successful if the mice were able to walk on the ladder without disruption (twisting, turning, walking backwards, etc.). (E to J) The
morphology of the cerebellum in controls (E to G) and Ptf1a::cre;Robo3lox/lox mice (H to J) is comparable, and in both cases, their climbing fibers (the
terminal arbors of inferior olivary axons) innervate the cerebellar cortex. (F and I) The size of the cerebellum and its foliation are similar as shown on
sagittal sections of P32 control and Ptf1a::cre;Robo3lox/lox mice labeled with anti-calbindin antibodies and Hoechst. (G and J) VGLUT2-positive climbing
fibers properly innervate CaBP+ Purkinje cell dendrites. (K and L) Coronal sections of P1 mice with unilateral injection of DiI in the cerebellum. The
arrow marks the midline. In control (K), DiI-labeled inferior olivary (IO) neurons are exclusively found on the contralateral side, whereas in
Ptf1a::cre;Robo3lox/lox mice (L), most IO neurons are traced on the ipsilateral side, and their axons do not cross the midline. Scale bars represent
500 mm except in (G and J), where they indicate 25 mm, and in (K and L), where they indicate 150 mm.
doi:10.1371/journal.pbio.1000325.g007
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results in a stronger locomotion impairment than mice without

any cerebellar output (i.e., the Lurcher mice). This phenotype of the

Ptf1a::cre;Robo3lox/lox mice on the Erasmus Ladder can be explained

by the fact that the olivocerebellar system may operate in a push–

pull fashion [41], because converting the ‘‘pull’’ into a ‘‘push’’ by

reversing the modulation of climbing fiber activities should indeed

result in a phenotype that is more severe than having no output of

the cerebellar cortex at all. Thus, taken together, our results

suggest that having only one component of a commissural circuit

misrouted and uncrossed may be functionally worse than having

all of its components affected or having no output at all.

Many studies have shown that upon entering and crossing the

floor plate, commissural axons receive signals that induce major

and long-term modification of their behavior and prevent them

from re-entering the midline. This is associated with a loss of

attraction for netrin-1 [42] involving DCC silencing and DCC/

Robo dimerization [43], and an activation of Slit- and Sema-

phorin-mediated repulsion [44]. Moreover, there is also evidence

that the translation of some axon guidance receptors [45] or their

splicing is modulated by floor plate crossing [37]. However, it was

not known if all these molecular changes were required for crossed

axons to recognize and follow their correct pathway on the

Figure 8. Analysis of Ptf1a::cre;Robo3
lox/lox

;Tau
mGFP mice. (A and B) Coronal sections of the hindbrain at the level of inferior olive of E16

Ptf1a::cre;TaumGFP embryo labeled with anti-bgal and Brn3.2 antibodies. Some Brn3.2-positive neurons in the inferior olive do not express the bgal
(arrowheads and inset). (C–L) Coronal sections of the spinal cord at the level of the forelimbs in E13 Ptf1a::cre;Robo3lox/+;TaumGFP (C–E, K, and L) or
Ptf1a::cre;Robo3lox/lox;TaumGFP (F–H, I, and J) embryos labeled with anti-GFP and anti-Robo3 antibodies. Most GFP-positive axons are in the dorsal
spinal cord, and only a small subset of GFP-positive axons (short arrows) cross the floor plate in Ptf1a::cre;Robo3lox/+;TaumGFP (C and K) but do not
express Robo3 (E and L). This subset of GFP-positive commissural axons is still observed in Ptf1a::cre;Robo3lox/lox;TaumGFP embryos (F and J). Scale bars
represent 100 mm except in (B and I–L), where they indicate 50 mm.
doi:10.1371/journal.pbio.1000325.g008
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contralateral side and, more importantly, to reach their final target

cells. Our results suggest that even in the absence of midline

crossing, both olivocerebellar axons and aVCN axons still contact

their appropriate target neurons (Purkinje cells and MNTB,

respectively), but on the ipsilateral rather than on the contralateral

side. These findings raise the possibility that midline crossing in

general may not have a major function in axon guidance after

crossing, and that its major importance is only to allow, at a

physiological level, the integration of inputs coming from both

sides of the nervous system. Future studies will have to confirm this

at other axial levels and in other phyla like Protostomia.

Materials and Methods

Mouse Lines
C57BL/6 mice (Janvier) were used for expression studies. Mice

were anesthetized with isofluorane (Abbott). The day of vaginal

plug is embryonic day 0 (E0), and the day of birth corresponds to

postnatal day 0 (P0).

The Robo3 conditional knockout mouse line was established at

the MCI/ICS (Mouse Clinical Institute–Institut Clinique de la

Souris, Illkirch, France; http://www-mci.u-strasbg.fr). To gener-

ate the Robo3 conditional knockout, the targeting vector was

constructed as follows. Three fragments of 5.1, 1.1, and 3.7 kb

(respectively, the 59, floxed, and 39 arms) were amplified by PCR

using 129S2/SvPas DNA as template and sequentially subcloned

in an MCI proprietary vector. This MCI vector has a floxed

neomycin resistance cassette. The linearized construct was

electroporated in 129S2/SvPas mouse embryonic stem (ES) cells.

After selection, targeted clones were identified by PCR using

external primers and further confirmed by Southern blot with 59

and 39 external probes. Two positive ES clones were injected into

C57BL/6J blastocysts, and derived male chimaeras gave germline

transmission. The Robo3-null knockout line was described

previously [9]. Briefly, it consists on a knock-in of the GFP gene

into the first exon of Robo3, leading to the expression of the GFP by

Robo3-expressing cells. However, the GFP signal is too weak to be

seen without the use of an anti-GFP antibody. The Hb9::GFP mice

have a transgene containing a 9-kb-long region of the Hb9

promoter that drives eGFP expression in all postmitotic somatic

motor neurons [18]. The GFP signal is bright enough to be seen

directly. The Ptf1a::cre and Krox20::cre knock-in lines were

previously described [16,26]. Homozygous Krox20cre/cre are em-

bryonic lethal and were therefore maintained as heterozygous for

Cre. The TaumGFP knock-in line was obtained by replacing the

coding sequence of the Tau gene by a lox-Stop-lox-mGFP-IRES-nls-

lacZ cassette [30]. Unless otherwise mentioned, controls were

Robo3+/2 or Robo3lox/lox animals or double heterozygotes that were

always found to be undistinguishable from wild-type mice. All

mice were genotyped by PCR (see Table S3 for primer sequences).

All animal procedures were carried out in accordance with

institutional guidelines (UPMC and INSERM).

Histology and Immunocytochemistry
Embryos and mice were processed as described previously [46].

Tissue sections and whole-mount embryos were hybridized with

digoxygenin-labeled riboprobes as described previously [46].

The following primary antibodies were used: mouse anti-CaBP

(1:2,000, Swant), mouse anti-neurofilament (1:1,000, gift from

Virginia M.-Y. Lee, Philadelphia, PA), mouse anti-Islet1 (1:100,

Developmental Studies Hybridoma Bank, University of Iowa),

mouse anti-parvalbumin (1:1,000, Swant), mouse anti-Robo3

(1:200, R&D which recognizes the N-terminal domain of Robo3),

guinea pig anti-VGLUT2 (1:1,000, Millipore), rabbit anti-Hb9

(1:1,000, Abcam), rabbit anti-CGRP (1:1,000, Peninsula), rabbit

anti-GFP (1:300, Invitrogen), rabbit anti-Tag1 (1:3,000, gift from

Dr. Domna Karagogeos, University of Crete Medical School,

Heraklion, Greece), rabbit anti-CaBP (1:5,000, Swant), rabbit

anti-bGal (1:1,000, Cappel), goat anti-mouse Alcam (1:200, R&D),

goat anti-Brn3.2 (1:200, Santa Cruz Biotechnology), goat anti-

Robo3 (1:300, R&D), goat anti-ChAT (1:400, Millipore), and

chicken anti-GFP (1:800, Abcam). The following secondary

antibodies were used: donkey anti-goat, anti-mouse, anti-rabbit,

and anti-guinea pig coupled to CY3 or CY5 (1:600, Jackson

Laboratories), donkey anti-goat, anti-mouse, anti-rabbit and anti-

chicken coupled to Alexa Fluor 488 (1:600, Invitrogen). Sections

counterstained with Hoechst 33258 (10 mg ml21, Sigma) were

examined with a fluorescent microscope (DM6000, Leica) coupled

to a CoolSnapHQ camera (Roper Scientific) or a confocal

microscope (FV1000, Olympus).

Quantifications
The number of abducens motor neurons was quantified on 20-

mm coronal sections of adult hindbrain double labeled with anti-

ChAT and anti-Hb9. Neurons were counted on alternating

sections and counts multiplied by two to better reflect the total

number of neurons in each abducens nucleus.

Di-labeled IO neurons were counted as follows: on every section

containing the inferior olive, four confocal optic planes were

acquired (two on the contralateral side and two on the ipsilateral

side), and only the cells showing circle-shaped DiI labeling were

counted as positive (see Figure S8). The percentage of ipsilateral

and contralateral neurons represents the number of ipsilateral- or

contralateral-labeled neurons divided by the total number of

traced neurons on both sides.

The percentage of (bgal2; Brn3.2+) olivary neurons was

calculated as the ratio of (bgal2; Brn3.2+) on (bgal+; Brn3.2+)

neurons. Immunolabeled nuclei were counted on 20-mm sections

of E16 inferior olives (one section out of five was considered from

three embryos).

The number of DiI-labeled calyces of Held were counted from

stacked confocal planes (step size: 1.16 mm) encompassing 50 mm

of 100-mm vibratome sections, on all the sections containing the

MNTB. Only typical ‘‘moon crescent’’–shaped objects were

counted as calyces (see Figure 6E and 6G). Quantification in the

text are given as the number of calyces per nuclei (only one side)

per animal. This number is an underestimate of the real number of

calyces, because the confocal stack does not encompass the entire

section.

In Situ Hybridization
Antisense riboprobes were labeled with digoxigenin-11-D-UTP

(Roche Diagnostics) as described previously [46] by in vitro

transcription of cDNAs encoding Robo3 [8], Barhl1 [47], Slit1–Slit3

[46], Netrin1 [48], and Shh [49]. A mouse Robo3 cDNA specific for

exons 12–14 was amplified by PCR with the following primers: 59-

CGGAATTCTGGTATTCAGTGATGACCCC-39 and 59-GC-

TCTAGAACAGCAGCCTATCTAGGCCA-39 and cloned into

pBluescript vector. The anti-sense probe was synthesized in vitro

by digesting the construct with XbaI and using T7 RNA pol-

ymerase. Control sense probe yielded no signal.

DiI Tracing
The 4% PFA–fixed embryos or postnatal animals were injected

with small crystals of DiI (Molecular Probes) using glass

micropipettes. Injected brains were kept at 37uC for 1 wk

(aVCN-MNTB and VI-III commissures) to 3 wk (olivocerebellar
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projection). Brains were cut in 100-mm sections with a vibratome

(Leica) and counterstained with Hoechst.

Eye Movement Recordings
Mice were placed in a restrainer, fixed onto the center of a

turntable, facing a cylindrical screen, and their OKR and VOR

measured as previously described [19]. See Text S1 for a detailed

description of this procedure.

Rotarod Training
Mice were placed on the cylinder of a Rotarod apparatus

(model 7650, Ugo Basile Biological Research Apparatus) that

rotated at four turns per minute, and the time the mice spent on

top of the cylinder was recorded. After 300 s, the recording was

ended. The animals were tested twice, and between the sessions,

there was a 60-min break during which the mice rested in their

cages. Mean values of the two trials were calculated for each

animal. The Mann-Whitney test was used for statistical analyses

(p,0.05 was considered significant).

Erasmus Ladder
The Erasmus ladder [29] is a fully automated system designed

to screen motor performance and motor learning. It consists of a

horizontal ladder that is composed of 2637 rungs (pressure

sensors) and is situated between two sheltered boxes equipped with

pressurized air outlets. In order to test motor performance

Ptf1a::cre;Robo3lox/lox mice (n=6) and their littermates (n=4) were

placed in one of the shelters. After a randomized delay of 9–12 s,

the light was turned on in the box, automatically followed after 3 s

by an air puff from the pressurized air outlet, encouraging the

mice to leave the shelter and walk across the ladder to the shelter

on the other side, where the procedure was repeated. The paw

placement and overall step time (the time needed to transfer the

paw from one sensor to the other) was recorded for each trial in

real time using the pressure sensors. One trial was defined as a

crossing from one shelter to another. A trial was regarded

successful if the mice walked with a consistent pattern, touching

the pressure sensors with all paws, and with no disruptions such as

rearing, twisting, or turning around. One session consisted of at

least 20 trails.

Recordings of Auditory Brainstem-Evoked Responses
Mice were anesthetized with a mixture of ketamine and

levomepromazine. ABRs were collected between subcutaneous

needle electrodes inserted at the vertex and mastoids on both sides,

with the ground electrode in the back (see Text S1). Sound stimuli

were short broadband clicks and frequency-specific tone-bursts

(two-period rise–fall, 20-period plateau, frequency 5, 10, 15, 20,

32, and 40 kHz) presented at a repetition rate of 17 per second,

the sound level varying in 5-dB steps from 10 to 90 dB SPL (with

0 dB SPL= 2.1025 N.m22). The responses from the electrodes

were amplified (6100,000), filtered (10–3,000 Hz), digitally

converted and averaged (6500) by a computerized data-

acquisition system. On the ipsilateral side, wave I reflects the

activity of spiral ganglion cells. Later waves II, III, and IV are

ascribed to the sequential activation of more and more central

neural generators. On the contralateral side, a short latency wave

was observed similar to ipsilateral wave I (Figure 6H), which

precluded its being due to the activation of neural pathways

contralateral to the stimulus and was thus likely due to remote

detection of responses from the ipsilateral spiral ganglion through

electrically conductive neck tissues. The total absence of any

deflection in the contralateral ABRs at the latency corresponding

to ipsilateral wave II indicates that the artifact affecting this short

latency contralateral wave did not come into play for later waves.

Statistical Analysis
Unless mentioned in the text, results are presented as

means6standard deviation (sd). All differences of the means

between two sample sets were assessed by two-tailed Student t-test

with Welsh hypothesis (unequal variances) or a Mann-Whitney U-

test, as appropriate, except for the eye movement results. There

curves were first tested with an ANOVA for repeated measure-

ments for significant differences, and only for the different curves a

Student t-test was used to identify significantly different points.

Statistics were carried out with R software (http://www.r-project.

org/).

Supporting Information

Figure S1 Schematic representation of the oculomotor

system involved in lateral eye movement. (A) In controls,

lateral eye movements are controlled by two pairs of cranial motor

nuclei, the abducens (VI, green) and the oculomotor (III, red),

projecting ipsilaterally to the lateral rectus muscle (LR) and medial

rectus muscle (MR) respectively. Conjugate eye movement

involves a commissural connection (arrow) between VI nucleus

interneurons (black) and nucleus III. (B) In Robo3-null embryos and

Krox20::cre;Robo3lox/lox mutants, the III and VI still project to the

correct muscle, but the internuclear commissure is severely

reduced. It is still unknown whether VI interneurons innervate

the ipsilateral nucleus III.

Found at: doi:10.1371/journal.pbio.1000325.s001 (0.30 MB TIF)

Figure S2 Generation of a Robo3 conditional allele. (A)

To generate the Robo3 conditional allele, loxP sites were inserted

around exons 12, 13, and 14 of the Robo3 gene. Cre excision of

exons 12–14 generates a Robo3 protein interrupted at the

beginning of the second fibronectin type III repeat. This truncated

Robo3 protein, which lacks the transmembrane and cytoplasmic

domains, is unable to act as a receptor. (B) Sequence of the

conditional Robo3 allele around the loxP sites in the targeting

vector. The exons are in red, the primers used for genotyping in

green, the loxP sites in blue, and the Frt sites in violet.

Found at: doi:10.1371/journal.pbio.1000325.s002 (1.88 MB TIF)

Figure S3 Expression pattern of midline-derived axon

guidance factors. Coronal sections at the level of rhombomere

5 of E11 embryos hybridized with riboprobes for Netrin1 (A and C),

Shh (C and D), Slit1 (E and F), Slit2 (G and H), and Slit3 (I and J).

The expression pattern is similar in controls and Krox20::cre;

Robo3lox/lox embryos. Controls are either Robo3lox/lox (Netrin1, Shh,

Slit1) or krox20::cre;Robo3lox/+ (Slit2, Slit3). Scale bars represent

50 mm.

Found at: doi:10.1371/journal.pbio.1000325.s003 (3.82 MB TIF)

Figure S4 Normal expression of motoneuron markers.

Coronal sections at the level of the abducens nuclei of adult (A–B9)

and E13 (C–D) control (A, A9, and C) and Krox20::cre;Robo3lox/lox

(B, B9, and D) animals. (A–B9) In both cases, abducens

motoneurons are immunoreactive for ChAT (A and B) and

CGRP (A9 and B9). (C and D) They also express islet1

(arrowheads). Note the abnormal shape and position of the

abducens nuclei in Krox20::cre;Robo3lox/lox mutants. Scale bars

represent 50 mm, except in (C and D), where they indicate 70 mm.

Found at: doi:10.1371/journal.pbio.1000325.s004 (1.08 MB TIF)

Figure S5 Reduced internuclear commissure in Robo3-

deficient mice. (A–F) Coronal section of P0 brains immuno-
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stained with Hb9 following DiI tracing of the VI–III internuclear

connection. In controls (A and B), the internuclear commissure is

strongly labeled (arrow), and DiI-labeled cells are observed at the

level of the abducens nucleus (VI). (C and D) In Krox20::cre;

Robo3lox/lox mutants, the DiI-labeled internuclear commissure is

severely reduced. Some DiI-labeled fibers are still found on the

contralateral side, but no cells are traced in the vicinity of the

abducens nucleus. In Robo32/2 knockout (E and F), the

commissure is almost completely absent. No cells are traced on

the contralateral side. Scale bars represent 100 mm.

Found at: doi:10.1371/journal.pbio.1000325.s005 (1.87 MB TIF)

Figure S6 ABR thresholds and binaural difference in
control and Krox20::cre;Robo3lox/lox mice. (A) The detec-

tion thresholds of ABR did not significantly differ in Krox20::cre;

Robo3lox/lox versus control mice and remained in the normal range

from 5–40 kHz. (B) The binaural-difference wave complex

resulting from the fact that the late ABR waves in response to a

diotic stimulus are smaller than the sum of waves in response to

stimuli in either the right or the left side (see Materials and

Methods), was still present in mutants, with similar amplitudes and

latencies. It suggests that at least part of the functional coupling of

left and right signals remained present in Krox20::cre;Robo3lox/lox

mice, likely in relation to commissural neurons outside r3 and r5.

(C and D) Schematic representation of the auditory pathway in

control (C) and Krox20::cre;Robo3lox/lox mice (D). (G) Auditory inputs

(red arrowheads) from the hair cells are transmitted to neurons of

the spiral ganglion that project ipsilaterally into the brainstem on

globular bushy cells in the anterior part of the ventral cochlear

nucleus (aVCN). In controls, these cells send large-diameter axons

to the contralateral medial nucleus of the trapezoid body (MNTB),

forming calyces of Held synapses (arrow). MNTB neurons then

project to the lateral superior olive (SO). In Krox20::cre;Robo3lox/lox

mice, globular bushy cell axons only project to the ipsilateral

MNTB but still form calyces. (C) is adapted from [4]

Found at: doi:10.1371/journal.pbio.1000325.s006 (0.63 MB TIF)

Figure S7 Normal cerebellar cortex and pontine nuclei
in Ptf1a::cre;Robo3lox/lox mice (A–D) Sagittal sections of the

cerebellar cortex of P32 control (A and C) and Ptf1a::cre;Robo3lox/lox

mice (B and D) labeled with antibodies against parvalbumin (Parv)

and calbindin (CaBP) and counterstained with Hoechst. Purkinje

cells coexpress the two proteins, whereas molecular layer

interneurons only express parvalbumin. (C and D) were obtained

by subtraction of the calbindin channel (green) from the

parvalbumin channel (red). The morphology of Purkinje cells

and the density of molecular layer interneurons are similar. (E and

F) show a ventral view of whole-mount hindbrain of E15 embryos

hybridized with Barhl1 riboprobe. The stream of migrating

pontine neurons (arrowheads) is comparable. Scale bars represent

25 mm, except in (E and F), where they indicate 500 mm

Found at: doi:10.1371/journal.pbio.1000325.s007 (2.25 MB TIF)

Figure S8 Phenotype of inferior olivary neurons in
Ptf1a::cre;Robo3lox/lox mice. (A–F) Coronal sections of P0

(A, B, D, and E) and E13.5 (C and F) hindbrain at the level of the

inferior olive labeled with Brn3.2 (A–F) and calbindin (A and D).

The structure of the inferior olivary nucleus is disorganized in

Ptf1a::cre;Robo3lox/lox mice (compare [A and B] with [D and E]), and

many of its subdivisions have an abnormal shape. The arrows in

(D) show the position of dorsal cap of Kooy (DC in [A]) and the b-

nucleus (b in [A]) neurons, and the arrows in (E) indicate the

disorganized principal olive (PO in [B]). (C and F) Brn3.2+ IO

neurons do not cross the midline (arrow) in either control (C) or

Ptf1a::cre;Robo3lox/lox (F) embryos. The arrowheads point to

migrating LRN neurons. (G) is a 1.16-mm-thick confocal image

of DiI-labeled IO neurons in control P0 mouse with Hoechst

counterstaining. (H and I) Schematic representation of the

olivocerebellar projection in control (H) and Ptf1a::cre;Robo3lox/lox

mice (I). In control, all IO neurons project across the ventral

midline to the contralateral cerebellum (Cer) where their terminal

arborization, the climbing fibers (CF), synapse on Purkinje cells. In

Ptf1a::cre;Robo3lox/lox mice, most IO axons project into the

ipsilateral cerebellar cortex. Scale bars represent 100 mm, except

in (G), where it indicates 20 mm a, b, and c indicate the subnuclei

a, b, and c, respectively, of the MAO. DAO, dorsal accessory

olive; DC, Dorsal Cap of Kooy; MAO, medial accessory olive.

Found at: doi:10.1371/journal.pbio.1000325.s008 (3.31 MB

DOC)

Figure S9 Normal spinal cord commissures in Ptf1a::

cre;Robo3lox/lox embryos. (A–H) are coronal sections of the

spinal cord of E13 embryos immunolabeled with neurofilament

and Robo3 (A, B, E, and F) or TAG-1 and Robo3 (C, D, G, and

H). Commissures are not reduced and still express Robo3 in

Ptf1a::cre;Robo3lox/lox mice. Scale bars represent 200 mm.

Found at: doi:10.1371/journal.pbio.1000325.s009 (2.74 MB TIF)

Table S1

Found at: doi:10.1371/journal.pbio.1000325.s010 (0.44 MB PDF)

Table S2

Found at: doi:10.1371/journal.pbio.1000325.s011 (1.59 MB PDF)

Table S3

Found at: doi:10.1371/journal.pbio.1000325.s012 (0.02 MB

DOC)

Text S1 Supplemental Methods. Eye movement and ABR

recordings.

Found at: doi:10.1371/journal.pbio.1000325.s013 (0.02 MB

DOC)

Video S1 Ataxic gait of Ptf1a::cre;Robo3lox/lox mice. Two

P15 littermates: the Ptf1a::cre;Robo3lox/+ mouse walks normally,

whereas the Ptf1a::cre;Robo3lox/lox mouse has an ataxic gait.

Found at: doi:10.1371/journal.pbio.1000325.s014 (1.36 MB

MOV)
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