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Image change detection using paradoxical
theory for patient follow-up quantitation and
therapy assessment

S. David,Student Memb IEEE, D. Visvikis, Senior Member IEE, G. QuellecMember IEEL, C.
Cheze Le Rest, P. Fernandez, M. Allard, C. Ré&adow IEEE M. Hatt, Member IEEE

Abstract— In  clinical oncology, Positron Emission
Tomography (PET) imaging can be used to assess thpeutic
response by quantifying the evolution of semi-quaitative values
such as SUV, early during treatment or after treatnent. Current
guidelines do not include metabolically active tumio volume
(MATV) measurements and derived parameters such asotal
lesion glycolysis (TLG) to characterize the respoms to the
treatment. To achieve automatic MATV variation estmation
during treatment, we propose an approach based orhé change
detection principle using the recent paradoxical teory, which
models imprecision, uncertainty and conflict betwee sources. It
was applied here simultaneously to pre and after gatment PET
scans. The proposed method was applied to both sifated and
clinical datasets, and its performance was comparetb adaptive
thresholding applied separately on pre and post ttment PET
scans. On simulated datasets, the adaptive thresldolwas
associated with significantly higher classificatiorerrors than the
developed approach. On clinical datasets, the proged method
led to results more consistent with the known parél responder
status of these patients. The method requires accate rigid
registration of both scans which can be obtained dy in specific
body regions and does not explicitly model uptakeédterogeneity.
In further investigations the change detection of ritra-MATV
tracer uptake heterogeneity will be developed by itorporating
textural features into the proposed approach.

Manuscript received July 11, 2011. This work wastlpdunded by GE
Healthcare and the Brittany region.

Simon David is with the LaTIM, INSERM, UMR1101, 29® Brest,
France.(tel :+33 2 98 01 81 11; e-mail: david.si@ouniv-brest.fr).

Dimitris Visvikis is with the LaTIM, INSERM, UMR110, 29609 Brest,
France (e-mail: dimitris@univ-brest.fr).

Gwénolé Quellec is with the LaTIM, INSERM, UMR11(9609 Brest,
France (e-mail: quellec@univ-brest.fr).

Catherine Cheze Le Rest is with the LaTIM, INSERJM/R1101, 29609
Brest, France and Academic Department of Nucleadiditee, CHU Poitiers,
Poitiers, France (e-mail: catherine.cheze-lerest@xchst.fr).

Philippe Fernandez is with Hopital de Bordeaux, INCCNRS UMR
5287, Bordeaux, France (e-mail: philippe.fernandeZ@rdeaux2.fr).

Michele Allard is with Hopital de Bordeaux, INCIAZNRS UMR 5287,
Bordeaux, France (e-mail: michele.allard@chu-bansiég

Christian Roux is with the LaTIM, INSERM, UMR11029609 Brest,
France and the Telecom Institute, Telecom Breta@®e09 Brest, France. (e-
mail: Christian.Roux@telecom-bretagne.eu).

Mathieu Hatt is with the LaTIM, INSERM, UMR1101, Brest,
France (email: hatt@univ-brest.fr).

Copyright (c) 2010 IEEE. Personal use of this niakeis permitted.
However, permission to use this material for anlyeotpurposes must be
obtained from the IEEE by sending a requegtuios-permissions@ieee.org

1
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oncology, patient monitoring, PET, therapy response

unsupervised segmentation.

I. INTRODUCTION

N clinical oncology, Positron Emission TomograpRE()

imaging is increasingly used for diagnosis [1], iqt

monitoring studies [2] and the estimation of the
metabolically active tumor volume (MATV) for radiarapy
planning purposes [3]. Within the context of patitlow-up
and therapy assessment, the tumor metabolic chandiesed
by chemotherapy and/or radiotherapy may arise ptior
anatomic changes characterized using morphologitadiing
such as computed tomography (CT) or magnetic remena
imaging (MRI) [4]. The response to therapy may bseased
by comparing sequential PET scans acquired before
("baseline"), during ("early assessment”) and aftdate
assessment”) treatment [5-7]. Both qualitative qnaintitative
approaches have been proposed [8]. Qualitative adsthave
been considered significantly less accurate andodegible
than quantitative approaches for several applinat{®] [10].
Quantification in PET may be carried out eitherdgnamic or
static acquisitions, with similar reproducibility1]. Requiring
longer acquisitions and arterial sampling, the apphes
based on dynamic PET imaging are currently notrektely
used in clinical practice. The standardized uptaitae (SUV)
computed on static PET scans is still the most lyidsed
semi-quantitative index in oncology clinical praeti Two
indexes, namely the maximum SUV (SK)) and the mean
SUV (SUViean Within a previously defined region of interest
(ROI) are currently used in routine for the quacdifion and
will be included in the present study. The reprability of
both parameters has been assessed in differemts{u@, 13],
and compared to the reproducibility of MATV measueats
with various automated and semi-automated methgdsdo
[14]. In order to better characterize MATV, othemglexes
such as the total lesion glycolysis (TLG) were dedi as the
product of the MATV and the associated mean SUV.[15

In order to standardize therapy response assessment
oncology, recommendations such as WHO [16] and BECI
[17] have been established and are based on mesntse of
anatomic tumor dimensions on CT scans. More reganthas
been suggested in PERCIST [18] to characterizedbponse
according to the metabolic activity quantified WItRET
imaging using SUV. Based on the reproducibility safch



TMI-2012-0029.R1 2

indices as previously investigated [12-14], conficke satellite and sonar imaging [21] [22]. In the prepd
intervals were derived in order to characterizpoese, partial approach, the MATV are first delineated in each PE&n
response, absence of response and progressivesaif]. individually using a robust automatic algorithm J[23
Due to the lack of appropriate automated toolspaese Subsequently, signatures characterizing changesebat the
assessment in clinical practice is usually carmed using scans are defined by two parameters, one globabaedocal.
simple SUV measurements and do not consider thealb\e The change detection process is based on the rBwoamart-
intra MATV variations. Smarandache (DSm) theory, combining uncertain and
paradoxical information [24]. By modeling uncertsin
imprecision and conflicting data between sourceghsa
B ,, process using the paradoxical theory may add viduab
:gesgns%oet;ag \r/rz)it;og;’\tﬁ\)’(ve?gﬁg);ggeSAhﬁqvg[h%??;“:ﬁg ir_lformati_on to charapterize the tumor evolutior_1 nhthe

. e 2o - simple difference of binary segmented maps obtaoredach
the variation of the apparent diffusion coefficig®DC) of . -

.%:age independently. The local voxel by voxel tipgra

All the approaches mentioned above are based onsehef
global parameters such as SUV or MATV. By contragh

terzg?mg;f{nosrca\;osxe:]aget&eeenn tP: oggitr?(?rtn}irr:tctigggll T/II asponse is finally deduced from the original follap PET
prop images and the change detection map. In additiorthéo

imaging (fMRI) [19]. Measuring the cellular densithe ADC overall volume and activity evolution between two roore

variation of a tumor voxel can be associated witbrapy PET scans, the goal of the proposed method wasoidde a

response. The ADC variation measurements led toresgion L .
of a functional diffusion map (fDM), in which eadmor guantitative accurate voxel-by-voxel response nspgucolor
' coding.

voxel was classified as responder, stable or pssire.
Another recent method proposed assessing the respon The proposed method was applied on simulated anidal
comparing two follow-up PET images previously cgistred follow-up *®F-FDG PET scans of patients with esophageal
using associated CT datasets [20]. A biparametidp nvas cancer treated by radio-chemotherapy. The chantgctim
generated and analyzed in order to identify theetraiptake approach was compared with the current quantitatieghods
variations within the tumor volumes. used in patient monitoring (SUV variations) and MAT
threshold-based delineation applied independentlgach of

The aim of this study was to present a novel mettwod the follow-up scans,

characterize MATV response to therapy, based orchiaage
detection principle previously proposed within @entext of

I Pre-processing steps I I Change detection process I

A \
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Fig 1: Flowchart of the proposed approach. In thege mapping step, black voxels are those clagsiiebelonging to the MATV by the FLAB algorithmh&
remaining voxels are classified as belonging tobhekground. In the mass function assignment difinifor all images, the voxels intensities represvalues
between 0 and 1. The maximum of credibility gere=at binary ‘change map’ (white voxels ‘changeacklvoxels ‘no change’). In the classification steging

this ‘change map’ in combination with SUV differ@scbetween pre and post treatment as well as the measurements of both pre and post treatmerg,scan
the fusion map is deduced in which green voxelsstable (‘change’ with less than 30% evolution mo cthange’ classified as tumors depending on mean
measurements), blue voxels are responding (‘chamigie’more than 30% reduction), red voxels are prssive (‘change with more than 30% increase) thad
voxel intensity is proportional to the SUV diffe@nbetween pre and post treatment.
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Il. MATERIALS AND METHODS

Figure 1 presents a flowchart of the proposed nigteach
step being detailed in the following sections.He following,

follow-up PET scans. Consequently, a PVE correc{PYiC)
was applied to each follow-up scan. The chosen PVC
approach is based on 3D voxel-wise correction using
iterative deconvolution improved by wavelet and velet-

the term noise denotes the statistical variations of voxelg)"’lsed optimal denoising [27] [28]. This pre-protegsstep

values due to the signal acquisition and image rrgttoction
processes, whereas the telneterogeneitydenotes variations
of uptake in small or larger groups of voxels withihe
MATYV that may be characterized as spatial pattessociated
with subjacent biological processes such as hypatia
vascularization [25].

A. Pre processing
1) Local-based analysis

Our method is aimed at characterizing local evohsi of
volumes of interest at a voxel level in follow-ugPimaging.
In this work, we therefore assume that the lesianmterest
can be first isolated by a clinician in a 3D boumgdibox,
which is determined on co-registered PET scansur@id?).
This bounding box should be large enough to encempize
entire tumor volume on all considered scans. l&psh not
necessarily cubic, should allow in most cases ot
physiological uptake close to the tumor which mesguwtb the
change detection process, although depending otypieeof
malignancy, extent and location of the lesions, pinecess
may be more or less complex and time consuming.

- -
- L)
S
()] (b)

Fig. 2: lllustration of a VOI definition in the piteeatment scan (a) and
automatically reported on the registered mid-treatinscan (b).

2) Image deconvolution

Tumor volumes observed in PET images are affecyettidn
partial volume effects (PVE), due to the limitedatal
resolution of PET scanners, which is about 4-6 ralhwidth

allows reducing the size of the blurred frontiensl @&xtracting
corrected SUVs for the quantitative characterizataf the
evolution of the tracer uptake.

3) PET/PET registration

As mentioned above, the follow-up PET scans aremasd
to be registered at a voxel level before the chadeection
method can be applied. Within the context of patien
monitoring studies, the PET/CT images may be aeduat
several weeks interval. In our study, the PET/P&gistration
was carried out according to a previously publisapdroach
[29]. PET scans were first registered with theirresponding
CT acquired in the same bed position. Then, haviraye
landmarks than the functional images, the two Cansownere
registered with the MIPAV software using a rigid
transformation, by optimizing the least square ecidn.
Finally, the computed CT/CT transformation matrixasv
applied to the PET scans leading to their registnaat the
voxel level. A rigid registration was used in otudy for two
reasons. First, the analysis was carried out onll s&ia
volumes of interest centered in the mediastinuncofe,
elastic registration would deform the tumor shapesl
volumes when registering one to the other, whichuldidias
the comparison analysis on the voxel level of th&T™
evolution between the two scans. This approach tewe
limits the applicability of the method to body regs less
impacted by respiratory motion and registrationésssuch as
patient morphological changes between the two scans

In addition, the local change signature of eachelaxas
performed within a sliding cube of 3x3x3 voxels tezead on
the voxel of interest, which is expected to redineeimpact of
small (one or two voxels maximum) registration esr¢see
end of section 11.B.2).

B. Change Detection method

This approach is based upon change detection pknci
using the DSm theory to model the evolution of thmor.
The change detection has been widely used for ligatel
imaging [21] [22] within the context of environmah{forest,
agriculture) monitoring or in urban studies. Howevthe

at half maximum (FWHM) in state-of-the art PET/CTchange detection method has not been applied toifAEJing

scanners [26]. The PVE lead to activity cross cwmination

between adjacent structures characterized by diifeuptake
levels and might significantly impact measured \aigti in

structures with sizes below three times the FWHMthie co-
registered PET scans, voxels most affected by Rivis{ly on
the borders between structures of interest) mayhawe the
same spatial coordinates, which can further distinebchange
detection method. Moreover, the PVE affect the hits UV

values extracted from each scan. These measuremegtbe
significantly biased and this would lead to sigrafit under or
over estimation of the tracer uptake variation leetw the

up to now. The proposed approach was adapted frotlaod
applied to SAR (Synthetic Aperture Imaging) imagesd for
the detection of abrupt changes due to naturalremviental
damages [30].

1) Image Mapping

Let us considef, andl,, two 3D PET volumes of follow-
up scans acquired respectively before and durimgafier)
treatment. Both images are assumed to be co-regists
described in section 1LA.3. The first step corsign
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delineating the MATV in each image in order to dta first
estimate of the tumor volumes that will be subsatjye
compared in the change detection approach. Therithgo
used in this step (Fuzzy Local Adaptive BayesidtAB) has
been previously validated [23]. Using a fuzzy Bagesnodel,
the approach is based on a local adaptive prioretnadd an

observation model assumed to be a mixture of Gamssi

distributions. The parameters of the mixture ataredged with
the stochastic expectation maximization (SEM) dthor

[31]. The voxels classification into tumor or baokgnd class
is carried out according to the maximuikelihood criterion,
based on the posterior probability. Illustratedigure 1, black
voxels are those classified as belonging to thesclIATV’

by the FLAB algorithm, whereas the other voxelsehéeen

classified as ‘background’. This step provides SOME(fi 4ryfary) (8 = 1 —min

parameters that are subsequently used in the clsiggture
(see sections I1.B.2):

The Gaussian distributions, notgfd, are defined by their
mean and variancé€y; ,0?), wherei denotes the MATV
(i = MATV) or background i(= BD) and j denotes the
affiliation to image 1 or 2.

2) Change signature
The second step of the process consists in chazetethe
change between the two maps obtained at the pe\atap

(section 11.B.1), considering two levels of obsdima: one
global and one local.

The global evolution was characterized using a oreasf
distance between the distributions.

two probability distribution® andq:

BC(p,q) = f @@ dx (1)

The Bhattagtzary
criterion (BC) [32] was used to measure the overlap betwe

images. The membership would also differ if the elox
belongs to a class with similar pdf while its vahes changed
significantly. The membership change of a vokdbetween
the imagel, and I, was therefore defined as a contrast
measurement between the two pelfandg:

p(@) q@()
2G(0) 'p(i(t))) )

where i(t) is the intensity of the voxel t in thedge. The
contrast associated to the MATV class is estimdtedthe

voxel t with the distributionss 47w andf ., associated with
the pre and post-treatment scans:

) <f1\}IATV(i(t)) fI\;IATV(i(t))> )
frgary Q@) fgary (1))

This measure allows characterizing the evolutiontrod
classes’ pdf and the voxel variation within its sdaand
assumes that the follow-up images are registerecl|voy
voxel. In order to reduce the impact of potential
misregistration, the contrast for each voxelvas computed
within a 3x3x3 cube centered on the voxély averaging the
values of the 27 voxels in the cube and assigriiegésulting
value to the center voxel.

C(qu) (t) =1- mm(

3) Change detection with paradoxical theory

In our method, the change detection process isedaaut
using the Dezert-Smarandache (DSm) theory of gieisind
paradoxical reasoning [24]. The DSm theory is a
generalization of the classical Dempster-Shafer) (iD8ory.

odeling data using basic belief functions, the D8reory
allows combining different types of information soes and
dealing with their inherent imprecision and undettas, with
a better management of conflicting sources than D&
theory.

A global change criterio® (p, q) can be deduced from the Within the context of change detection, the goahas to

BC:

D(p,q)=1- f Sp@a@dx  (2)

On the one hand, for differentiated distributioB€, tends to
0 andD tends to 1. On the other hand, wherand q are

achieve fusion of information provided by the diéfet
sources, but rather to directly model these changssg
specific basic belief functions. In DS and DSm tie0 a
“frame of discernment” defining the hypotheses hbasbe
defined. Usually in change detection, the two eleangy

similar, BC tends to 1 and tends to 0. In the proposedhypotheses are “change” and “no-change” with a éaoh

method, four distances were computed by considdong

andg, the distributions‘/ associated with the PET follow-up
imagesI, and I,. For example, the distance between th

MATV distribution in the pre-treatment scdfi}, and the
distribution corresponding to the BD in the postatment
scanfi, was defined as:

D(fibaryr f2) = 1— f [l GG dx (3)

The local evolution was designed based on a cdntras

measurement between the two images. At the local,l&
given voxel is characterized by its value and thebability
density function of the class it belongs to, asiidieed in the
mapping step. For each voxel, the membership ofctass
would differ when the probability density functigpdf) of its
class has changed, although its value could bdasiini both

discernment defined a® = {6.,,60,, .} [33]. The “hyper-
power set'D® is derived from the frame of discernménand
8ontains single and composite hypotheses as fallows

D® = {0,601, 0n0 ch »Ocn U Onocn » Bcn N g cn} (6)

In DSm theory, data are modeled using basic belief
functionsm defined inD® and verifying:

m(@) =0
m: D® - [0,1] Z m(4) = 1

AeD®

(7

whereA is a proposition, either single or composite®ofBy
analogy with the DS theory, the traditional befigfictions of
credibility and plausibility characterizing proptisn A can be
derived fromm(A) as follows:
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Cre(4) = Z m(B)
BCA ANB#Q
BeD® BeD®

In order to apply the DSm theory within the conteskt
change detection using the global and local chaigeature,
the basic belief assignments were defined as pedvid table

PI(A) = m(B)  (8)

assignments of table 1 were defined in the geneaaé in
which several sources of information can be comeitleln
this paper, the change detection approach has dpgaied in
the particular case where only one source of in&ion is
considered: the mean value in a cube 8f3X3 voxels. In
that case, the maximum of credibility criterion quares

1 with the distanc® (p,q) (eq. 3) and the contrast betweerC(p,q) and[1— D(p,q)]: if C(p,q)>[1- D(p,q)], then the

membership chang€(p,q) (eq. 4) wherep and g are the

voxel has changed, otherwise the voxel has notggdhn

probability density functionﬁ"(t) associated with imagds
andi is the class assigned to voxehfter the mapping step
(section 11.B.1).

A tumor evolution, modeled by the basic belief gggient
m(0.,), can be characterized by a high contrast betw
membership change and a significant distance betviee
pdfs. On the contrary, small values of contrast distiance
between pdfs describe stable uptakes between thestans
and are modeled by the basic belief assignme®,,, .;).
The two others basic belief assignments correspgntdi the
union and the intersection &, and 0,,., characterize
respectively the uncertain and the conflict. They defined

D

Timage T

Tmiage 2 image 3

with respect to the belief mass function definition(eq. 7).
Figure 3 illustrates the pdfs corresponding to tilmaor and

(a) (b)

background classes in the pre and post-treatmexgem Each
term in table 1 can be described and explained byegific

arrangement of the pdfs. The notions of uncertaiatg

paradox are stressed in the definitionnof6., U 6,,, ) and

m(Be, N Oy cn), respectively.

TABLE |

Hypothesis Mass

o 0

Ocn C(,9) x D(p,q)

gnu ch

(1-c.)x (1-D )

Ocn U o cn (1-Ccp.9)x D q)

Tmage T image T

~ Tmage 2 o

Tmage 2

Ocn 0 o cn C,q)x (1-D(p,q)

(c) (d)

Definition of the mass function assignment with thistanceD (p, ¢) and
the contrast between membership chadgg,q) wherep and q are the
probability density functiorﬁ-’(t) associated to imagds andi is the class
affected to voxet.

As illustrated in figure 1, in the map correspordio the
basic belief assignments of the intersection, \@x#fferent
between the pre and post-treatment scans are eipgihas
which illustrates the conflict between the sourd&scontrast,
voxels similar in both scans are emphasized in e
corresponding to the basic belief assignments ef uthion,
representing the uncertainty between the sources.

After the computation of the basic belief functipres
‘change map’ (see figure 1) can be created throtigh
maximum of credibility between the elementary hyses
according to the credibility function defined inq(e8). This
‘change map’ provides a description of the evolutietween
the PET follow-up scang andl, by classifying the voxels as
“change” or “no-change”. According to (eq.8), tHaysibility
associated to the elementary hypothe@gsand®9,, ., are
always equal to 1. Therefore, the maximum of plailisi
criterion was not used in our approach. The baslbetb

Fig. 3: The pdf of both classes, before treatmiemade 1) and after treatment
(image 2), is represented along the y-axis, asnatifon of voxel intensity
(along the x-axis). In each figure, the intensitype voxel (t) is represented,
before and after treatment, by a black circle. ptiEof the class assigned to
voxel t is represented by the bold line.

(a) (‘no ch’). Voxel t was assigned to the same<lefore and after treatment
(D(p,q) is low) and the membership degree did fatnge much (C(p,q) is
low): the confidence that the voxel did not charsgeigh.

(b) (‘ch_or_noch’). Voxel t was assigned to a diffet class before and after
treatment (D(p,q) is high) with however a smallrg@ in membership degree
(C(p.,q) is low). The fact that C(p,q) is low suggethat pixel t may be close
to the frontier between classes. Consequently s ¢cchange’ may just be
due to chance and the uncertainty is high.

(c) (‘ch’). Voxel t was assigned to a differentsdebefore and after treatment
(D(p,q) is high). Because the membership degreagehavas high (C(p,q) is
high), voxel t cannot be close to the frontier kesw classes at least in one
image. Consequently, the class change is not litelye due to chance. The
confidence is therefore high that the voxel changed

(d) (‘ch_and_noch’). Voxel t was assigned to theaalass before and after
treatment (D(p,q) is low) with however a high charig the membership
degree (C(p,q) is high), which might be considepadadoxical, and might
suggest the voxel evolution is not complete betwbenwo scans.



TMI-2012-0029.R1

4) Classification

The final step of the process is the definitionha voxel by
voxel response status using the PET follow-up séaasdl,
in combination with the computed ‘change map’ (eect
11.B.3). The voxels were here classified accordiagfour
different statuses: responders, stable or progeeskir the
tumoral voxels, and those belonging to the backggo(or
physiological) in both scans. On the one hand, \tbeels
identified as ‘no change’ in the change map couddbtg
either to the background or to the tumor in bothages.

Thanks to the background and tumor meghsomputed in
the mapping step, the ‘no-change’ voxels were tfledsas

either background or tumor. This classification veabieved
by the computation of a mean square error (MSEyéeh the
voxel's value and the respective mean values okdracind
and tumor in the pre treatment scan. Voxels cliaskifs
tumors and ‘no change’ are therefore designatetstable’

(green voxels in the fusion map) On the other hémelyoxels
identified as changing could be progressive (bamkgd

evolving to tumor, red voxels in the fusion mapyesponding
(tumor evolving to background, blue voxels in tbsibn map)
and they were classified depending on the relaBgV

variation between scans (decrease for respondinggase for
progressive). It is then possible to deduce irmflizl

segmented maps from the fusion map for the pre parsd-

treatment scans. The segmentation map on the gab¥ytent is
deduced by the combination of voxels of the fusioap

classified as responding and stable, whereas fa@

segmentation map on the post-treatment scan pgigeeand
stable voxels are combined. S\, and MATV are then
extracted by copying these delineations onto eaelm.sThe
overall tumor response is then deduced from thesuored
ASUV andAMATV.

C. Validation

The validation of the change detection method hesnb
carried out on both simulated and clinical datasets

1) Simulated datasets

The considered simulations were realistic MATVsigiesd
based on real head and neck and esophageal legieasved
in clinical datasets, to generate realistic shaguad activity
distributions as well as locations in the body. Himulated

images), for which the ground-truth is known in tieaulated
phantoms (see examples in figure 4).

Each case contains two follow-up 3D PET scans, pmee
and one post treatment. The original clinical cagesd to
design the simulated cases were classified as aparti
responders or progressive disease after radio-cienapy.

In this study, 25 simulated follow-up cases wenesidered,
with various MATYV shapes and tumor-to-backgroundtcast
ratios. Half of the simulated datasets, represgritBiout of 25
cases, were generated from patients’ classifiedpasial
responders. The 12 other cases were designed hmased
patients classified as progressive disease.

In order to assess the robustness of our methoek, tinise
levels were considered for each case, by seledfdg 80 and
60% of the simulated lines of response for theattee
reconstruction respectively. Consequently, 75 sitedl
follow-up cases were generated. Similarly to theeobed
clinical datasets, both homogenous and heterogengaacer
uptake distributions within the MATV were simulatetihe
current implementation of our approach does not evew
allow finer characterization of the evolution ofdiatracer
uptake heterogeneities within the MATV since it slogot
explicity model heterogeneity parameters, although
depending on the delineations and appearance airteost
treatment scans, such variations might still benligted in
the generated maps. Consequently, in all simulateas the

oxels were assumed to belong either to the backgt¢BD)

Vi
tlar to the tumor (MATV). The table 2 provides theandumor

volume and tumor-to-background ratios simulatedpfier and
post treatment scans.

TABLE Il
Tumour volume (cr) T/B ratio
PET 1 275+19  (3.8-90) 5312 (2.7-9.8)
PET 2 26323 (1.9-1009) 4.4+17 (2.0 - 8)

Mean tumor to background ratios and mean tumormesicomputed for all
the simulated follow-up cases.

2) Evaluation metrics for simulated datasets

For simulated datasets, the ground-truth (GT) wilakle.

dataset used in our work was generated according toThe assessment of the change detection method ahiésved
procedure previously described using the Monte «Carby computing relative volume errors (VE) and clisation

simulations toolbox GATE (Geant4 Application
Tomography Emission) [34]. This procedure combirges
numerical phantom describing thorax (NCAT) [34] legad
and neck (Zubal) [34] anatomical regions and a rhade
tumors manually created from real clinical imagesantoms
and tumors are both defined as Non-uniform ratioBal
splines. The voxelized phantom associated withnatton
coefficients and activity labels is then combineithva highly
detailed model of the Philips Allegro PET scannezvipusly
validated [35], and simulated in GATE in order tengrate
PET listmode data that is then reconstructed asiBidlated
images with voxel size 4x4x4 ninfsame as the clinical

forerrors (CE) for each simulated tumor, as well &séeirors in

estimating the volume change. CE are defined asuhe of
positive and negative classification errors (baokgd voxels
classified as tumor or tumor voxels classified askiground
respectively) [23]. As illustrated in the figure fgr each
simulated case, segmented maps of the pre andrpashent
scans were obtained with the adaptive threshold ¢eetion
I1.C.5) and the change detection method. VE and w&fe
larger than 100% in some cases for which adaptiveshold
delineation completely failed, and were limited 160% in
such cases.
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3) Clinical datasets

SUV ean Variations for complete responders patients, ttd V
defined in the first follow-up scan were automdticaopied

The proposed method was also applied to real dliniconto the second scan, where no pathological uptakél be

datasets. Seven patients with esophageal or heddceck
cancer undergoing concomitant radiochemotheray dwtw
2005 and 2008 were considered. TWB-FDG PET scans
were acquired on a PET/CT Philips Gemini scannks\fing
standard clinical protocol before and after treattnémages
were reconstructed with voxel size 4x4x4 nfame as the
simulated dataset). Four patients were classifisdpartial
responders according to the RECIST criteria, onatmafter
the completion of the therapy. The three othergeptt were
classified as complete responders. According to réeent

PERCIST recommendations including PET measuremants

response may be characterized by a SUV relativeedse
above 30%, with no volume increase or apparitionnedv
lesions [18]. This 30% value has been chosen becaluthe

detected.

5) Alternative approaches used for comparison

In both simulated and clinical datasets, the chategection
method was compared to semi-automated approactss th
have been proposed for patient monitoring studizdy the
SUV,ax Variation is currently considered in clinical rimg to
characterize response. In order to take into adcthenmean
SUV and MATYV variations, adaptive threshold-basestirds
were used and applied to each scan independergier&
studies have demonstrated that the fixed threshwthods

reproducibility of SUV measurements which has beefy€'® not accurate and robust enough [36] [37] arelew

determined to be within this +30% range. This rejpibility
range was evaluated on double baseline (also cafksd-
retest") PET images, which consisted in repeateajing of
the patients at a few days interval without treatmm
between. It has been recently demonstrated thatgutsie
FLAB method to delineate MATVs led to similar
reproducibility performance of about £30% [14]. Taethors
therefore concluded that future PERCIST guidelisksuld
consider MATV variations larger than 30% to chaesce
response or progression. Visual illustrations ob telinical
cases are provided in the figure 6.

4) Quantitative variation for clinical datasets

Contrary to the simulated validation, no groundftsuwere
available for the clinical follow-up cases. Therefo the
evaluation of the methods was performed by compatte
measured variation of several quantitative indig#h respect
to the known response to therapy of the patieritis fesponse

was evaluated 1 month after the completion of thé

concomitant radio-chemotherapy using conventiohatéco-
abdominal CT and endoscopy. Patients were cladsifsenon
responders (NR) including stable and progressivaeatie,
partial responders (PR) or complete responders .(C
Response evaluation was based on CT evolution eetywee-
treatment and post-treatment scans using RECIS$p@drtse
Evaluation Criteria in  Solid Tumours). Patients oals
underwent fibroscopy in case of partial or completgponse.
Complete response was confirmed by the absencésities
disease in the endoscopy and no viable tumor opshio
Partial CT response was confirmed by macroscogauel
(>10% viable) on biopsy. No discordance was obgkrv
between pathological and CT evaluation. The vanabf the
MATV (AMATV) and mean SUV ASUV ) between the
pre-treatment and post-treatment PET scans wergutech
for both approaches using delineations on bothssdeduced
from the fusion maps (see figure 1 and section.4).Bor
directly obtained with the adaptive thresholdingdiby two
different clinicians (see section 1I.C.5). Theseaswgements
were compared to the variation of maximum SWS(UV,,,,)
with or without PVE correction. In order to measttie

therefore not considered here. The adaptive thtéshethod

takes into account the background uptake and thpdieap
threshold value is computed from the estimated resht
between the tumor activity and the background #gtivand

selected based on previously carried out optinopafor a

given scanner using phantom acquisitions of spt8fis

However, the use of adaptive thresholding requites
manual placement of a ROl in the background for an
estimation of its uptake. For the simulated datséte
background uptake was simulated as homogeneoughand
background value was automatically determined. Qo
result for the adaptive thresholding is thereforeviged for
simulated datasets. On the other hand, clinicas#as often
exhibit much more heterogeneous physiological bantkap
uptake, especially in the mediastinum and head maxk
regions. The manual placement of the backgrounabmegf
interest may therefore lead to significant interserver
variability as previously demonstrated [38]. In atudy, two
nuclear medicine physicians with similar traininghda
experience manually placed the background ROI ch €&T
scans of the clinical datasets, therefore leadirtgvo different
results denoted tbl and tb2 in the tables and diguihey
followed a specific protocol as they were instrdcte place

e ROI at least a few cm away from the lesionsyTwere

owever free to choose the actual size, shape landment of
the ROL.

A. Results on simulated datasets

RESULTS

lllustrations of fusion maps obtained by applyihg thange

%letection method on simulated data are providediforcases

in figure 4 (e). For an easier interpretation & thaps, color
codes have been associated with each type of resp8tue
areas depict the responding tumor voxels. Voxetearpng in
both scans (stable voxels) are characterized iangréumor
voxels representing progressive disease are redboth
illustrated cases classified as partial respondemnty; green
and blue areas appear. On each map, the voxelsityen
automatically set as the SUV relative variatioASQV)
between the first and the second follow-up scarnthn first
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case, no significant differences were observed be t24+29%, Ck: 27+16%, CEkE 26+25%) were significantly
segmentation of the pre and post treatment scandbdth (p<0.01) higher than the ones associated with g af the
approaches. The second case illustrates a heteogen change detection approach (WE2+26%, VE: -2+31%, Ck:
uptake in the tumor of the pre treatment scan. Hs@on 17+6%, Ck: 19+7%). Standard deviations of VE for the
partially responded to the treatment and exhibitad proposed method were higher than the adaptive hbidisg
homogenous uptake in the second scan. The obtain@®% vs. 20% and 31% vs. 29%) although the diffeeenas
segmentations of the MATV in the post treatmentnsaee not significant (p>0.05), whereas the standard ateis of
similar for both approaches. By contrast, the adapnethod CE were significantly (p<0.001) smaller (6% and V86 16%
clearly underestimated the MATV in the pre-treatimgean, and 25%). Adaptive threshold led to a systematiceun
contrary to the change detection method. estimation in most of the cases, with some errbova 100%,
whereas the change detection approach led to aofmaver

Case 1 and under evaluations of the true volumes (as dstraird by
the low mean VE and associated standard deviatiwrit) no
‘ ' absolute errors (either VE or CE) above 30%. Ins¢he
simulated cases, both homogenous and heterogenptales
were simulated in the MATV according to the obsdrve
@ clinical scan. The adaptive threshold consistefdjed to
delineate heterogeneous ones, contrary to our ehdetgction
approach that prove much more robust in such cordtgns.
Both methods provided similar errors in estimating MATV
evolution between the two scans (23+45% for change
detection approach and 25+47% for the adaptiveshuld).
Case 2 20 HTb Change detection
‘ 30
10
0 S
(a) (b) (©) (d) (e)
|. —_—— - _10 L
1 % %
3 % |
: | -40
V) @) (h) (i) =0
-60
Tumor response (a)
Tumor stable
Disease progression
70 % 35 04 0 %ASUV ETb Change detection
60
Fig 4: lllustration of two simulated cases (onlyearentral 2D slice of the 3D
volume is shown), with (a) the simulated pre treathPET scan and (b) its
binary ground-truth, (c) the simulated post treattmBET scan and (d) its 50
binary ground-truth. (e) is the fusion map obtaiméith the proposed method.
(f) and (@) are individual delineations on pre gt treatment PET scans 40
respectively, obtained with the adaptive thresh@.and (i) are individual
delineations obtained on the pre and post treatPEftscans respectively, by 30
selecting voxels using the fusion map (e): for phe treatment scan, tumor
volume is obtained using responding (blue) andlestédreen) voxels of the T
fusion map (e) whereas for the post treatment goampr volume is obtained 20
using stable and progressive (red) voxels. In #yample there are no l
progressive voxels. 10 -
Figure 5 provides the VE and CE obtained by theptida 0
threshold and change detection methods. The thiceslaged
method was applied independently on each scan.bbtr
approaches, VEand VE, CE and CEk are the volume and (b)

e - _ Fig 5: Mean and standard deviation for (a) VE andQE, for the pre (EV
classifications errors respectively assessed fa fire EC)) and post (EY, EG) treatment scans, for adaptive threshold (tb) and

treatment.and post treatment scans. For both stBn¥E and  change detection methods applied to the simulasdsc
CE associated to the threshold method (VE5+20%, VE: -
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The impact of the registration error has been nmredsfor a methodologies were compared with tASUV,,,, with or
sub-group of the simulated data, by shifting theosd follow-  without PVE correction. For all the CR cases, N8V, ean
up scan from one and two voxels in a random divactFor were close (-74+10% for,T-73+£11% for  and -64+14% for
one voxel shift (7 mm), volume errors of the fiemdd the the change detection method). These measures @se t
second follow-up scan increased to +11.4+21% arttiose obtained with th&SUV .y (-56£14% without the PVC
+5.3112%. By contrast, a shift of two voxels (14mie) to and -66+20% with PVC). As expected, PVC led to ghbr
significantly (p<0.01) higher VE for both follow-upcans, variation (and associated standard deviation) @ ABUV 4.
respectively +27.5+28% and +19.6+26%. TABLE IV

B. Results on clinical datasets ASUViax  ASUVinax

Patient  Method AS(Li/\/)mea” A"?{g\’ without  with
0 0 PVC (%) PVC (%)

The results obtained on clinical datasets aretititisd in

figure 6 for two patients, with the same set obc@nd voxels Th1 -73.6+9.5 -100
intensities as described in the simulated imagédatin. 1-3 Th 2 727+111  -100 -516?;?;’5 '6250-?
The quantitative measurements for each patienprandded Change  -64.2£13.7  -100

in table 3. According to the response status, meda#pan measurements of MATV, SUM,and SUV. evolution for patients
measurements were computed and presented in tedoe & clhassmeg complete rer?pgn(fjers,”(:ﬁmputgd with tegptive threshold and the
for the patients classified as complete and par&aponders change detection methods for allthe patients.

respectively. Contrary to the simulated dataséts, dlinical

images have a noisier and more heterogeneous lanidyr Regarding patients 4 to 7 classified as partiaboaders

making the change detection more challenging. (PR), the lesions were expected to exhibit a sigpmif

decrease in activity and volume between the firsd e

TABLE TN SV SV second fqllow-up scan. In the recent PERQIST Gad?PR is
patient Method ~ ASUVmean  AMATV T SO T in | characterized by aASUV.. decrease higher than 30%.
(%) ) PVC (%) PVC(%)| Moreover, a decrease of the MATV is also expectevben
Tb1 73 100 th_e.follow-u'p scans. Conside.reql as the gold stahdalth.e
1 To2 4 100 63 77 clinical routine, the SUV,, variation was assessed as higher
than -30% (-39+16% without PVC and -48+14% with BVC
Change 67 -100 These measurements are similar to the Slf\variations
Thl 71 -100 computed with both approaches. No significant déffices
2-1 Tb2 70 100 57 -69 were observed in the mean variation of Sy with both
Change 53 100 clinicians (-39+14% for 7, -46114% for §), which are
o1 o4 100 slightly lower _than the measurements computed with
22 = o 100 37 36 cha}nge detection method (-49+18%). .On' _the c_ontrehg,
variations of MATV were found to be significantlyfférent
Change 54 -100 between both clinicians (-67+22% for,, T-44+27% for T,
Tb1 -87 -100 p<0.01) as well as with the change detection meH&#8%)
3 Tb2 87 100 -69 -81 (p<0.001). The standard deviations associated vtita
Change 82 100 adaptive threshold method (22 and 27%) were sicanifiy
To1 39 83 (p<0.001) higher than the one estimated with thangk
detection method (8%).
4 Tb 2 51 55 -36 -49
Change -57 -34 TABLE V
IE; = = , ASWViewr  AMATY  ASUViax - ASUVima
5 35 47 26 36 Patient  Method (%) (%) without  with PVC
PVC (%) (%)
Change -38 -33 51 386 668%
Tb1 27 -38 14.2 21.6
o Tz w5 ow w || er _me  yr  her W s
Change -31 -37 Change -412;.17 * -3;5.;3 +
Th1 -59 -84 Mean measurements of MATV, SW\M»and SUV,. evolution for patients
7 Th 2 -65 -68 -62 -67 classified partial responders, computed with thaptide threshold and the
Change 70 46 change detection methods for all the patients.
Measurements of MATV, SUM.anand SUV.x evolution, computed with the
adaptive threshold and the change detection mefoo@sich patients. In order to illustrate the respective behaviorshef adaptive

threshold and change detection methods, two cliriadkw-

The patients 1 to 3 were classified as completgoreders to yp cases corresponding to patients 4 and 6 arédgain the
the therapy. Therefore, the volume variation wadsas&V=-  figure 6.

100%. Only the variation of SUM., computed for both
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Case 1

Case 2

(b)

(h) (i)

Tumor response

®) (9)
Tumor stable

g Disease progression

70 % 35% 0 9% ASUV

10

however, were quite close (-27% fok, F34% for T). By

contrast to the adaptive method, the change deteapproach
succeeded in identifying both MATVSs, as it can bersin the
segmented maps. Hence, the quantitative variatfoSWV

and volume measured with the change detection apbprare
coherent with the partial responseASUVmears=-31%,

AMATV=-37%).

For all PR patients, SUMa,and MATV decrease obtained
with the change detection approach were below -30%,
whereas several results obtained using the adatitreshold
were not (-30% SUyean for patient 5 (Tb 1), -25% SUMan
for patient 6 using (Tb 1) and -5% MATV (Tb 2).

IV. DISCUSSION

In clinical oncology, one application of PET imagiis the
assessment of early response to therapy by anglyzin
sequential scans during treatment [5-7]. Up to nowst of
proposed studies characterizing the therapeutfmres have
been based on the measurement of the variation sifighe
guantitative parameter, usually the maximum SUV.

The proposed method is aimed at assessing the ngspo
using follow-up PET scans, through a change detecti
approach. The method is divided in subsequent stéps
individual images mapping, change signature of aland
local parameters and change detection using theerbBez
Smarandache (DSm) theory (see figure 1). Allowimg t
combination of multiple sources of information amddeling
the uncertainty or conflict between these sourties,change
detection with DSm theory applied on follow-up ssamas
expected to produce more reliable results thanpedéent
segmentations performed on each scan separatelye\do,
the method requires accurate rigid registratiobath images,
which can limit the applicability of the approacb body

Fig 6: lllustration of the results for the clinicases of patients 4 and 6, with regions and types of lesions less impacted by @mstes. To

(a) and (b) the pre and post treatment PET imagspectively, (c) the

classification map, (d-e) and (f-g) individual segrted maps for pre and post

treatment obtained with the adaptive thresholdingtlie two clinicians, and
(h-i) the segmentations obtained through the chdegection method.

For patient 4, whereas the variation of S\ are close for

reliably apply the method in more complex cases)iazl
acquisitions protocols would require additionahst@rdization
to minimize changes, and respiratory motion as vadsl
potential additional corrections would be required each

T, and T, (-39% and -51% respectively), the MATV variationdMage before applying this approach. The last sitfihe

are much more different (-83% and -55% respect)velipe
measurements obtained with the change detectiohothetre
in line with the PR status of the patiedSUVyea=-57%,
AMATV= -28%). The measurements obtained for thegueté
illustrate the poor reproducibility of the adaptitiereshold
method. Whereas the segmentations obtained forptist
treatment scan are similar for both clinicians,

segmentations obtained for the first pre-treatnadfér. These
results can be explained by the heterogeneoushdittm of
tracer uptake within the background of the mediasti
combined with the fact that each clinician placdte t
background region of interest in a different pasitileading to
large differences in the estimation of this backma uptake
used by the adaptive threshold to compute a solufibis is

consistent with previous observations in esophageaker
[38], whereas in lung cancer the difference wassigntificant

due to more homogeneous uptake of FDG in the I(iBgf

This led to high differences betweAMATV measured by the
two clinicians (-38% for 1, -5% for T,). ASUV ean Variation

th@ach scan allowed

change detection method consists in classifying el
evolution of the MATV using recently proposed aridg18].

The change detection method was applied on bothlated
and clinical follow-up datasets, and compared weittaptive
threshold-based delineations performed separatelyeach
scan. With simulated datasets, the ground-truthecgated to
the computation of volume and
classifications errors. 25 follow-up cases, comgosé two
scans acquired before and during the treatment,e wer
simulated with various tumor-to-background ratidgmor
shapes, levels of noise and with homogeneous or
heterogeneous tracer activity within the MATV. lotl pre
and post treatment scans, the VE and CE assoaciatedhe
adaptive threshold method were significantly higian those
measured with the change detection method. Thegbedniors
obtained with adaptive threshold can be explaingditb
inability to accurately take into account heteragmrs
distributions of radiotracer within the MATV. Thehange
detection method appeared more resilient to heteregus
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uptake within the tumor. Although CE associatedhwite
proposed method were measured around 20%,

performance needs to be assessed within the coofetkte
size of the tumors relatively to the voxel size 44& mn?),

especially for post treatment lesions that haveurghr
Although both methods provided similar accuracy
estimating
(~25145%), a correct volume evolution can be atssched by
two incorrect delineations in the two scans. Inesal cases
concerning the adaptive thresholding approach, tetep
failures with errors >100% were obtained but wémgtéd to

100% to avoid excessive bias. Classification errovere

significantly lower for both pre- and post-treatmavith the

proposed approach. This has to be considered #iragoal of

the proposed method is not only to provide an egton of

the volume evolution between the two scans (thg orétric

that could be used in the case of clinical datasbtg also to
provide more accurate delineations in both pre- podt-

treatment images, as well as a quantitative fusioap

describing voxel-by-voxel evolutions with color déod.

In clinical datasets, the adaptive threshold anéngke
detection methods were compared with the variatadn
maximum SUV in the follow-up images. The Sk,
measurements were also computed for both methaaizlly;
in order to more accurately characterize the respoRATV
variations were computed for each approach.

For patients classified as complete respondersjlasim
measurements were observed between SU¥Nd SUVean
variations estimated with the adaptive thresholdl ahe
change detection method. Regarding the four
classified as partial responders, there were naoifgignt
differences between the variation of Sk and SUVjean
assessed by both approaches. By contrast,
variations were significantly different for the gdi&e method
results obtained by the two clinicians and the tgped
approach. The MATV variations measured with thengea
detection approach were less variable and moreistens
with the status of partial response. It also ledisnally more
satisfying delineations than adaptive threshold pnave more
sensitive to noise and uptake heterogeneities th MATV
and background.

In this study, only the evolution of the tumor vole as a
whole was characterized, although since the charages
characterized voxel by voxel, local changes inakttmor
activity can be highlighted by the current impletagion of
the method, and may for instance highlight appeszsanf
necrosis or disappearance of high uptake regiotisinvthe
lesions. In further developments, the finer chamazation of
the evolution of tracer uptake heterogeneity withia MATV
will be considered. The use of textural featurealysis to
characterize tracer uptake heterogeneity within MAR PET
images [40] could provide a certain number of add#l
features characterizing local and regional charages could
be combined with those already implemented in geaf the
DSm theory presented here, especially regarding
combination of several sources of information,dgample by
considering two sizes of the estimation cube (3xZxl
5x5x5 for example), or additional textural featuaeslysis.

the
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V. CONCLUSION

thisa novel method based on the change detection pimbias

been proposed to estimate a local response topthdra
oncology. Using the recent paradoxical theory, nindethe

irg;onflict and imprecision between the fused sourdég

the volume evolution between two scan

ange detection approach aims at detecting theortum
evolutions more accurately than independent segdatiens
performed on each PET image separately. In thidysthe
proposed method was validated on realistic simdlateges
and applied to clinical datasets. It was compagsgrably to
threshold-based method applied separately on edidwfup
scans. In the simulated validation, the adaptiveestiold
approach led in both pre and post treatment imsgdésgher
errors than the change detection method. Regartlieg
clinical datasets, whereas no difference was oksem the
case of patients classified as complete responthersdaptive
threshold was much less resilient to the noise aader
uptake heterogeneity than our proposed methodeircéise of
partial responders. For these cases, the propggedach led
to measurements more consistent with the respdates sof
the patients. Further work will consist in applyitige change
detection method on more extensive clinical dasagetthe
context of therapy assessment in oncology, althosgme
limitations of the applicability of the methods kabeen
identified for lesions in areas more impacted bypnatory
motion or other inter-scans registration issuesredeer, the
method will be extended to explicitty model traagstake
heterogeneity evolution using textural features

pmierﬁharacterization and quantification.
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