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Abstract

Control of infection with Mycobacterium tuberculosis (Mtb) requires Th1-type immunity, of which CD8+ T cells play a unique
role. High frequency Mtb-reactive CD8+ T cells are present in both Mtb-infected and uninfected humans. We show by
limiting dilution analysis that nonclassically restricted CD8+ T cells are universally present, but predominate in Mtb-
uninfected individuals. Interestingly, these Mtb-reactive cells expressed the Va7.2 T-cell receptor (TCR), were restricted by
the nonclassical MHC (HLA-Ib) molecule MR1, and were activated in a transporter associated with antigen processing and
presentation (TAP) independent manner. These properties are all characteristics of mucosal associated invariant T cells
(MAIT), an ‘‘innate’’ T-cell population of previously unknown function. These MAIT cells also detect cells infected with other
bacteria. Direct ex vivo analysis demonstrates that Mtb-reactive MAIT cells are decreased in peripheral blood mononuclear
cells (PBMCs) from individuals with active tuberculosis, are enriched in human lung, and respond to Mtb-infected MR1-
expressing lung epithelial cells. Overall, these findings suggest a generalized role for MAIT cells in the detection of
bacterially infected cells, and potentially in the control of bacterial infection.
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Introduction

Mycobacterium tuberculosis (Mtb), which causes tuberculosis (TB),

remains a leading cause of infectious disease mortality worldwide

[1]. The majority of TB cases are exclusively pulmonary, suggesting

a need for mucosal immunity in the control of Mtb. Th1-type

immunity, including strong CD4+ Th1 cell and CD8+ T-cell

responses, mediates control of Mtb infection [2]. Though many

functions of CD4+ Th1 cells and CD8+ T cells are redundant, CD8+

T cells contrast with CD4+ cells in their ability to recognize MHC

class II-negative cells and preferentially recognize cells heavily

infected with Mtb [3]. In humans, Mtb-specific CD8+ T cells are

present at high frequencies in both Mtb-infected and uninfected

individuals [4,5]. The presentation of peptide antigen bound to

HLA-A, B, or C to CD8+ T cells is well characterized [4,6] and has

been termed HLA-Ia or classical antigen presentation.

Several nonclassical MHC-Ib (HLA-Ib) systems have been

described as well. In general, these systems utilize molecules of

limited polymorphism to present antigens uniquely characteristic of

an infectious pathogen. Examples include presentation of short

formylated peptides by mouse H2-M3 [7], presentation of lipids and

glycolipids by human group 1 CD1 (CD1a–c) molecules [8–11],

and the presentation of bacterial glycolipids by CD1d [12,13]. In

some cases these nonclassically restricted T cells have been found at

high frequency prior to pathogen exposure, suggesting an innate

role. In our previous studies we have determined that human

neonates have high frequencies of innate Mtb-reactive thymocytes

that are not restricted by classical HLA-I molecules [14].

Functionally, such cells could either provide a direct role in the

control of intracellular infection or could facilitate the acquisition of

adaptive immunity. In humans, Mtb-reactive group 1 CD1 [15]

and HLA–E restricted CD8+ T cells [16] have been described.

We have observed that all individuals regardless of exposure to

TB have CD8+ T cells capable of recognizing Mtb-infected cells

[4,5,14]. Moreover, a proportion of these CD8+ T cells can be

defined as nonclassically restricted [5]. Therefore, to define the
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relative contribution of classically versus nonclassically (NC)

restricted CD8+ T cells, we used limiting dilution analysis (LDA)

to characterize human, Mtb-specific CD8+ T cells in those with

TB, those with latent TB infection (LTBI), and those with no

evidence of prior exposure to Mtb. We show that CD8+ T-cell

clones from individuals infected with Mtb are primarily HLA-Ia

restricted. In contrast, NC restricted CD8+ T-cell clones that are

neither HLA-Ia nor CD1-restricted, predominate in Mtb-

uninfected donors but are nevertheless present in all donors.

Furthermore, we demonstrate that these NC restricted CD8+ T-

cell clones are restricted by MHC-related molecule 1 (MR1), an

HLA-Ib molecule that displays striking evolutionary conservation

in mammals [17]. These human Mtb-reactive T cells recognize

Mtb-infected dendritic cells (DCs) and lung epithelial cells.

Moreover, we show that Mtb-reactive mucosal associated

invariant T (MAIT) clones cross react with cells infected with

other mycobacteria as well as other bacteria such as Escherichia coli,

Salmonella typhimurium, and Staphylococcus aureus. These clones

express the semi-invariant Va7.2 T cell receptor, are activated

in a manner independent of the transporter associated with

antigen processing and presentation (TAP), and have a mucosal

homing phenotype. These phenotypic data lead us to designate

these cells as MAIT cells [18,19], a cell type with no previously

known physiological function.

Additionally, we demonstrate that infection with Mtb induces

cell surface expression of MR1 on lung epithelium. Furthermore,

Mtb-reactive MAIT cells are enriched in human lung and respond

to Mtb-infected lung epithelial cells. Finally, we have performed

direct ex vivo analysis of Mtb-reactive MR1-restricted MAIT cells,

and find they are present at lower frequencies in the blood of those

with active TB. These findings suggest that MAIT cells could play

a direct role in the control of bacterial infection.

Results

Mtb-Reactive, NC Restricted CD8+ T Cells Predominate in
TB-Uninfected Individuals

In humans, direct ex vivo analysis of Mtb-specific CD8+ T cells

reveals a strong association of HLA-Ia–restricted responses and

infection with Mtb [4,20]. Nonetheless, NC HLA-I–restricted

CD8+ T cells comprise a substantial proportion of the overall

response to Mtb in Mtb-infected individuals [4,5,20]. In

individuals with no evidence of infection, we have consistently

found high frequency CD8+ T cell responses against Mtb-infected

DCs. To address the hypothesis that NC restricted CD8+ T cells

comprise the dominant response in those without Mtb infection we

performed LDA [5] using CD8+ T cells stimulated with Mtb-

infected DCs. LDA was performed on individuals with no

evidence of Mtb infection (uninfected controls, n = 5), individuals

with evidence of latent infection with Mtb (LTBI, n = 5), and

individuals with clinical TB (active TB, n = 6). From each of the 16

individuals, we screened an average of 128 clones per donor

(Table 1) for their ability to specifically release interferon-c (IFN-c)

in response to a panel of Mtb-infected but not uninfected targets.

The antigen presenting cell (APC) target groups were:

autologous DCs, HLA-mismatched DCs, or HLA-mismatched

macrophages. HLA-Ia restricted clones were defined as those

responding only to Mtb-infected HLA matched DCs. DCs were

grown in X-Vivo media to ensure expression of cell surface CD1.

NC-restricted clones were defined as those responding to all three

Mtb-infected APC types. As macrophages do not express CD1,

NC CD1-restricted T clones were defined as those responding

only to infected DCs. Using this method, we have not observed

CD1-restricted T-cell clones, resulting in categorization of all the

non-HLA-Ia–restricted clones as NC-restricted T cells. None of

the T-cell clones were stimulated by uninfected HLA mismatched

targets ruling out responses due to alloreactivity.

The results from the LDA analysis are presented in Table 1 and

Figure 1. The proportion of NC-restricted T-cell clones from each

group of donors is presented in Figure 1. As expected, HLA-Ia–

restricted CD8+ T-cell clones were strongly associated with TB

(p = 0.009) (Figure 1). Nonetheless, consistent with prior observa-

tion [5], a significant proportion of CD8+ T-cell clones from

infected individuals were NC-restricted. Furthermore, CD8+ T-

cell clones isolated from uninfected donors predominantly

displayed a NC phenotype (Figure 1).

To facilitate further analysis a representative subset of the NC-

restricted T-cell clones from each donor was expanded and further

characterized. Phenotypic analysis of expanded clones (n = 120)

revealed uniform expression of CD8a and the ab TCR

(unpublished data). Additionally, we excluded potential activation

by a soluble mediator by successfully using Mtb-infected

paraformaldehyde-fixed DCs as stimulators. As a result, we have

isolated 120 stable NC Mtb-reactive CD8+ ab TCR+ T-cell

clones.

Mtb-Reactive NC CD8+ T-Cell Clones Are Restricted by
the HLA-Ib Molecule MR1

To explain the high proportion of NC-restricted CD8+ T cells,

we considered three hypotheses: presentation by an HLA-Ib

molecule, natural killer (NK)-receptor mediated activation, and

Toll-like receptor (TLR)-mediated activation. To exclude the

possibility that TLR stimulation of DCs would be sufficient to

activate the NC clones, we stimulated DCs with agonists to TLR2

(lipoteichoic acid) or to TLR4 (lipopolysaccharide) [14], as both

TLRs have been associated with Mtb infection [21]. TLR

stimulation of DCs did not result in T-cell activation (Figure 2A).

To further evaluate the possibility that TLR2 and/or TLR4

stimulation was required for the recognition of Mtb-infected

targets, antibody blockade was performed (Figure 2B). Neither

TLR2 nor TLR4 blockade prevented Mtb-dependent T-cell

activation. However, the TLR2 and TLR4 antibodies blocked

100% and 80% of interleukin-6 (IL-6) production by DCs treated

with TLR2 and TLR4 agonists respectively (unpublished data).

Author Summary

About one-third of the world’s population is infected with
Mycobacterium tuberculosis (Mtb), yet thanks to a robust
immune response most infected people remain healthy.
CD8 T cells are unique in detecting intracellular infections.
Surprisingly, Mtb-reactive CD8 T cells are found in humans
with no prior exposure to Mtb. We show that mucosal
associated invariant T (MAIT) cells, which have no
previously known in vivo function, make up a proportion
of these Mtb-reactive CD8 T cells and detect Mtb-infected
cells via a specific major histocompatibility molecule called
MHC-related molecule 1, which is evolutionarily conserved
among mammals. Mtb-reactive MAIT cells are enriched in
lung and detect primary Mtb-infected lung epithelial cells
from the airway where initial exposure to Mtb occurs. We
go on to show that MAIT cells are not specific for Mtb since
they can detect cells infected with a variety of other
bacteria. Curiously, Mtb-reactive MAIT cells are absent in
the blood of individuals with active tuberculosis. We
postulate that MAIT cells are innate detectors of bacterial
infection poised to play a role in control of intracellular
infection.

Human MAIT Cells Detect Bacterially Infected Cells
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NK cells do not utilize a TCR but instead are regulated through

opposing signals triggered through inhibitory or activating

receptors. Mtb is known to induce the cell surface expression of

stress molecules such as ULBP1 [22] and MICA [23], which are

ligands for the activating NK receptor NKG2D. Antibody

blockade of NKG2D/CD94 and the ligands ULBP1 and MICA

did not alter recognition of Mtb-infected DCs by any of the T-cell

clones (Figure 2C).

We next tested the hypothesis that an HLA-Ib molecule was

restricting the NC CD8+ T-cell clones. We previously isolated

Mtb-specific human CD8+ T-cell clones restricted by the

molecule HLA–E [16]. Human Mtb-specific CD8+ T cells

restricted by the HLA-Ib molecules CD1a, CD1b, and CD1c

[24] have been extensively characterized. To assess if these

HLA-Ib molecules were restricting the NC T cells, we performed

antibody blockade experiments. We previously showed that

addition of the pan HLA-I blocking antibody W6/32 effectively

blocks the HLA–E restricted clone (D160 1–23) [16]. While

addition of W6/32 blocked recognition of Mtb-infected targets

by the HLA–E-restricted clone, three NC-restricted Mtb-

reactive CD8+ T-cell clones derived from different donors were

unaffected (Figure 2D). In addition to blocking all HLA-Ia

molecules and HLA–E, W6/32 also blocks the HLA-Ib molecule

HLA–G. As expected, the addition of blocking antibodies

previously shown to block responses to CD1a, CD1b, CD1c,

or CD1d also had no effect on the clones (Figure 2D). We have

extended these findings to all 120 NC CD8+ T-cell clones

isolated from the 16 donors listed in Table 2. None of the 120

clones were blocked by the addition of W6/32 or CD1 blocking

antibodies (unpublished data). These results suggest that neither

CD1a, CD1b, CD1c, CD1d, HLA–E, HLA–G, nor HLA-Ia

molecules restrict the panel of 120 Mtb-reactive CD8+ NC-

restricted T-cell clones. These data suggest that a common Mtb-

reactive CD8+ T subset is present in all individuals regardless of

prior exposure to Mtb.

Table 1. Nonclassical CD8+ T-cell clones predominate in TB-uninfected individuals.

Donor Status Donor ID Frequencies of Mtb-specific CD8+ cellsa n Clones Screened Percent Classical Percent Nonclassical

Active D431 1/403 109 60 40

D432 1/1156 191 50 50

D435 1/664 17 24 76

D466 1/528 167 95 5

D480 1/418 192 59 41

D481 1/618 159 96 4

n = 6 — — — 64% 36%

LTBI D426 1/6956 24 0 100

D443 1/1002 7 43 57

D450 1/1102 192 16 84

D454 1/1818 192 70 30

D504 1/1978 192 16 84

n = 5 — — — 29% 71%

Uninfected D403 1/2148 92 16 84

D470 1/1774 192 4 96

D462 N.D. 86 18 83

D427 1/7568 192 27 73

D497 1/3126 53 10 90

n = 5 — — — 15% 85%

aThese frequencies were previously reported [4].
Abbreviations: N.D., not done.
doi:10.1371/journal.pbio.1000407.t001

Figure 1. LDA of Mtb-reactive CD8+ T-cell clones. Scatter plot
demonstrating the proportion of NC restricted CD8+ T-cell clones
obtained from individuals in the active, LTBI, and uninfected groups.
Each symbol represents the average frequency from all clones screened
from an individual donor (Table 1), which was categorized as NC
restricted. The nonparametric Mann Whitney one-tailed t-test was used
to assess statistical significant differences between groups. Significant
differences were detected between active and uninfected groups
(p = 0.0043) between the active and LTBI groups (p = 0.0411), but not
between the LTBI and uninfected groups (p = 0.3362).
doi:10.1371/journal.pbio.1000407.g001

Human MAIT Cells Detect Bacterially Infected Cells
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We next postulated that the HLA-Ib molecule MR1 was the

restricting allele for the NC clones. MR1 is a nonpolymorphic

HLA-Ib molecule genetically linked with the CD1 locus in humans

[25] and is the most evolutionarily conserved HLA–I molecule

among mammals [26]. MR1 is required for the selection of a

subset of T cells found primarily in the gut of mammals and thus

named mucosal associated invariant T (MAIT) cells. The

expansion of MAIT cells is dependent on the presence of gut

flora suggesting that a bacterial derived or induced ligand is

required for MR1-restricted T-cell expansion and activation [19].

Nevertheless, no bacterial or endogenous MR1-restricted antigen

has been identified although considerable evidence supports an

antigen presentation function by MR1 [27–29]. Furthermore, the

biological role of MR1-restricted T cells is unknown, even though

several parallels suggest a Natural Killer T-(NKT) cell–like

regulatory role [30,31].

As demonstrated in Figure 2E, addition of an anti-MR1

blocking antibody (26.5) [28] prior to the addition of NC clones

abolished IFN-c production by three different Mtb-reactive NC

CD8+ T-cell clones and an additional 11 clones listed in Table 2.

The addition of a different anti-MR1 blocking antibody (8F2.F9)

resulted in similar blocking (unpublished data). In contrast, CD8+

T-cell clones restricted by HLA–E (D160 1–23) or HLA-B08

(D480F6), or a CD4+ HLA-II restricted clone (D454E12) were

unaffected by the addition of the anti-MR1 blocking antibody

(Figure 2E).

MR1-Restricted, Mtb-Reactive CD8+ T-Cell Clones are
MAIT Cells

We next performed phenotypic analyses of Mtb-reactive MR1-

restricted T-cell clones to determine if they shared properties of

previously characterized MR1-restricted MAIT cells. We selected a

subset of clones representative of TB exposed (active, n = 5; LTBI,

n = 4) and uninfected donors (n = 5) (Table 2). One defining feature

of both mouse and human MR1-restricted MAIT cells is the

expression of a semi-invariant TCR Va chain: Va7.2/Ja33 for

humans and the highly homologous Va19/Ja33 for mice,

respectively. Using an antibody that labels all T cells containing

the Va7.2 chain including those that pair with the Ja33 region [32],

the Va7.2 chain was detected by flow cytometry on all 14 MR1-

restricted Mtb-specific T-cell clones as well as on an HLA-B08–

restricted clone, but not on the HLA–E, or HLA-II–restricted

clones (Figure 2F; Table 2). Given that 14 of 14 randomly selected

clones were restricted by MR1, binomial analysis suggests a high

prevalence of MR1 restriction among our panel of clones (.95%).

Furthermore, we performed an analysis of Va7.2 TCR expression

on an additional 28 NC clones. Here all 28 clones expressed the

Va7.2 TCR suggesting that the remaining clones are MR1-

restricted. The TCR of Va7.2-expressing MAIT cells from the gut

has been associated with the expression of the Vb2 or Vb13 TCR b
chains [31]. However, we found at least 10% of the Mtb-specific

MR1-restricted T-cell clones did not express either Vb2 or Vb13

(Table 2 and unpublished data). To determine if Va7.2+ Mtb-

reactive MR1-restricted T-cell clones expressed the canonical

Va7.2/Ja33 CDR3 region, the TCR alpha encoding cDNA was

cloned from six representative Mtb-reactive clones chosen on the

basis of their distinct patterns of Vb TCR usage. All six T-cell clones

were found to express the hAV72 segment as expected, and five of

six expressed the hAJ33 segment (Table 3). Further, all six Mtb-

reactive TCRs were found to have VJ junctional heterogeneity with

two N additions, as previously reported for Va7.2/Ja33 TCRs

[33,34]. Importantly all six TCRs from Mtb-reactive T-cell clones

were found to encode CDR3a loops of the same length, which is

highly conserved among all mammalian Va7.2/Ja33+ cells studied

thus far. And finally, each of the sequences of the CDR3a loops of

the five Va7.2/Ja33+ Mtb-reactive T cells matched a sequence from

a previously reported Va7.2/Ja33+ cell of undefined restriction and

antigen specificity (Table 3) [33,34].

In humans, gut-derived MR1-restricted MAIT cells have been

shown to express the CD8aa form of the CD8 co-receptor or lack

Table 2. Phenotypic characterization of MR1-restricted
Mtb-reactive T-cell clones.

T-Cell Clone Donor Status Cell Surface Phenotype

TCR Va TCR Vb CD161

D431G9 Active 7.2 17 2

D432BA8 Active 7.2 U +

D466 A3 Active 7.2 20 N.D.

D466F5 Active 7.2 13.5 2

D481A9 Active 7.2 2 +

D426B1 LTBI 7.2 13.5 2

D450C8 LTBI 7.2 13.2 +

D454B6-2 LTBI 7.2 2 +

D504H11 LTBI 7.2 17 N.D.

D403C6 Uninfected 7.2 U +

D427G10 Uninfected 7.2 U 2

D462D5 Uninfected 7.2 2 2

D470B1 Uninfected 7.2 2 2

D470C1-2 Uninfected 7.2 U 2

U, untypable indicates the Vb chain could not be determined using the flow
cytometric assay.
Abbreviations: N.D., not done.
doi:10.1371/journal.pbio.1000407.t002

Figure 2. Mtb-specific NC CD8+ T cells are restricted by MR1. (A–E) Results of ELISPOT assays shown as IFN-c spot forming units (SFU)/
10,000 T cells in response to DCs (25,000/well) treated as described. (A) TLR agonist stimulation of DCs does not stimulate Mtb-reactive NC-restricted
clones. DCs were treated (24 h) with TLR agonists specific for TLR2 (lipoteichoic acid, 10 mg/ml) and TLR4 (LPS; 100 ng/ml) at concentrations known
to induce activation and cytokine production by DCs [14]. (B) TLR2 (5 mg/ml) or TLR4 (10 mg/ml) blocking antibodies were added to DCs that were
uninfected or infected 1 h prior to the addition of Mtb-reactive NC T-cell clones. (C) Mtb-infected DCs were incubated with blocking antibodies (5 mg/
ml) to NKG2D, ULBP1, MICA, CD94 for 1 h prior to the addition of the T-cell clones. (D) The pan HLA–I (W632) and CD1a, b, c, and d blocking
antibodies were added to Mtb-infected DCs prior to the addition of T cells. (E) DCs infected with Mtb overnight were incubated with anti-MR1
blocking antibody (clone 26.5) or a mouse IgG2a isotype control (both at 5 mg/ml) for 1 h prior to the addition of T cells. (F–H) Cell surface phenotypic
analyses of MR1-restricted clones and control clones. For cell surface detection, cells were incubated with antibodies specific for Va7.2 (clone 3C10)
(F), or CD8a, CD8b (G), or CD161 (H), and analyzed by flow cytometry. For (F) and (H), filled histograms represent the isotype control, bold lines
represent antibody-specific staining. Columns 1, 2, and 3 represent MR1-restricted clones from different TB exposure groups: D470B1 (uninfected),
D426B1 (latent), D466F5 (active), respectively. Column 4 represents HLA-E restricted clone D160 1–23 [16]. Column 5 represents HLA-B08-restricted
clone D480C6 specific for the Mtb antigen CFP-103–11. Column 6 represents CD4+ HLA-II–restricted clone D454E12 specific for the Mtb antigen CFP-
10. Error bars represent the mean and standard error from duplicate wells. N.D., not done.
doi:10.1371/journal.pbio.1000407.g002
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CD4 or CD8 coreceptor expression [19,34]. In peripheral blood,

invariant TCR Va7.2+ T cells were originally identified from and

found to be overrepresented in the CD42CD82 fraction of T cells

[33]. More recently, MAIT CD8ab T cells have also been

described [32,35]. As shown in Figure 2G (and unpublished data),

all of the Mtb-reactive MR1-restricted clones tested (n = 14;

Table 2) coexpressed CD8a and CD8b chains. Human and mouse

MR1 lack residues associated with CD8 interaction [25], such that

the functional significance of coreceptor expression on Mtb-

reactive MR1-restricted T cells remains to be determined. In a

recent analysis of MAIT cells from blood, the canonical Va7.2+

cells were associated with expression of the NK receptor CD161

[32]. We found that Mtb-reactive MR1-restricted T-cell clones

cells varied in their CD161 expression (Figure 2H; Table 2),

although all cells expressed the mucosal homing integrin a4b7,

CD45RO, and lacked CD45RA as previously described for MAIT

cells (unpublished data) [32].

Prior work with mouse and human MR1-restricted MAIT cells

has demonstrated that neither HLA-II nor TAP are required for

thymic selection nor for antigen processing and presentation

[18,34]. To determine if TAP transport is required for

presentation to Mtb-reactive MAIT cells we used an adenoviral

vector expressing the TAP inhibitor ICP47 (Figure 3) [36,37].

When ICP47-expressing DCs were subsequently infected with

Mtb, neither representative MR1-restricted clones, nor an HLA-II

restricted clone were affected by TAP inhibition. In contrast, TAP

blockade resulted in over 85% inhibition of the response by the

CFP-103–11 HLA-B08-restricted CD8+ T-cell clone. Hence,

human Mtb-reactive MR1-restricted T cells, like previously

described MAIT cells, do not require TAP for antigen processing

and presentation.

The Mtb Cell Wall is Able to Stimulate Mtb-Reactive MAIT
Cells in an MR1-Dependent Fashion

To determine if an antigen from Mtb could stimulate the NC-

restricted T-cell clones, we initially screened the panel of 120

stable NC clones for their ability to recognize autologous DCs

loaded with the cell wall (CW) fraction from Mtb. In contrast to

HLA-Ia restricted Mtb-specific T-cell clones, we found that all of

the NC clones were stimulated by DCs loaded with Mtb CW

(unpublished data).

To delineate the antigen recognized by clones we compared the

ability of CW to culture filtrate protein (CFP) from Mtb strain

H37Rv (courtesy of K. Dobos) to induce a response by a panel of

NC-restricted CD8+ T-cell clones (n = 21 and representative of the

16 donors). As expected, the CW fraction derived from Mtb

induced robust responses by all the T-cell clones (Figure 4A),

whereas the CFP was not stimulatory. To determine if the

presentation of Mtb CW was dependent on MR1 we performed

antibody blockade. Figure 4B shows that the CW response by

three distinct MR1-restricted CD8+ T-cell clones was dependent

on MR1. To further characterize the antigen associated with the

CW fraction, we subjected the CW to a variety of treatments and

tested the ability of the treated fractions to induce a response by

the 21 NC-restricted CD8+ T-cell clones (Figure 4C). We have

found that delipidated CW (dCW), compared to untreated CW, is

strongly antigenic. To determine whether or not the MR1 antigen

was proteinaceous, dCW was subjected to proteolytic digestion

with a panel of proteases. With all but three NC T-cell clones,

protease treatment of the dCW abrogated the antigenic activity.

The mean and standard error for the respective treatment groups

were: (dCW, 298.7+/231.72); (subtilisin, 69.38+/220.05); (tryp-

sin, 79.57+/217.25); (chymotrypsin, 74+/217.93); (pronase,

33.38+/210.86); (Glu-C, 113.5+/227.48). In each case the

Dunn’s Multiple Comparison test showed significant differences

between dCW and each of the protease-treated fractions (p,0.05).

Mtb-Reactive MAIT Cells Are Cross-Reactive with Other
Bacteria

To determine if Mtb-reactive MAIT cells were specific for Mtb

we screened known MR1-restricted clones for their ability to

recognize M. smegmatis and E. coli. We found that all clones

recognized DCs infected with either M. smegmatis or E. coli

(unpublished data). Further evaluation of Mtb-reactive MAIT

clones showed that neither adenovirus (Figure 3), nor vaccinia-

infected cells (unpublished data) elicited a response by the clones.

To further define the cross-reactivity of Mtb-reactive MAIT cells,

three independent clones were tested for their ability to recognize

DCs infected with S. typhimurium, S. aureus, and Listeria monocytogenes.

As shown in Figure 4D, Mtb-reactive MAIT cells recognize DCs

infected with S. typhimurim and S. aureus, but not L. monocytogenes. To

confirm the lack of response by L. monocytogenes we infected cells at

multiplicity of infection (moi) in excess of 60 and did not observe a

response (unpublished data).

Mtb-Reactive MAIT Cells Recognize Mtb-Infected Lung
Epithelial Cells

Research on TB has traditionally focused on myeloid derived

APCs such as macrophages and DCs. However, TB has the

capacity to infect a variety of other cell types including epithelial

Figure 3. MR1-restricted recognition of Mtb-infected cells is
TAP-independent. DCs autologous to D454 and expressing HLA-B08
were transduced with either a control adenoviral vector or adenoviral
ICP47 using lipofectamine 2000. After 16 h, DCs were washed and
either left uninfected, infected with Mtb, or pulsed with HLA-B08
specific peptide CFP103–11. Following overnight incubation, T cells were
added (10,000) to DCs (25,000/well) and IFN-c production was assessed
by ELISPOT. Results are representative of three independent assays. No
responses were detected from T cells incubated with uninfected DCs
with or without adenoviral vectors. Error bars represent the mean and
standard error from duplicate wells.
doi:10.1371/journal.pbio.1000407.g003

Table 3. Genotypic TCR analysis of MR1-restricted
Mtb-reactive T-cell clones.

T-Cell Clone (Vb) CDR3 J Chain

D466 A3 (Vb20) CAVLDSNYQLIWGAG hAJ33

D466F5 (Vb13.5) CAVRDSNYQLIQWGAG hAJ33

D426B1 (Vb13.5) CAVRDSNYQLIQWGAG hAJ33

D450C8 (Vb13.2) CARSDSNYQLIWGAG hAJ33

D504H11 (Vb17) CASMDSNYQLIWGAG hAJ33

D470B1 (Vb2) CAVNGDDYKLSFGAG hAJ20

doi:10.1371/journal.pbio.1000407.t003
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cells [38]. Moreover, Mtb DNA has been detected in a variety of

cell types in the lung including epithelial cells [39]. Furthermore,

HLA-Ib molecules are expressed on mucosal epithelial cells [40].

Because MAIT cells are located in the gut and lung mucosa we

hypothesized that MR1-restricted T cells could play a role in the

detection of Mtb in lung epithelium. As shown by flow cytometry

Figure 4. MR1 presents a protein-containing antigen from the mycobacterial cell wall. (A) CFP or CW from the Mtb strain H37Rv were added
(5 mg/ml) to DCs (25,000/well) for 1 h prior to the addition of one of 21 NC clones (5,000/well) followed by IFN-c ELISPOT assay. (B) DCs (25,000) loaded
with CW overnight were incubated with anti-MR1 blocking antibody (clone 26.5) or a mouse IgG2a isotype control (both at 5 mg/ml) for 1 h prior to the
addition of T-cell clones (10,000/well). (C) dCW from Mtb was treated with proteases (subtilisin, trypsin, chymotrypsin, pronase, Glu-C) and added (5 mg/
ml) to DCs (25,000/well) for 1 h before the addition of 21 NC clones (5,000/well) that were tested for their ability to produce IFN-c in an ELISPOT assay.
Reversed phase- high performance liquid chromatography (RP-HPLC) chromatogram analyses were used to confirm the inactivation of proteases. No
responses were detected in the absence of DCs. (D) DCs were infected with S. typhimurium, L. monocytogenes, and S. aureus for 1 h with a calculated moi
of 145, 6, and 15, respectively. DCs were washed, antibiotics added, and DCs (25,000) were incubated with three different Mtb-reactive MAIT-cell clones
(10,000/well) that were tested for their ability to produce IFN-c in an ELISPOT assay. Results shown are similar to a minimum of three independent
experiments where S. typhimurium, L. monocytogenes, and S. aureus were tested at a variety of moi ranging from 5 to 150.
doi:10.1371/journal.pbio.1000407.g004
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(Figure 5A) and microscopy (Figure 5B), Mtb infects the human

lung epithelial cell line A549 [38]. Mtb-infection of A549 cells

resulted in robust IFN-c production by NC-restricted HLA-E

(Figure 5C) and MR1-restricted T cells (Figure 5D), in a manner

that was dependent on the HLA-Ib molecules HLA-E and MR1,

respectively. Similarly to results shown with DCs, Mtb-infected

A549 cells activated MR1-restricted, but not an HLA–E–restricted

T cell [37], independently of TAP (Figure 5E).

The ability of anti-MR1 antibodies to block recognition of the

Mtb-infected cells implies that T-cell activation is occurring via the

cell-surface expression of MR1. Our ability to successfully block

DC recognition by MR1-restricted T cells with antibody

concentrations lower than 0.5 mg/ml (unpublished data) suggests

that low levels of MR1 are sufficient for MAIT cell recognition.

Although MR1 mRNA is ubiquitous in all human cell types [25]

and MR1 protein detectable in all mouse tissues [18], cell surface

expression of MR1 has not been demonstrated. Mtb infection of

A549 cells resulted in the detectable cell surface expression of

MR1 while HLA-I expression was unaltered by infection with Mtb

(Figure 5F). We have not detected surface MR1 on DCs. We

speculate that high levels of Fc receptor expression have made it

difficult to discern low-level MR1 expression.

To determine whether or not primary human lung epithelial

cells could act as APCs to Mtb-reactive MR1-restricted T cells, we

generated human primary large airway epithelial cells from

tracheal brushings [41]. As shown in Figure 5G, Mtb-infected

large airway epithelial cells elicited a robust response by the MR1-

restricted clone D426B1. Furthermore, this response was blocked

by the addition of anti-MR1 blocking antibody (26.5) but not the

isotype control (Figure 5G).

Mtb-Reactive MR1-Dependent MAIT Cells Are Present at
Reduced Frequency in the Blood of Those with Active TB

To determine if Mtb-reactive MR1-restricted T-cell responses

are correlated with exposure to Mtb, we performed flow-

cytometric ex vivo analyses of MR1-restricted, Mtb-reactive

MAIT cells from subjects from all three Mtb exposure groups

(uninfected, n = 6; LTBI, n = 5, active TB, n = 8). To enumerate

these cells ex vivo, Mtb-infected A549 cells were used as APCs.

A549 were chosen as APCs because they do not produce tumor

necrosis factor-a (TNF-a) in response to infection with Mtb, nor

elicit an allogeneic response by polyclonal CD8+ T cells isolated

from the periphery and lung (Figures 6, 7, and unpublished data).

Furthermore, in addition to IFN-c, we have found that Mtb-

reactive MAIT clones produced TNF-a in response to infected

A549 cells in a manner dependent on MR1 (unpublished data).

To evaluate the nonclassical response to Mtb-infected APCs, we

enriched CD3+ T cells from peripheral blood mononuclear cells

(PBMCs) by negative selection and then depleted CD4+ T cells.

The remaining CD8+ and CD42CD82 T cells, as the source of

responding T cells, were incubated overnight with Mtb-infected

A549 cells in the presence or absence of MR1-blocking antibody.

Cells were surface stained to detect the Va7.2 TCR and the CD8a
coreceptor, and intracellular staining was performed to detect

TNF-a production. We found that Mtb-reactive MAIT cells were

uniquely CD8 single positive and CD161 negative. Therefore,

subsequently, T cells were selected on the basis of forward and side

scatter distribution and then selected on CD8 (Figure 6A), such

that the numbers presented in Figure 6A–6E represent frequencies

of total CD8+ cells. Figure 6B shows a representative analysis of

Mtb-dependent TNF-a production from Va7.2+ and Va7.22

CD8+ T cells. Mtb-infected A549 cells, but not uninfected A549

cells, induced TNF-a production by CD8+ T cells (Figure 6B and

6C). Although, Mtb-reactive responses could be detected in both

the Va7.2+ and negative subsets only Va7.2+ CD8+ T cells were

blocked by the addition of the anti-MR1 antibody (Figure 6B and

6C), consistent with the observation that MR1-restricted cells

express the Va7.2 TCR. On average, addition of anti-MR1

resulted in a 37% reduction in TNF-a production by Va7.2+ T

cells, whereas no blocking was observed from the Va7.22 T cells

(p,0.0001). We note that in all donors a proportion of Va7.22

cells expressed the cdTCR and were activated by Mtb-infected

APCs as expected from studies performed by De Libero et al.

(unpublished data) [42]. Of the 19 donors, four shared at least one

HLA-Ia allele with A549 cells [43]. However, three of these were

from the uninfected group that were previously shown to have no

detectable Mtb-specific HLA-Ia restricted T-cell responses [4].

To define the relationship of Mtb-reactive MAIT cells and host

infection status, we determined the frequency of CD8+ T cells that

expressed the Va7.2 TCR as well as the frequency of Mtb-reactive

Va7.2+ T cells recognizing Mtb-infected APCs in an MR1-

dependent manner (Figure 6D). The frequency of Va7.2+ cells

ranged from 0.039% to 10.5% of CD8+ T cells demonstrating

considerable heterogeneity among these 19 donors. Nonetheless, a

lower proportion of Va7.2+ cells was present in those with active

TB compared to LTBI. Figure 6E demonstrates the frequency

CD8+ T cells that were Va7.2+ MR1-dependent responses

analyzed by donor infection status. When compared with

uninfected subjects (mean = 0.092), those with active TB

(mean = 0.011) had markedly diminished responses (p = 0.0025),

whereas comparison with those with LTBI (mean = 0.185)

revealed a less dramatic decrease (p = 0.0611).

Mtb-Reactive MAIT Cells Are Enriched in the Lung
While MAIT cells have been reported in the gut lamina propria,

they have also been described in the lung [19]. To test the

hypothesis that MAIT cells resident in the human lung would be

reactive to Mtb, the lung and adjacent lymph node (LN) were

obtained from two individual organ donors whose lungs were not

suitable for transplantation. Single cell suspensions from the LN

and lung parenchyma were prepared and T cells were then

enriched via magnetic bead positive selection. Figure 7 represents

the results from intracellular cytokine staining assays performed as

described in Figure 6. The frequencies of Va7.2+ CD8+ cells in the

lungs were similar to those detected in blood. However, the

proportion of Va7.2+ cells producing TNF-a in response to Mtb-

infected APCs was notably higher (donor A, 13%; donor B, 22%)

than that seen in the adjacent LN or from the blood of the 19

donors described in Figure 6 (range, 0%–10.7%; mean, 3.03;

median, 2.26). These data therefore demonstrate that a substantial

proportion of lung-resident MAIT cells are Mtb-reactive, and that

these cells are enriched relative to the adjacent LN and peripheral

blood.

Discussion

Humans both infected and uninfected with Mtb have high

frequencies of Mtb-reactive CD8+ T cells [4,5]. In this study we

demonstrate, by both LDA and direct ex vivo analysis that NC-

restricted T cells predominate in TB-uninfected individuals.

Moreover, our data suggest that MR1-restricted T cells make up

a substantial proportion of the Mtb-reactive CD8+ NC-restricted

T-cell response. Furthermore, we demonstrate that a large panel

of Mtb-reactive MAIT clones are broadly reactive with mycobac-

terial species as well as E. coli.

Using LDA, we find that MR1-specific Mtb-reactive clones

predominate in individuals without infection with Mtb. Our

previous experience with LDA cloning has resulted in the
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Figure 5. Characterization of MR1-dependent recognition of human lung epithelial cells. (A) Flow cytometric analysis of A549 cells left
uninfected (dashed line) or infected with Mtb H37Rv dsRED at an moi of 10 (solid line) or an moi of 30 (bold line). (B) A549 cells were infected with
Mtb (dsRED-expressing H37Rv moi of 30:1) and incubated overnight. Cells were washed, fixed (4% paraformaldehyde), and permeabilized (0.2%
saponin) before being stained for expression of Lamp1 (green) and tubulin (blue). Images were acquired on a high-resolution wide-field Core DV
system (Applied Precision) with a Nikon Coolsnap ES2 HQ. One 0.5-mm Z-section is shown. Asterisks indicate magnified regions. (C) A549 cells
uninfected or infected with Mtb over a range and at the moi of 30 in the presence of anti-pan HLA-I blocking antibody (W6/32) or the IgG2a isotype
control (2 mg/ml each) before being used as APCs for HLA-E–restricted T-cell clone D160 1–23 in the IFN-c ELISPOT assay. (D) A549 cells uninfected or
infected with Mtb (moi 30) were used as APCs for T-cell clone D426B1 in the presence of anti-MR1 blocking antibody or the IgG2a isotype control
(2 mg/ml each) in the IFN-c ELISPOT assay. Similar results were obtained from four different MR1-restricted T-cell clones. (E) A549 cells were infected
with either control vector or adenoviral ICP47. After 16 h, A549 cells were washed and left uninfected or were infected with Mtb (moi 30). Following
overnight incubation, T cells were added (10,000) and IFN-c production was assessed by ELISPOT. Results are representative of three independent
assays. Error bars represent the mean and standard error from duplicate wells. (F) Flow cytometric analysis of A549 cells that were left uninfected or
infected with Mtb (moi of 30). The filled histogram represents cell surface MR1 (left panel) or HLA-I (right panel) staining on uninfected cells. All lines
represent cell surface staining performed on Mtb-infected A549 cells (moi 30). Dashed line, Alexa 647 secondary control; solid line, msIgG2a isotype
control; bold line, cell-surface staining of MR1 (26.5)(left panel) [28], or HLA-I (W6/32) (right panel). Cell surface expression of HLA-I is identical on
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identification of immunodominant HLA-Ia antigens and epitopes

[4]. However, LDA cannot distinguish a proportionate versus

absolute reduction in NC responses in individuals with active TB.

Here, direct ex vivo analysis confirmed a dramatic reduction in the

absolute frequency of Mtb-reactive MAIT cells in individuals with

active TB.

CD8+ T cells restricted by both CD1 and HLA-E have been

previously described but were noticeably absent from the LDA

and from the resulting CD8+ T-cell clones. In this regard, it is

possible that LDA based on positive selection of CD8+ T cells in

conjunction with Mtb-infected DCs is not optimal for the selection

of these cells. For example, CD1 molecules are downregulated by

infection with Mtb [44]. Furthermore, CD1-restricted T cells may

be less frequent in the CD8+ population [15]. Similarly, we did not

isolate cdT cells [42]. As a result, the relative contribution of

different HLA-Ib molecules in the host response to infection with

Mtb remains to be determined.

Our findings highlight differences between MAIT cells

originally characterized phenotypically, on the basis solely of

TCR usage versus those characterized functionally on the basis of

reactivity with Mtb. MAIT cells, as defined by the expression of

the canonical Va7.2/Ja33 TCR, appear to be universally present

in humans and range in frequencies from 1% to 4% of peripheral

blood T cells [32]. Here, we confirm that MR1-dependent, Mtb-

reactive MAIT cells are present in the Va7.2+ but not the Va7.22

population. However, Mtb-reactive MAIT cells represent a

relatively small proportion of cells previously defined as MAIT

cells. The observation that Mtb-reactive MAIT cells are found

exclusively in the CD8 single positive CD161 negative population

further defines Mtb-reactive MAIT cells as a subset of all MAIT

cells. Our studies do not allow us to distinguish whether or not

Mtb-reactive MAIT cells are representative of a uniform

population of bacterially reactive MAIT cells or if alternate

bacterial specificities exist in the Va7.2 population.

Detailed genotypic characterization of several Mtb-reactive

MR1-restricted T-cell clones reveals diversity of TCR usage. Of

the six Mtb-reactive Va7.2+ T cells from which the TCRa
sequence was characterized, one does not express the canonical

Va7.2/Ja33 segment. Furthermore, at least 10% of the Mtb-

reactive, MR1-restricted T-cell clones do not express Vb chains

previously found in preferential association with Va7.2/Ja33

expressing PBMC of undefined restriction and antigen specificity.

Whether or not differences in the TCR reflect antigenic

discrimination remains to be addressed.

We speculate that environmental bacteria play a role in the

selection and maintenance of human MAIT cells analogous to

results previously shown in the mouse model [19]. In this regard,

TCR heterogeneity could be the result of antigenic selection. We

have found that DCs infected with viable mycobacteria (M.

smegmatis and M. bovis bacille Calmette-Guérin [BCG]) can

stimulate MR1-restricted Mtb-reactive T-cell clones (unpublished

data). Environmental mycobacteria are ubiquitous and therefore

may affect MAIT cell selection and maintenance. Nonetheless, we

find that cells infected with nonmycobacterial microorganisms

such as E. coli, S. typhimurium, and S. aureus, also can elicit a response

by the Mtb-reactive MR1-restricted CD8+ T-cell clones tested

thus far. At present, the molecular basis for this cross-reactivity is

not known. However, recent studies using limited numbers of

mouse MAIT cell hybridomas have implicated antigen presenta-

tion in MR1-restricted MAIT cell activation. This conclusion was

supported by the fact that an acid eluate of purified mouse MR1

enhanced MAIT cell activation in an MR1-restricted manner

[29]. Importantly, these results were obtained using uninfected

cells, suggesting presentation of an endogenous antigen. Thus it is

possible that MAIT cell detection of cells infected with various

bacteria results from the presentation of an endogenous MR1

ligand induced by infection with various bacteria. Alternatively, it

is possible that MR1 presents an exogenous antigen shared by

bacteria. However, we note that cell lines overexpressing human

MR1 (courtesy Ted Hansen, unpublished data) do not stimulate

Mtb-reactive MAIT cells.

Based on analogy with iNKT cells, there is a precedent for

recognition of either exogenous antigen or endogenous ligands by

CD1d-restricted T cells [45]. However, regardless of whether an

endogenous or exogenous antigen is being presented by MR1, it

seems likely that MAIT cells have only a limited ability to

discriminate ligands bound to MR1. Indeed the high level of

activation of mouse or human MAIT cells by MR1 of different

mammalian species is highly suggestive that all three components

(ligand, MR1, and MAIT TCR) were highly conserved in

evolution [29]. Again from analogy with CD1d-restricted

presentation to iNKT cells, recent structural studies suggest they

also have only limited antigen discrimination [46,47]. The

identification of physiological MR1 ligands and how they are

detected by MAIT cells will clearly benefit from further studies of

the extensive panel of human Mtb reactive T cells reported here.

We demonstrate here that infection with Mtb results in a

modest induction of surface expression of MR1 on epithelial cells.

Failure of past studies to detect surface expression of endogenous

MR1 is enigmatic, since MR1 message and ER luminal MR1

protein is ubiquitously expressed in different tissues [29]. Based on

these observations, it is attractive to speculate that constitutive

expression of MR1 may be deleterious because of inappropriate

MAIT cell activation. Such a model would be consistent with

studies of induced expression of MICA/B [48]. In any case, it is

also clear that very little MR1 is likely sufficient for MAIT cell

activation based on our antibody blocking and cytofluorometric

studies. Alternatively, it is possible that bacterial infection may

alter the intracellular trafficking of MR1 and consequently

determine which self or bacterial antigens are loaded and

presented at the cell surface to MAIT cells. In this regard, it is

important to note that in both our studies here and previous

mouse studies MAIT cells are activated in a TAP-independent

manner. Indeed in the mouse studies trafficking of MR1 to

endosomal compartments enhanced MAIT cell activation [18]. In

combination, these findings support the model that MR1

trafficking and ligand acquisition are likely altered by bacterial

infection.

A surprising finding of this study has been the observation that

primary human large airway epithelial cells infected with Mtb can

induce a robust response by MR1-restricted MAIT cells.

Following inhalation, Mtb is far more likely to encounter airway

epithelium than alveolar macrophages. As a result, the capacity of

lung resident MAIT cells to respond directly ex vivo to Mtb-

infected lung epithelial cells suggests these cells could play a

physiological role in directly controlling Mtb in the lung early in

infection. Mtb-reactive MAIT cells not only produced IFN-c but

also TNF-a and granzyme (unpublished data) in response to

uninfected and infected A549 cells. (G) Human primary large airway epithelial cells were infected with Mtb (moi 30) and used as APCs (25,000/well) for
MR1-restricted T-cell clone D426B1 (15,000/well) in the IFN-c ELISPOT assay in the presence of no, anti-MR1 (26.5) or IgG2a isotype control antibodies
(2 mg/ml final each). Similar results were obtained in three independent experiments.
doi:10.1371/journal.pbio.1000407.g005
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infected targets. These effector functions could directly inhibit

mycobacterial growth. Mtb-reactive MAIT cells, by IFN-c
conditioning of DCs, could also facilitate optimal priming of

Mtb-specific CD8+ and CD4+ Th1 responses that are essential to

control the disease in TB-exposed individuals.

Ex vivo analyses of circulating, MR1-restricted, Mtb-reactive

MAIT cells demonstrate that subjects with active TB have

substantially lower frequencies than those without evidence of

infection with Mtb. These data suggest that Mtb-reactive MAIT

cells participate in the host response to infection with Mtb. It is

also possible that a similar observation would be made in bacterial

pneumonia. With regard to Mtb the precise role of MAIT cells

remains to be determined. We found that individuals with active

TB had reduced Mtb-reactive MAIT cells. One explanation may

be a genetic predisposition towards lesser expression of MR1 and/

or diminished capacity to process and present bacterially derived

ligands. For example, the very limited polymorphisms noted in the

MR1 gene, 28 single nucleotide polymorphisms (SNPs) over a

region of more than 2 MB, might allow for the delineation of SNPs

associated with disease susceptibility. Alternately, it is possible that

mycobacterial exposure can elicit and maintain Mtb-reactive

MAIT cells. In this regard, it would be interesting to delineate the

effect of BCG and/or environmental mycobacterial exposures to

the prevalence of Mtb-reactive MAIT cells. Conversely, it is

possible that the diminished frequencies reflect either selective

migration of Mtb-reactive MAIT cells to disease sites, or their

selective depletion through activation-induced cell death.

In conclusion, we have demonstrated that MAIT cells, with no

previously known in vivo function, recognize bacterially infected

cells. Furthermore, we demonstrate an association with Mtb

exposure and/or disease status and the prevalence of Mtb-reactive

MAIT cells ex vivo. Given these findings and the observation that

MAIT cells are broadly reactive to bacterial infection, we postulate

that MAIT cells likely play a role in the direct control of bacterial

infection and/or in the subsequent acquisition of adaptive

immunity to bacterial infections. By virtue of their prevalence,

location, and effector functions, MAIT cells are poised to play a

significant role in the control of bacterial infection.

Materials and Methods

Study Participants
Study participants, protocols, and consent forms were

approved by the Oregon Health & Science University

institutional review board. Informed consent was obtained

from all participants. Uninfected individuals and individuals

with LTBI were recruited from employees at Oregon Health &

Science University as previously described [5]. Uninfected

individuals were defined as healthy individuals with a negative

tuberculin skin test and no known risk factors for infection with

Mtb. Individuals with LTBI were defined as healthy persons

with a positive tuberculin skin test, and no symptoms and signs

of active TB. Individuals with active TB were recruited via

institutional review board-approved advertisement and were

self-referred from the Multnomah County TB Clinic, Portland,

Oregon, US, or from the Washington County TB Clinic,

Hillsboro, Oregon, US. In all active TB cases, pulmonary TB

was diagnosed by the TB controller of these counties and

Figure 6. Ex vivo analysis of Mtb-reactive MAIT cells from human peripheral blood CD8+ T cells. T cells were isolated from PBMC using
the negative pan-T cell isolation kit and then depleted of CD4+ T cells. The resulting T cells were incubated overnight with A549 cells that were either
Mtb-infected (moi 30) or left uninfected in the presence of no, anti-MR1, or IgG2a control antibody. Golgi Stop was added for the final 6 h of the
assay. Cells were surface stained for expression of the Va7.2 TCR then fixed and permeabilized before staining for TNF-a and CD8 expression. Controls
performed to test for specific TNF-a staining showed no background responses (unpublished data). (A) Gating strategy: lymphocyte gate (left), CD8
gate (middle), Va7.2 (y-axis), and TNF-a expression (x-axis) of the CD8 gate (right). The number on the upper left of the right panel represents the
frequency of CD8+ T cells that expressed the Va7.2 TCR. The number in the box on the right represents the frequency of CD8+ T cells that produced
TNF-a in response to target cells. (B) Representative FACS analysis showing the conditions tested in the assay: Mtb-uninfected or infected A549 cells
in the presence of anti-MR1 antibody (26.5) or IgG2a isotype control (2.5 mg/ml each). (C) Frequency of CD8+ cells that produced TNF-a in response to
uninfected, Mtb-infected, or MR1-blocked Mtb-infected A549 cells that either coexpressed the Va7.2 TCR (left) or not (right). (D) Frequency of CD8+ T
cells that expressed the Va7.2 TCR. Statistically significant differences were observed between the active and LTBI groups. (E) Frequency of MR1-
blocked CD8+ T cells that coexpressed Va7.2 and TNF-a in response to Mtb-infected cells. Statistically significant differences were observed between
the active and uninfected groups. Horizontal lines in (D) and (E) represent medians. The nonparametric Mann-Whitney one-tailed t-test was used to
assess statistical significant differences between groups.
doi:10.1371/journal.pbio.1000407.g006

Figure 7. Mtb-reactive MAIT cells in the human lung. Single cell suspensions were prepared from the lung and adjacent LNs with minor
modifications [52]. The intracellular cytokine staining assay was performed using magnetic-bead purified CD8+ T cells from the lung and LNs as
described in Figure 6 legend. Only in the case of donor B were anti-MR1 or IgG2a isotype control antibodies added (2.5 mg/ml).
doi:10.1371/journal.pbio.1000407.g007
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confirmed by positive sputum culture for Mtb. Those with

active TB were under the care of the local TB controller. At the

time of apheresis, subjects were required to be smear and

culture negative. PBMCs were isolated from whole blood

obtained by venipuncture or apheresis. De-identified lung and

LNs were obtained from the Pacific Northwest Transplant

Bank (PNTB).

M. tuberculosis, Mtb-Derived Fractions, Bacteria, and
Viruses

The H37Rv strain of M. tuberculosis was used for all live Mtb

infections (ATCC), prepared as previously described [20], and

infected at moi of 30 unless stated otherwise [3]. H37RvDsRED

Mtb was kindly provided by David Sherman. Fractions of the Mtb

CW were obtained from K. Dobos (Mycobacteria Research

Laboratories at Colorado State University, Fort Collins). Adeno-

viral vectors [36] were kindly provided by David Johnson

(OHSU). To generate delipidated Mtb CW (dCW) 1 g of

lyophilized Mtb CW was extracted at 22uC with agitation twice

for 2 h with chloroform:methanol (2:1 v/v) (30 ml/g of CW)

followed by one 18-h extraction. The 2:1 extracted CW material

was collected (27,000 g for 30 min) and dried under N2 and

further extracted twice for 2 h followed by one 18-h extraction

with chloroform:methanol:water (10:10:3 v/v/v). The resulting

delipidated cell wall was dried under N2, resuspended in PBS

(pH 7.4), and protein concentration determined by BCA assay

(Pierce) [49]. S. typhimurium and L. monocytogenes were kindly

provided by Fred Heffron and David Hinrichs, respectively. S.

aureus was obtained from ATCC.

Cells
A549 cells were obtained from ATCC (CCL-185). Primary

large airway lung epithelial cells were derived from the trachea as

previously described [41].
Monocyte-derived dendritic cells. Monocyte-derived DCs

were prepared according to the method by Romani et al. [50].

Briefly, PBMC obtained by apheresis were resuspended in 2%

human serum (HS) in RPMI and allowed to adhere to a T-75

(Costar) flask at 37uC for 1 h. After gentle rocking, nonadherent

cells were removed and 10% HS in RPMI containing 10 ng/ml of

IL-4 (Immunex) and 30 ng/ml of GM-CSF (Immunex) was added

to the adherent cells. After 5 d, cells were harvested with cell-

dissociation medium (Sigma-Aldrich) and used as APCs in assays.

Generation and Maintenance of T-Cell Clones
Limiting dilution cloning methodology was performed as

previously described with minor modifications [5]. DCs generated

for use in cloning and screening T-cell clones were prepared as

above with the exception that X-Vivo medium was used

(BioWhittaker). Macrophages were generated using a monocyte-

isolation kit (Miltenyi) and then grown for 5 d in IMDM

(Invitrogen) serum-free medium. When prepared in X-Vivo

medium, DCs were CD1a positive and CD14 negative, whereas

macrophages grown in IMDM were CD14 positive and CD1a

negative. To generate T-cell clones DCs were infected with Mtb

(moi 30) overnight. CD8+ T cells were sorted to high purity

(.99%) by FACS and were added over a range of dilutions to the

infected DCs (20,000/well) in the presence of irradiated

autologous feeder PBMC (12e5/well) and rhIL-2 (10 ng/ml). T

cells were screened by ELISPOT 10–14 d later. All donors from

which APCs and T cells were used in these assays were genetically

haplotyped (Blood System Laboratory), thereby ensuring a

complete mismatch of HLA-Ia alleles when necessary for

screening. T-cell clones that retained Mtb specificity were

subsequently expanded in the presence of irradiated allogeneic

PBMC (256106), irradiated allogeneic lymphoblastoid cell line

(56106), and anti-CD3 mAb (30 ng/ml) in RPMI 1640 media

with 10% HS in a T-25 upright flask in a total volume of 30 ml.

The cultures were supplemented with IL-2 (0.5 ng/ml) on days 1,

4, 7, and 10 of culture. The cell cultures were washed on day 4 to

remove remaining soluble anti-CD3 mAb [51] and used no earlier

than day 11.

Assays
IFN-c ELISPOT assay. All IFN-c ELISPOT assays were

performed as described [16]. Estimation of the frequency of Mtb-

reactive CD8+ T cells using the IFN-c ELISPOT was performed

as described [4].
Intracellular cytokine staining assay. T cells were isolated

from single cell suspensions from blood, LNs, or lung using a

negative selection isolation kit (Miltenyi-pan T cell kit). T cells

were added to Mtb-infected or uninfected A549 cells at ratio of 3:1

and incubated for 16 h in the presence of anti-CD28 (1 mg/ml)

and CD49d (1 mg/ml). GolgiStop (BD Pharmingen) was added for

the final 6 h of the assay. Cells were surface stained for expression

of the Va7.2 TCR (clone 3C10) and subsequently fixed and

permeabilized with Cytofix/CytoPerm (BD Pharmingen) and

stained in the presence of Perm/Wash (BD Pharmingen), with

fluorochrome-conjugated antibodies to TNF-a and CD8a.

Acquisition was performed with an LSRII flow cytometer with

FACS Diva software (BD). All analyses were performed using

FlowJo software (TreeStar).

Reagents
Antibodies to the following molecules were used: CD1a, CD1b,

CD8a CD161 TCR ab (BD Pharmingen); CD1c (MCA694), pan

HLA-I antibody (W6/32) (Serotec); anti-TNF-a (Beckman Coul-

ter); TCR Vb usage was determined using the IOTest Beta Mark

Kit (Beckman Coulter); TCRgd (5A6.E9-Endogen); CD1d

(CD1d51, kindly provided by Steven Porcelli); CD8b (GenWay);

CD49d (9F10), LEAF ms IgG1, LEAF msIgG2a, Integrin B7

(FIB504) (Biolegend); MR1 (26.5) [28]; Va7.2 (3C10) [32]; CD94

(MAB1058) NKG2D (MAB139), ULBP1 (MAB1380), MICA

(MAB1300) TLR2 (MAB2616), TLR (AF1478) (R&D), Lamp1

(H5G11, SCBT); Tubulin (E1332Y, Abcam); TLR agonists:

Lipoteichoic Acid (Sigma); LPS (Sigma), Pam3CysK4 (InVivo

Gen); Fluoromount G (Southern Biotech).
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