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Abstract. In Positron Emission Tomography (PET) imaging, an early therapeutic 

response is usually characterized by variations of semi-quantitative parameters 

restricted to maximum SUV measured in PET scans during the treatment. Such 

measurements do not reflect overall tumour volume and radiotracer uptake variations. 

The proposed approach is based on multi-observation image analysis for merging 

several PET acquisitions to assess tumour metabolic volume and uptake variations. 

The fusion algorithm is based on iterative estimation using stochastic expectation 

maximization (SEM) algorithm. The proposed method was applied to simulated and 

clinical follow-up PET images. We compared the multi-observation fusion 

performance to threshold-based methods, proposed for the assessment of the 

therapeutic response based on functional volumes. On simulated datasets, the adaptive 

threshold applied independently on both images led to higher errors than the ASEM 

fusion and on the clinical datasets, it failed to provide coherent measurements for four 

patients out of seven due to aberrant delineations. The ASEM method demonstrated 

improved and more robust estimation of the evaluation leading to more pertinent 

measurements. Future work will consist in extending the methodology and applying it 

to clinical multi-tracers datasets in order to evaluate its potential impact on the 

biological tumour volume definition for radiotherapy applications. 
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1. Introduction 

Positron Emission Tomography (PET) is now a widely used tool in the field of oncology, especially in 

applications such as diagnosis, patient follow-up studies (Krak et al 2005) or in radiotherapy planning 

(Jarritt et al 2006). In the context of patient follow-up, early metabolic changes detected with 2'-

deoxy-2'-[18F]-fluoro-D-glucose (FDG) PET imaging can occur before anatomic changes observed 

with computed tomography (CT) imaging. By assessing differences in several PET scans acquired 

before and at different times during treatment, various qualitative and quantitative methods have been 

proposed to characterize the therapeutic response (Weber et al 2007). In patient monitoring studies, 

qualitative methods such as visual assessment are less accurate and reproducible than quantitative 

measurements (Lin et al 2007). Furthermore, different therapeutic parameters (indexes) have been 

defined either on dynamic or static PET acquisitions with a similar reproducibility (Weber et al 1999). 

Being less restrictive in clinical routine, only the parameters computed in the static PET scans have 

been considered in our work. Most widely used in patient follow-up studies, the standardized uptake 

value (SUV) measures the tracer uptake in the tumour. Derived from the SUV index, two 

measurements, namely the maximum SUV (SUVmax) and the mean SUV (SUVmean) were assessed in 

our study by computing respectively the maximum and the mean of SUV in voxels included in a 

region of interest defining the tumour. The reproducibility and the robustness of both SUV indexes 

have been previously assessed (Weber et al 2007, Nahmias et al 2008) and compared to the 

reproducibility of tumour volume measurements with various automated methodologies (Hatt et al 

2010). An early therapeutic response can be characterized by measuring relative or absolute SUV 

variations between pre-treatment and mid-treatment PET scans. Other quantitative parameters have 

been used such as the total lesion glycolysis (TLG) defined as the product of the mean SUV and the 

tumour volume (Larson et al 1999, Hatt et al 2010). 

The therapeutic response is usually estimated by measuring the tumour size on the CT scans, and 

according to guidelines such as WHO and RECIST (Therasse et al 2000). More recent criteria have 

been proposed such as PERCIST (Wahl et al 2009), adding the consideration of quantitative 

parameters extracted from PET images. However, these criteria are still limited to simple SUV 

measurements and do not include volumetric characterization of the tumours, and no guidelines have 

been established recommending the best way to characterize the therapy response according to the 

variation of metabolically active tumor volumes. In the current clinical practice, the therapeutic 

response is therefore usually assessed by considering one single value as the SUVmax within the 

primary lesion, extracted from each PET scan. Presently, the measure of SUVmax variation is 

considered as the gold standard of the treatment response definition. This method however accounts 

neither for the tumour volume variations nor the spatial uptake variation within the tumour volume. 

Among the new methodologies developed in PET tumour delineation (Zaidi et al 2010), most of them 

have only considered the use of such delineation for static images segmentation and for 

diagnosis/prognosis. A few authors have recently proposed different methodologies dedicated to PET 

follow up, like the one by Necib et al in 2008, which is aimed at assessing a response by comparing 

two follow-up PET images. After voxel-to-voxel registration of the two scans, a biparametric map is 

generated representing the tracer uptake variations within the tumour. In the context of cancer 

treatment prediction, Naqa et al have recently proposed a texture-based approach, considering texture 

properties of voxels within tumours as prognosis factors for the assessment of therapy response. 

Regarding the use of PET in radiotherapy, the gross tumor volume (GTV) definition is usually carried 

out manually on fused FDG-PET/CT scans. However, imaging tumour’s glucose consumption with the 

FDG alone may not be sufficient to determine the GTV (Mankoff et al 2003). Considering the 

measure of other features of cancer metabolism like proliferation, hypoxia and apoptosis using 

additional tracers may generate more complete information regarding the target tumour volume 

(Bentzen et al 2005, Shields et al 2003, Vaupel et al 2007). Accurate tumour volume delineation 

would therefore require a fusion of all available measurements obtained with these different tracers. 

Such a fusion could be valuable to thoroughly and potentially more accurately assess tumour volume 

definition as well as evolution during therapy. 

The main objective of this study was to develop a fusion method derived from multi-observation 
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approaches such as these developed in satellite and astronomical imaging (Masson et al 1993). 

Considering either patient follow-up and/or multi-tracer PET datasets, the proposed method aims at 

assessing a treatment response and tumour volume definition by automatically determining the 

different variations of tracer uptakes within the regions of the analyzed fused images. Our approach is 

statistical and assumes that the data can be modeled by a mixture distribution of multi observation 

random fields. The parameters defining the mixture distribution are estimated using a stochastic 

expectation maximization (SEM) algorithm (Celeux et al 1986) combined with a locally adaptive 

spatial priors estimation in order to account for voxels correlation. 

Our method was applied to simulated and clinical pre and post treatment PET scans of esophageal 

cancer within the context of radio-chemotherapy follow-up. It was compared to current quantitative 

methods proposed for the assessment of the therapeutic response based on tumor volume evolution, 

namely the definition of the tumor volumes independently on both scans using adaptive thresholding. 

 

2. Materials and methods 

2.1 Multi-observation framework 

The proposed method could potentially be applied for both patient follow-up applications and multi-

tracer analysis using PET scans. The proposed method is aimed at merging the available PET images 

in order to derive a fusion of the information regarding the treatment response in patient follow-up 

application or/and the multi-tracer tumour volume, as illustrated in figure 1. While the analysis for 

both applications might require different fusion rules or interpretation, the basics of the approach are 

the same and are based on the unsupervised Bayesian methods, widely used in segmentation and 

classification of satellite, astronomical or medical imaging (Masson et al 1993, Pieczynski et al 2003, 

Hatt et al 2009). 

2.1.1 Bayesian model 

Let � be a finite set corresponding to the voxels of 3D registered PET images. We consider two 

random processes � � ����� 
T and � � �
��� 
T. � models the observed multi-tracers or follow-up 

PET scans, acquired at different times during the treatment, and takes its values in �. Each �� is 

therefore a vector of real values defined as �� � ������, … , ������, containing the voxel values of each 

PET image, with � being the image number observed in the fusion. Each �� is associated with a label 


� . � models the fusion map which is designated in our specific application as the therapeutic response 

classification. � takes its values in a set �1…��, with � being the number of classes that is usually 

user-dependent and defined depending on the fusion goal. The objective of the approach is therefore to 

estimate the distribution of �� , ��. Considering the Bayesian framework, the relationship between � 

and � can be modeled using the joint probability: 

���, �� �  ���|�� � ����      �1� 
where, ���� is the prior knowledge about � and ���|�� is the “noise model”: the likelihood of the 

observation � conditionally to the hidden ground-truth �. In this Bayesian framework, the prior 

knowledge ���� can be modeled globally, for instance by considering Markovian models (Pieczynski 

et al 2003) such as chains or trees, or locally with blind, contextual or adaptive models (Peng et al 

1995). Different noise distributions can be used for the observation model ���|�� such as Gaussian or 

generalized Gaussian (Delignon et al 1997). 

In our fusion method, we have used a locally adaptive prior model and the noise model has been 

assumed Gaussian, however other distributions could be considered in future developments. The 

distribution of �� , �� is hence defined by the priors Π�, the mean vectors �� and covariance matrices 

Γ� associated to each of the � classes in the mixture. The mean parameter �� is a vector associated to 

the � images of the fusion �� � �!"���, … , !"����. The SEM algorithm was used here to estimate the 

parameters of the distribution of �� , ��. It is a stochastic version of the classic EM algorithm, ensuring 

better and faster convergence as well as higher independence on the initialization. From here onwards, 
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our approach will be denoted ASEM. 

 

2.2 Fusion process 

2.2.1 Pre-processing: image deconvolution 

PET images are characterized by their high level of noise and the limited spatial resolution inducing 

partial volume effect (PVE) (Soret et al 2007). The under estimation of the tissues uptakes and activity 

cross contamination between structures with different uptakes are two consequences of the PVE 

effects in PET images. When considering several co-registered PET images, the voxels most affected 

by PVE may not be on the same coordinates for each scan, which implies intensities distributions that 

might complexify both estimation and classification steps in the fusion process. In addition, without 

PVE correction (PVC), SUV values extracted from each scan may be significantly biased. This can 

lead to under or over estimation of the uptake variation between pre and post treatment scans, 

especially if significant tumor volume variation occurs. Indeed, PVE impact on the SUV measurement 

within the tumor strongly depends on the object’s size. In order to reduce the impact of these effects 

on the subsequent steps, a PVE correction (PVC) was applied to each image prior to their fusion. The 

chosen PVC method was developed by Boussion et al in 2008 and further improved by Le Pogam et al 

in 2009 and consists of a 3D voxel-wise correction using an iterative deconvolution improved by 

wavelet based optimal denoising of the residual. This preprocessing step offers two advantages: first, it 

reduces the size of blurred frontiers between the different regions of the images, hence reducing their 

impact on subsequent registration and fusion complexity. Second, it allows the extraction of corrected 

uptake values from fusion maps for a quantitative characterization of evolution of the activity within 

tumour volume and/or sub-volumes. 

2.2.2 Local-based analysis 

As our goal is to automatically determine the variation of tracer activity and position/volume of a 

functional tumour, we assume that the overall tumour volume has been previously automatically or 

manually isolated in a 3D box or volume of interest (VOI) by a clinician on the co-registered PET 

images. Therefore the box should be large enough to encompass the entire tumour in each scan and 

avoid including too many neighboring tissues with significant physiological uptake. Consequently, the 

definition of such a processing box should allow any shape and size, in 3D. The definition of this 3D 

VOI should therefore be carried out on the scan in which the tumour appears to be the largest, and 

automatically registered on the other volumes involved in the fusion as illustrated in figure 2. 

2.2.3 FKM Initialization and choice of the number of classes 

In unsupervised Bayesian segmentation framework, the initialization is an important step. In our 

method, we used the Fuzzy K-Means (FKM) algorithm (Krishnapuram et al 1994) based on fuzzy 

logic applied to the voxels values. In his PhD thesis, Provost described an improved version of FKM, 

allowing the automatic estimation of the optimal number of classes in the mixture, based on the use of 

an entropy criterion and a user selection of the upper limit of the number of classes. This upper limit 

was defined as the product of the number of images and the number of classes within each image 

considered in the fusion. In each iteration and for all the voxels of the image, a membership coefficient 

associated to the � classes of the mixture is estimated. At the end of FKM execution, the mixture 

parameters associated with each class # �Π� , �� , Γ�� are initialized for the Bayesian estimation. The 

cost function of the FKM algorithm is defined as: 

$ �  %%�&"��'(
� ) *"(+
,

�-�
. /%�"+

0

"-�

0

"-�
     �2� 

with  %&"� � 1
0

"-�
 , 67  and  �" � %&"�

,

�-�
     �3� 

where $ is the cost function to minimize, � is the number of classes in the mixture, � is the number of 
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voxels in the volume, &"� is the membership matrix of each voxel t to the #�< class, *" is the centroid 

of the #�< class. The second term of the equation (2) is the entropic criterion where / is the parameter 

weighting the cost function. The minimization of the FKM cost function is performed by constraining 

the entropic term. This latter is high in the first iterations, leading to a reduction of the number of 

classes in the mixture, and it decreases exponentially in order to allow the FKM classification process. 

2.2.4 Parameters estimation 

The parameters �Π� , �� , Γ�� defining the Gaussian mixture of the �� , �� distribution are estimated by 

the SEM algorithm by sampling several realizations of � according to its posterior distribution 

���|��. In the adaptive framework, the global prior Π" associated to the #�< class of the mixture are 

re-estimated using a local neighboring 3D cube and replaced by local priors =�," defined for each 

voxel and each class. The mean vector �� and the covariance matrix Γ� are finally computed for each 

of the � classes in the mixture. The details of parameters estimation with the SEM algorithm are given 

in the appendix section.  

2.2.5 Decision step 

In order to perform fusion on a voxel-by-voxel basis, we used a classification criterion to assign a 

class to each voxel. For this purpose we chose the maximum likelihood method. To compute a 

solution, this criterion requires the parameters defining the a priori model (priors of each class and for 

each voxel) as well as the observation data model (mean and covariance matrices of each class), 

previously estimated using the SEM algorithm (see appendix). 

 

2.3 Simulated datasets 

In order to evaluate the behavior of the fusion approach within the context of tumor evolution 

assessment, we considered realistic simulations of non spherical tumours. These simulated tumours 

were created using as models real head and neck and esophageal observed in clinical datasets. The 

procedure for the simulations of such data has been previously described (Le Maitre et al 2009). The 

simulated cases used in our study are composed of two simulated PET scans, one before and one after 

the treatment. The clinical cases used as models corresponded to patients classified as partial 

responders or progressive disease to the radiochemotherapy according to RECIST criteria. 

In order to evaluate the robustness of the methods, three levels of noise were considered for every 

simulated acquisition by selecting 100, 80 and 60% of the simulated lines of response for the iterative 

reconstruction respectively. With 20 clinical follow-up cases and considering three levels of noise and 

various tumor-to-background ratios for each case, 70 different simulated cases were generated. Most 

of the simulated datasets, representing 15 out of the 20 cases, were generated from patients classified 

as partial responders. The others cases were designed to simulate progressive disease. The mean 

tumour volume and tumour to background ratio used in the first and second simulated follow-up cases 

are given in table 1. Three examples of these simulated follow-up cases (showing only central axial 

slice) with their associated ground-truth are illustrated in figures 3. Similarly to the clinical datasets 

they are based on, these tumours are characterized by either homogenous or heterogeneous tracer 

uptake. Background activity was simulated as homogeneous. The voxels were assumed to belong 

either to the background (BD) or to the tumour (T). In these simulated images, no registration was 

required. 

 

2.4 Clinical datasets 

2.4.1 Patient data 

After preliminary studies on simulated follow-up PET scans, the fusion method was tested on real 

clinical datasets. Seven patients with esophageal cancer undergoing concomitant radiochemotherapy 

between 2005 and 2008 were considered, with one PET scan before treatment, and another PET scan 
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after treatment, both acquisitions carried out according to the same protocol. All these patients were 

classified as partial responders one month after the completion of treatment, according to RECIST. 

Consequently, the variation of metabolically active tumor volume as well as the SUV within the tumor 

volume is expected to be less than 100% since residual tumor uptake is seen for all these patients, and 

also above 20 to 30% which is their reproducibility limits as previously demonstrated (Hatt et al, 

2010). No volume or uptake increase should be measured in these cases. Visual illustrations of three 

clinical follow-up cases are given in figures 5. The physiological uptake of the mediastinum around 

the tumour volume was much more significant in the clinical images than in simulated cased (for 

which background was simulated as homogeneous) and was therefore taken into account in the fusion 

process as an additional class. Thus, on each scan, the voxels were assumed to belong to the 

background (BD) of the lungs, the physiological tissues (PHY) of the mediastinum, or the tumour 

volume (T). 

2.4.2 PET/PET registration 

In the context of patient follow-up, the PET/CT images are acquired at several month intervals. As an 

important pre requisite of the proposed method which works on a voxel level, the scans must therefore 

be registered before the fusion method can be applied. The PET/PET registration was carried out using 

a method previously proposed (Ouksili et al 2007), in which the PET data are first registered with their 

associated CT scans, acquired in the same bed position. Having more landmarks and a higher 

resolution, the CT scans are registered using the MIPAV software. The CT/CT registration was carried 

out using a rigid transformation, which optimizes the least square criterion of a large volume of 

interest. The CT/CT transformation matrix was then applied to the PET scans for registration. A rigid 

registration was considered to be sufficient since the procedure was carried out only on small 3D 

regions of interest surrounding the lesions which were located in the mediastinum or head and neck 

regions. In addition, a rigid transformation avoids the deformation of tumor volumes in the PET 

images which would be certainly associated with the use of a deformable model. Finally the 

consideration of head and neck and mediastinum lesions reduces the potential influence of respiratory 

motion on the registration process. 

In the fusion process, the use of a sliding estimation cube as described in 2.2 for the computation of 

the spatial priors is expected to reduce the impact of small registration errors of the PET datasets. The 

impact of the scans misregistration on the fusion process was considered in this study by shifting the 

second scan in a subgroup of the simulated datasets by one and two voxels (4 and 8 mm respectively) 

in a random direction, and then quantifying the impact on the resulting volume error for each scan 

after ASEM fusion. The one to two voxel shifts used in this work corresponds to typical registration 

errors associated with the use of fusion algorithms in CT imaging.   

2.4.3 Quantitative measurement of clinical datasets 

In patient monitoring studies, the SUV is the most used semi-quantitative parameter and is defined as: 

>?@ �  A
B �C �4� 

where A is the tracer concentration, B the injected activity and C the patient weight. Among the 

different SUV indexes available, the most often used in clinical practice are SUVmax and SUVmean, 

computed respectively as the highest value and the mean of voxels values in a given region of interest 

(ROI), usually defined manually. Contrary to the SUVmax, the computation of the SUVmean depends on 

the volume of the ROI. Our fusion method allows identifying the variations of concentration activities. 

Therefore, according to the ASEM fused map, an estimation of each individual tumour volume can be 

carried out. Then, for each scan, a measure of SUVmean can be extracted according to the metabolic 

volume of the tumour VASEM estimated with the multi-observation method. Note that the SUV values 

extracted from the fusion maps are values corrected for PVE due to the deconvolution pre processing 

step. 

2.5 Alternative approaches used for comparison 
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We compared the multi-observation fusion results with methods that have been proposed for patient 

follow-up studies. Most clinical studies only consider SUVmax variation. In order to take into account 

full metabolically active volumes evolution as a response criterion, it has been suggested to determine 

them independently on both scans using threshold-based methodologies. Many studies have 

demonstrated that a fixed threshold value not adequate for this task and that adaptive thresholding 

taking into account the background uptake performs better (Nestle et al 2005, Tylski et al 2010). 

Manual tumor delineation by experts was not considered in the study, due to its high inter and intra 

observer variability (Hatt et al 2010). We compared our approach to independent delineation of tumors 

in each scan using adaptive threshold, which value is determined from the estimated contrast between 

the tumour activity and the background activity and optimized for a given scanner using phantom 

acquisitions of spheres (Erdi et al 1997). Such an optimization was performed for our acquisition 

protocol and scanner model. An associated SUVmean value was also computed.  

 

2.6 Evaluation metric for simulated datasets 

True volumes of simulated tumours are known. Therefore, the assessment of the fusion process was 

achieved by the estimation of volume errors (VE). For each simulated case, segmented maps of the 

first and second follow-up scans are obtained with the two methods, as illustrated in figure 3. The 

individual segmented maps of the multi-observation method can actually be deduced from the ASEM 

fused map. Although volume errors may be larger than 100% in specific cases for which delineation 

completely fails, errors were limited to 100%. 

 

2.7 Quantitative variation for clinical datasets 

No ground-truth was available for the clinical follow-up cases. Hence, to compare the methods, the 

following quantitative indexes have been considered. The variation of metabolic tumour volume (∆V) 

and mean of SUV (∆SUVmean) between the pre-treatment and the follow-up PET scans for the different 

methods were measured with the two methods. In addition, the evolution of the original (without PVE 

correction) maximum SUV in the ROI was considered for comparison as it is the one currently used in 

clinical practice in oncology and defined as the gold standard. Contrary to the simulated datasets, the 

background level in clinical cases is not homogenous due to the physiological uptake of the 

mediastinum. The intra-observer variability of the adaptive thresholding method has been investigated 

for the same context of esophageal lesions in a previous study and demonstrated significant variability 

(Hatt et al 2011). Therefore the adaptive threshold segmentation was carried out here by two clinicians 

with similar training and experience for each follow-up case, in order to evaluate the impact on the 

measurement of quantitative variations. The two clinicians followed a specific protocol: they were 

instructed to measure the mean background value by placing manually a ROI within the mediastinum, 

at least a few cm away from the lesions. They were free to choose the exact location and size of the 

ROI.  

 

3. Results 

3.1 Results on simulated datasets 

For the selected simulated cases, the fusion maps obtained by our multi-observation method are 

illustrated in figure 3 (e). In order to facilitate the interpretation of the ASEM fused maps, colors have 

been affected to the different uptake variations. Blue areas represent a response (negative difference in 

tracer uptake between the two scans) whereas green color is associated with a stable tumor (similar 

significant uptake in both scans at this location). Red color was used to indicate tumor progression 

(higher uptake in second scan with respect to first one). Note that ASEM never wrongly resulted in 

tumor progression or regression. The intensity associated with each voxel in the fusion map is set as 

the SUV relative variation (∆SUV) between the first and the second scan. The segmented maps of the 

first and second chosen follow-up scan computed the different methods are presented in figure 3 (f-h). 
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Mean volume errors and associated standard deviation associated with the use of ASEM fusion or 

independent adaptive threshold-based delineation, for all pre treatment and post treatment simulated 

cases are presented in figure 4. The VE computed for the first follow-up scan was significantly 

(Kruskal-Wallis tests p<0.0001) lower for ASEM (-2.6±8%) than for the adaptive threshold 

(+28±17%). For the second follow-up scan, however the VE were higher for both methods. Adaptive 

threshold led to higher overestimation of the tumor volumes than for the pre treatment image 

(+30±15%), whereas ASEM led to underestimation of the true post treatment tumor volume (–9±25%) 

with a larger variability. Adaptive threshold gave large volume overevaluation in all cases, whereas 

ASEM led to better results in several cases but higher errors in some other cases. In both pre and post 

treatment images, the adaptive threshold method tended to overestimate the tumor volume, with larger 

absolute errors than the ASEM method, that tended to underestimate the volume in the second scan. 

Three selected cases among the simulated dataset are illustrated in the figure 3. For the first case, no 

significant differences were observed between the use of the adaptive threshold applied independently 

to each image and the ASEM method. For the second more complex case, both methods showed 

different results. As illustrated in figure 3(f), the adaptive threshold led to an underestimation of the 

tumors uptake, contrary to the ASEM method. As the fusion map (fig. 3(e)) shows, the disappearing 

lesion is correctly identified (in blue) whereas the larger lesion is shown as stable (in green) with a 

small blue part, indicating that this tumor uptake has indeed smaller volume in the post treatment scan. 

The third case illustrates the evolution of a necrotic tumour, on which ASEM correctly identified the 

various parts of evolution (blue, green, red).  

Finally, the ASEM fusion proved robust to random mis registration of one voxel (4mm) with volume 

errors increasing from -2.6±8% to -9±16% and –9±25% to -13.5±30% for first and second scan 

respectively. A spatial shift of two voxels (8 mm) led to similar error levels regarding the first scan (-

9±17% vs. -9±17%) but a higher increase regarding the second scan (-21±37% vs. -13.5±30%). 

 

3.2 Results on clinical datasets 

The fusion maps obtained by applying the ASEM method to three representative clinical follow-up 

cases are illustrated in figure 5(c). Three colors were used to represent physiological uptake (in 

yellow), tumour response (in blue) area and stable tumour (in green), underlying the partial response 

status of these patients. The color intensity associated to the voxels classified as responders or stable is 

determined by the SUV relative variation (∆SUV) between the first and the second follow-up scans. 

The segmented maps of the pre-treatment and post-treatment scans, computed with the adaptive 

threshold and the ASEM methods are illustrated in figure 5(d-g). 

The quantitative measurements estimated for each clinical case individually are showed in table 2, and 

mean measurements, estimated for all the patients are showed in table 3. The clinical cases were more 

challenging to analyze than the simulated cases, due to a combination of noisier and more 

heterogeneous background and tumor uptake distributions. Since the patients were classified as partial 

responder the tumor uptakes were expected to exhibit a significant decrease of the SUVmax (at least 

30%) between the pre and post treatment scans. Similarly, the tumor volumes and associated mean 

tracer uptakes should also decrease (at least by 20 to 30%) and this can be confirmed visually. 

With or without PVC, variations of SUVmax were higher than 30% (-52±16% without PVC and -

58±23% with PVC), as expected by their partial responder status. Regarding the other quantitative 

measurements, there was no significant (p>0.05) difference between the mean variation of SUVmean 

obtained with each observer using the adaptive threshold (-53±23 for Tb1, -55%±24% for Tb2). 

SUVmean variation deduced from the ASEM fusion maps was slightly, although not significantly 

(p>0.05) lower (-49±24%).  

By contrast, the variations of tumor volumes were significantly different for all approaches. The 

variations measured by the two observers using the adaptive threshold were significantly (p<0.0001) 

different (58±222% for Tb1 and -31±54% for Tb2). The results obtained with the ASEM method were 

also significantly different from both adaptive threshold results (-66±11%). They were also much 

more homogeneous across the entire group of patients (11% standard deviation only). These results 
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can be explained by analyzing the quantitative parameters of each patient individually. Among the 

seven clinical cases, the adaptive threshold and ASEM performed differently. On the one hand, for 

patient 1, 2 and 4, the variation of SUVmean and tumour volume estimated with the adaptive threshold 

and the ASEM method were similar and pertinent with respect to the partial responder status of the 

patients. On the other hand, for patient 3 and 5, the tumor volume variation estimated by the two 

clinicians using adaptive thresholding were significantly different with a factor of 2 to 4 between the 

two measured variations (-81 and -40% for patient 3, -41 and -13% for patient 5). Finally, the use of 

adaptive threshold on patient 6 and 7 led to completely aberrant values (above +400 and +75%, and 

+360 and -16%) contrary to the ASEM method that produced much more consistent volume variation 

results. 

In order to illustrated the different behavior of the adaptive threshold and ASEM method, three clinical 

follow-up cases corresponding to the patients 2, 5 and 7 are illustrated in figure 5. Regarding the 

patient 2, both adaptive thresholding applied independently to each PET scan and the proposed fusion 

method resulted in similar measurements leading to similar segmented maps. The first follow-up scan 

of patient 3 clearly exhibited a heterogeneous uptake within the tumor as shown in figure 5(a). The 

two segmentation maps obtained with Tb clearly underestimated the overall tumor volume as shown in 

figure 5(d) and 5(f) by excluding the central part of the functional uptake, whereas ASEM included it. 

The poor reproducibility of the adaptive thresholding methodology is also emphasized for the patient 

7, for which the volume variation of the first observer is clearly overestimated (+360%) contrary to the 

second observer which tends to under estimate this volume evolution (-16%) while the ASEM method 

estimated it at -60%. 

 

4. Discussion 

The use multiple PET scans for response to therapy assessment is rising in oncology, due to the need 

to assess response to therapy earlier, in order to improve patient’s management in radiotherapy and/or 

chemotherapy. On the other hand, the use of different radiotracers to visualize processes such as 

cellular proliferation or hypoxia for instance is generating a large amount of research especially in 

radiotherapy and early therapy assessment (Shields et al 2003, Vaupel et al 2007). 

The aim of this study was to propose a fusion method based on the multi-observation framework in 

order to specifically address the simultaneous analysis of multiple follow-up PET scans in the context 

of response to therapy assessment. The use of a fusion method taking into consideration both scans at 

the same time was expected to produce more reliable results than independent delineations performed 

on both scans separately. The ASEM method demonstrated the ability to merge patient follow-up PET 

scans through unsupervised Bayesian estimation, with especially good results on the first scan (error -

2.6±8%) and mostly good results on the second scan, with however a few cases that prove more 

difficult especially considering the second scan, therefore leading to a higher mean error and standard 

deviation of –9±25%. On simulated datasets, the adaptive threshold applied independently on both 

images led to higher errors than the ASEM fusion with a systematic overestimation for both the first 

and second scan (+28±17% and +30±15% respectively). In the real clinical datasets however, a 

significantly higher variability in the quantitative parameters measured with the adaptive threshold 

method was observed for four patients out of seven. 

These results can be explained by the fact that simulated data were generated with low and uniform 

physiological uptake and considering homogenous tumor uptake, as well as only one user to manually 

determine the background region of interest. However, noisy and heterogeneous uptake in nearby 

healthy tissues are very common in actual clinical datasets affecting the delineation process, for 

instance in esophageal cancer for which the tumor is located in the mediastinum and close to lung 

tissues. ASEM seemed much more resilient with respect to non uniform background and reduced 

tumor-to-background contrasts thanks to the use of spatial (the local adaptive priors) and inter 

observation correlations (multi observation framework using covariance matrices in the observation 

model) within the ASEM fusion. It is to be emphasized that the ASEM fusion requires accurate co-

registration of PET datasets with a target registration error of 1 voxel (4 mm) as demonstrated by the 
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results obtained by shifting the second scan in the simulated datasets by one and two voxels (4 and 8 

mm) in random directions. The fusion was rather robust to 1 voxel spatial shifting, however volume 

errors regarding the second scan became higher when shifting by 2 voxels was applied, which can be 

explained by the fact that as second scan tumor volumes are usually smaller, a mis registration can 

lead to a higher impact on the volume error of such small volumes. 

Despite being more dependent on the noise and the images reconstruction, the SUVmax is nevertheless 

the parameter the most commonly used in clinical routine to assess and quantify tumor evolution and 

response to therapy (Weber et al 2007, Nahmias et al 2008). However the variation of SUVmax only 

may be not sufficient to characterize the tumour response, without taking into account the information 

of the metabolic tumour volume, especially for early therapy assessment. The SUVmean is considered 

more reproducible than SUVmax, but may depend on the definition of the tumor volume (Tylski et al 

2010). 

In this study, three quantitative indexes, namely the SUVmax, SUVmean and volume were computed with 

both methodologies. The analysis of the volume and SUVmean variations give additional features to 

characterize the tumour response. In our results, SUV measurements variations between pre and post 

treatment scans were similar independently on the delineation used. Tumor volume variations 

measured by the clinicians using the adaptive method were close for patients 1, 2 and 4, and were 

significantly different for patients 3 and 5, emphasizing the user dependency of such method in the 

presence of heterogeneous physiological uptake, which is often the case for esophageal tumours (Hatt 

et al, 2011). They were in addition aberrant for patients 6 and 7, demonstrating the accuracy limitation 

of such an approach. By contrast tumor volume variations measured by ASEM were much more 

homogeneous across the group of patients (-66±11%). The poor reproducibility of the adaptive method 

was first mentioned by Nestle et al in 2005 in the case of Non-Small Cell Lung Cancer. The 

measurements and segmented maps obtained with the ASEM method were more appropriate 

considering the known partial responder status of these patients. The combination of pertinent 

quantitative indexes such as the metabolic volume and activity concentration in the tumour, measured 

with a robust method could be valuable to thoroughly assess tumor response, as illustrated with the use 

of the ASEM method on the clinical datasets. 

 

5. Conclusion 

A fusion method based on the multi-observation Bayesian framework was proposed to assess multi 

PET scans in the context of therapy response. Using Bayesian framework, the proposed method can 

potentially be applied on patient follow-up and multi-tracer datasets in order to assess accurate 

treatment response and tumour volume definition by automatically delineating the different variations 

of activity within the tumour. In this study, the multi-observation method has been applied to 

simulated and clinical follow-up PET images and compared with current threshold-based methods 

used in clinical practice for the assessment of the therapeutic response. On simulated datasets, the 

adaptive threshold applied independently on both images led to higher errors than the ASEM fusion. 

The adaptive threshold proves unreliable for more than half the patients, whereas ASEM produced 

measurements in line with what could be expected with respect to the classification of the considered 

patients. Future work will also consider more than two PET scans within the context of therapy 

response assessment, as well as multi-tracer studies in order to adapt the proposed fusion approach for 

the definition of multi-tracer PET target volumes in radiotherapy, especially for dose boosting or dose 

painting scenarios in radiotherapy (Sovik et al 2009). 
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Appendix 

Let’s consider two random processes � � ����� 
T and � �
��� 
T , modeling respectively the 

observations and the fusion map. Considering a mixture of multi-dimensional Gaussian density 

probability functions, the distribution of �� , �� is hence defined by the priors Π�, the mean vectors �� 

and covariance matrices Γ� associated to each of the � classes in the mixture.  

1 - The parameters EΠ�F , ��F , Γ�FG defining the Gaussian mixture of the �� , �� distribution and the class 

number K are initialized with a FKM algorithm based on entropy criterion. 

2 - The mixture parameters are then computed with the SEM algorithm by sampling several 

realizations of � according to its posterior distribution ���|�� defined for all the voxels 7 I J1, �K and 

each class # I J1, �K as : 

��L� � # | M�� �
=�," � N�M� , ��, Γ"�

∑ =�,P � N�M� , �Q, ΓP�0P-�
       �6� 

where =�," is the adaptive prior of the voxel 7 and the class # defined at the step 4, and N�M�,  ��, Γ"� is 

the multi-dimensional Gaussian defined for the  #�< class by the mean vectors �� and covariance 

matrices Γ� 

3 - For each voxel and associated observation vector M� with 7 I J1, �K, a posterior realization called 

S � � T�…T, � is sampled and a partition U � �U� , … , U0� is defined as: 

U" � �T�|T�  �  #�       �7� 
where U" is the partition associated to the # class. Using these realizations, the parameters of the 

Gaussian mixture are estimated.  

4  -  First, in the adaptive framework, priors are re-estimated using a local neighboring 3D cube, hence 

priors for each voxel depend on its position in the image and the current state of its neighbors in the 

posterior realization. Replacing global prior Π� , local priors =�," are defined for each voxel and each 

class as : 

=�," �
1

AWTX�A��% Y�TZ , #�
ZI[\

 for # I J1, �K      �8� 

where A� is the estimation cube and Y is the Dirac function. For our application we chose a cube of 

size �3 � 3 � 3� voxels.  

5 - The mean vector associated to the k
th
 class can be computed for each a image with: 

!"�b� � ∑ c��b��Ide
AWTX�U"�  , for # I J1, �K , for a I J1, �K   �9� 

6 - The covariance matrix associated to the #�< class is defined as: 

Γ" � ∑ JM� ) ��K�JM� ) ��K�Ide
AWTX�U"�  ,   for # I J1, �K   �10� 

7 - The decision step based on the maximum likelihood criteria computes the posterior probability 

��h |M� and selects for each voxel the class that maximizes it: 

#ijk � argmax" IJ�,..,0K  ��L� � # |M��  , 67    �4� 
where �ijk is the estimated maximized class.  
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Table Captions 

Table 1: Mean tumour to background ratios and mean tumour volumes computed for all the simulated 

follow-up cases. 

Table 2: Measurements of Volume, SUVmean and SUVmax evolution, computed with the adaptive 

threshold and the ASEM methods for each patients. 

Table 3: Mean measurements of Volume, SUVmean and SUVmax evolution, computed with the adaptive 

threshold and the ASEM methods for all the patients. 

 

Figure Captions 

Figure 1: Multi-observation framework of multi-tracer and patient follow-up data. 

Figure 2: Illustration of a VOI definition in the pre-treatment scan (a) and automatically reported on 

the registered mid-treatment scan (b). 

Figure 3: (b) and (d) Simulated follow-up tumours, (a) and (c) associated ground-truths, (e) ASEM 

fusion map, individual segmented map with the adaptive threshold (f) and (g), and the ASEM method 

(h) and (i) for the two simulated cases. 

Figure 4: Mean VE (%) with standard deviation as error bars of the first and second follow-up scans 

for adaptive threshold and ASEM methods applied to the simulated cases. 

Figure 5: (a) and (b) Clinical follow-up tumours (c) ASEM fusion maps, individual segmented map of 

the two clinicians (d), (e) and (f), (g) with the adaptive threshold, (h) and (i), the ASEM method, for 

three real clinical datasets. 
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Table 1 

  Tumour volume (cm
3
) T/B ratio 

PET 1 34.1 ± 27 (6 - 90) 5.7 ± 2 (2.7 - 9.3) 

PET 2 17.4 ± 2.5 (1.9 - 101) 4.2 ± 1.4 (2.0 - 6.5) 
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Table 2 

 

Patient Method 
∆SUVmean 

(%) 
∆V (%) 

∆SUVmax 

without 

PVC (%) 

∆SUVmax 

with PVC 

(%) 

1 

Tb 1 -35.7 -79.8 

-51.7 -35.8 Tb 2 -33.5 -83.2 

ASEM -33.1 -80.4 

2 

Tb 1 -69.5 -86.3 

-74.2 -76.9 Tb 2 -74.2 -64.9 

ASEM -71.4 -65.2 

3 

Tb 1 -59.7 -81.4 

-60.2 -66.9 Tb 2 -68.9 -40.0 

ASEM -62.7 -59.5 

4 

Tb 1 -27.0 -66.1 

-32.7 -25.7 Tb 2 -24.2 -71.7 

ASEM -26.7 -59.2 

5 

Tb 1 -28.4 -41.1 

-28.1 -42.2 Tb 2 -35.2 -12.9 

ASEM -20.6 -52.5 

6 

Tb 1 -87.3 402.5 

-56.1 -87.8 Tb 2 -85.7 74.1 

ASEM -83.3 -81.9 

7 

Tb 1 -65.9 361.0 

-58.8 -66.9 Tb 2 -60.7 -16.1 

ASEM -47.9 -59.8 
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Table 3 

 

Method ∆SUVmean(%) ∆V (%) 

∆SUVmax 

without PVC 

(%) 

∆SUVmax 

with PVC 

(%) 

Tb 1 -53.3 ± 23.2 58.4 ± 221.7 

-51.7 ± 16.2 -57.5 ± 23.0 Tb 2 -54.7 ± 23.6 -30.7 ± 53.5 

ASEM -49.4 ± 23.9 -65.5 ± 11.3 
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Figure 2
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