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ABSTRACT 

Hepatitis C virus (HCV) is a major cause of liver disease. Therapeutic options are limited 

and preventive strategies are absent. Entry is the first step of infection and requires the 

cooperative interaction of several host cell factors. Using a functional RNAi kinase screen 

we identified epidermal growth factor receptor and ephrin receptor A2 as host co-factors 

for HCV entry. Blocking of kinase function by approved inhibitors broadly inhibited HCV 

infection of all major HCV genotypes and viral escape variants in cell culture and an 

animal model in vivo. Receptor tyrosine kinases (RTKs) mediate HCV entry by regulating 

CD81-claudin-1 co-receptor associations and membrane fusion. These results identify 

RTKs as novel HCV entry co-factors and uncover that kinase inhibitors have significant 

antiviral activity. Inhibition of RTK function may constitute a novel approach for 

prevention and treatment of HCV infection. 
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INTRODUCTION 

Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma. Current 

antiviral treatment is limited by resistance, toxicity and high costs
1
. Although the clinical 

development of novel antiviral substances targeting HCV protein processing has been shown to 

improve virological response, toxicity and resistance remain major challenges
2
. Thus, novel 

antiviral preventive and therapeutic strategies are urgently needed. Since HCV entry is required 

for initiation, dissemination and maintenance of viral infection, it is a promising target for 

antiviral therapy
3,4

. 

HCV entry is a multistep process involving several attachment and entry factors
5
. 

Attachment of the virus to the target cell is mediated through binding of HCV envelope 

glycoproteins to glycosaminoglycans
6
. HCV is internalized in a clathrin-dependent endocytic 

process requiring CD81
7
, scavenger receptor type B class I (SR-BI)

8
, claudin-1 (CLDN1)

9
 and 

occludin (OCLN)
10

. The impact of other host factors for HCV entry is poorly understood. 
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RESULTS 

EGFR and EphA2 are host co-factors for HCV entry. Using a siRNA screen we identified a 

network of kinases with functional impact on HCV entry (Supplementary results, 

Supplementary Figs. 1 and 2). To study the relevance of the identified kinases on the HCV life 

cycle, we further validated and characterized the functional impact of epidermal growth factor 

receptor (EGFR) and ephrin receptor A2 (EphA2) on HCV entry. We focused on these kinases 

because they (i) are key components in the identified networks (Supplementary Fig. 2c), (ii) are 

highly expressed in human liver (Supplementary Table 2) and (iii) their kinase function is 

inhibited by clinically approved protein kinase inhibitors (PKIs)
11-13

 allowing us to explore the 

potential of these molecules as therapeutic targets. 

Using individual siRNAs we first confirmed that silencing of mRNAs reduced EGFR and 

EphA2 mRNA and protein expression (Fig. 1a,b and Supplementary Fig. 3a,b). Inhibition of 

infection with cell culture-derived HCV (HCVcc) in silenced cells demonstrated that both EGFR 

and EphA2 are important for initiation of a productive infection (Fig. 1c and Supplementary 

Fig. 3c). Silencing of kinase expression inhibited the entry of HCV pseudoparticles (HCVpp) 

derived from major genotypes including highly diverse HCV strains
14

 (Fig. 1d and 

Supplementary Fig. 3d). Effects of silencing of endogenous EGFR or EphA2 on HCV infection 

were rescued by RNAi-resistant ectopic expression of wild-type EGFR or EphA2 (Fig. 1e,f and 

Supplementary Fig. 3e,f). These results largely excluded the possibility of off-target effects 

causing the observed phenotype. Furthermore, silencing and rescue experiments using well 

characterized lentiviral vectors expressing EGFR-specific shRNA unambiguously and 

specifically demonstrated a key role for EGFR in HCV entry into primary human hepatocytes 

(PHH) (Fig. 1f). The functional impact of EGFR as a co-factor for HCV entry was further 
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confirmed by expressing human EGFR in mouse hepatoma cell lines engineered to express the 

four human entry factors CD81, SR-BI, CLDN1 and OCLN (AML12 4R, Supplementary 

Fig. 4). Cell surface expression of human EGFR in AML12 4R cells markedly increased HCVpp 

entry into mouse cells (Supplementary Fig. 4). 

 

RTK kinase function is important for HCV entry. The functional relevance of the identified 

kinases and their kinase function for HCV entry and infection was further studied using PKIs. 

Erlotinib (an EGFR inhibitor) and Dasatinib (an EphA2 inhibitor) inhibited HCV infection in a 

dose-dependent manner whilst having no detectable effect on replication of the corresponding 

subgenomic replicon (Fig. 2a–c and Supplementary Fig. 5a–c). The formally calculated IC50 

values for Erlotinib and Dasatinib to inhibit HCVpp entry (Erlotinib 0.45 ± 0.09 µM, Dasatinib 

0.53 ± 0.02 µM) and HCVcc infection (Erlotinib 0.53 ± 0.08 µM, Dasatinib 0.50 ± 0.30 µM) of 

Huh7.5.1 cells were comparable (Fig. 2a and Supplementary Fig. 5a,b). These data suggest that 

RTKs inhibited by Erlotinib and Dasatinib predominantly play a role during the HCV entry 

process. 

To confirm that the inhibitors reduced HCV entry into cells more closely resembling 

HCV target cells in vivo, we investigated their effect(s) on HCVpp entry into polarized HepG2-

CD81 cells
15

 and PHH. PKIs markedly and significantly (P<0.005) inhibited HCVpp entry into 

polarized HepG2-CD81 cells (Fig. 2c and Supplementary Fig. 5d) and PHH (Fig. 2d and 

Supplementary Fig. 5e). Similar results were obtained for infection of PHH with HCVcc and 

serum-derived HCV (Fig. 3h,i and Supplementary Fig. 5f) confirming the relevance of the 

kinases as auxiliary host cell co-factors in models which most closely mimic in vivo infection. 
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A specific effect of Erlotinib on EGFR-mediated HCV entry was further confirmed by the 

investigation of additional EGFR inhibitors: EGFR-inhibitors Gefitinib and Lapatinib markedly 

inhibited HCVpp entry and HCVcc infection in PHH and Huh7.5.1 similar to Erlotinib 

(Fig. 2e,f). The specific action of PKIs on RTKs as HCV entry factors was further corroborated 

by absent effects on MLV and measles virus (Fig. 2c and Supplementary Fig. 10) and 

silencing/rescue experiments: PKIs specifically reversed rescue of HCV entry when added to 

silenced Huh7.5.1 cells expressing EGFR and EphA2 in trans (data not shown). Taken together, 

these results suggest that the RTK kinase function is important for HCV entry. 

 

RTK-specific ligands and antibodies modulate HCV entry. To investigate the functional role 

of RTK ligand binding domains for viral entry, we assessed virus entry in the presence of RTK-

specific ligands and antibodies. Epidermal growth factor (EGF) and transforming growth factor 

alpha (TGF-α) are well characterized EGFR ligands, where ligand binding promotes receptor 

homodimerization and subsequent phosphorylation of the intracytoplasmic kinase domain
16

. To 

confirm the biological activity of EGFR-specific reagents in the target cells of our HCV model 

systems, we first studied their effect on EGFR phosphorylation. Pre-incubation of PHH with EGF 

markedly increased basal levels of EGFR phosphorylation (Fig. 3a, upper and middle panel). In 

contrast, EGF had no effect on the phosphorylation of an unrelated kinase. EGF-induced 

enhancement of basal EGFR phosphorylation was markedly inhibited by Erlotinib and an EGFR-

specific antibody (Fig. 3a, lower panel) demonstrating their specific effect(s) on EGFR 

phosphorylation and activation. 

To elucidate the role of the EGFR ligand domain, we assessed the effect of EGFR ligands 

on HCV entry. Binding of EGF and TGF- markedly enhanced entry of HCVpp into serum-
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starved Huh7.5.1, HepG2-CD81 and PHH (Fig. 3b,c) whereas TGF- had no effect (data not 

shown). These data suggest that direct interaction of EGF or TGF- with the EGFR ligand-

binding domain modulates HCV entry. The higher affinity of EGF for EGFR on hepatocytes
17

 

may explain the differences between EGF and TGF- in enhancing HCVpp entry. Erlotinib at 

doses used in HCV entry inhibition experiments reversed the enhancing effect(s) of EGF 

(Fig. 3d) and TGF-α (data not shown) on HCV entry. These data confirm that Erlotinib inhibits 

HCV entry by modulating EGFR activity. 

We screened a large panel of EGFR-specific antibodies and identified a monoclonal 

human EGFR-specific antibody that bound to PHH (Fig. 3e) and dose-dependently inhibited 

HCV entry (Fig. 3f) with an IC50 value of 1.82 ± 0.3 μg mL
–1

. The antibody inhibited EGFR 

phosphorylation (Fig. 3a) and reversed the EGF-induced enhancement of HCV entry (Fig. 3g). 

Ligand-induced enhancement and EGFR-specific antibody-mediated inhibition of HCV entry 

were also observed for infection of PHH with HCVcc (Fig. 3h) and serum-derived HCV 

(Fig. 3i). Taken together, these results suggest that the EGFR ligand domain plays a crucial role 

in HCV entry. Similarly, EphA2 ligands and EphA2-specific antibodies modulated HCV entry 

confirming a functional relevance of the EphA2 ligand-binding domain for HCV entry 

(Supplementary results and Supplementary Fig. 6). 

 

RTKs promote CD81-CLDN1 associations and membrane fusion. To understand the 

mechanistic role of EGFR and EphA2 in HCV entry, we first investigated whether the RTKs 

regulate HCV entry factor expression. Silencing RTK expression with specific siRNAs or 

inhibiting RTK function with PKIs had no significant effect on HCV entry factor expression 
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(Fig. 4a,b) suggesting that RTKs do not mediate entry by modulating expression levels of the 

known human HCV entry factors. 

Next, we aimed to fine-map the entry step(s) affected by the RTKs. Viral attachment is 

the first step of viral entry. To ascertain whether PKI-inhibition of RTK function modulates HCV 

binding we used a surrogate model that measures association of the recombinant soluble form of 

HCV envelope glycoprotein E2 with cells
18

. RTK-specific antibodies or silencing RTK 

expression by siRNAs had no significant effect on E2 binding to target cells, whereas pre-

incubation with SR-BI-specific antibodies or silencing SR-BI expression markedly reduced E2 

binding (Fig. 4c and Supplementary Fig. 7a). Furthermore, in contrast to CD81
19

 and SR-BI
19

, 

RTKs did not confer cellular E2 binding when expressed on the cell surface of CHO cells (data 

not shown). These data suggest that (i) RTKs are not required for HCV binding and that (ii) 

direct E2-RTK binding is not required for RTK-mediated HCV entry. 

Following viral envelope binding, HCV enters its target cell in a multistep temporal 

process. To identify the time in which the PKIs exert their effect(s), we used a well characterized 

HCV binding/postbinding assay
19-21

. In contrast to heparin (an inhibitor of HCV binding) but 

similarly to CD81- and SR-BI-specific antibodies and Concanamycin A (ConA — an inhibitor of 

endocytosis) PKIs inhibited HCVcc infection when added after virus binding to target cells 

(Fig. 4d). Similar results were obtained for HCVpp entry into PHH after treatment with an 

EGFR-specific antibody (Fig. 4e). These data suggest that the RTKs act at postbinding steps of 

viral entry. 

To further elucidate the entry steps targeted by the RTKs, we performed a kinetic entry 

assay
19,21

 (Supplementary Fig. 7b). Interestingly, the half-maximal times (t1/2) for Erlotinib 

(t1/2=+20 min) and Dasatinib (t1/2=+26 min) to inhibit HCV entry were similar to the half-
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maximal time of a CD81-specific antibody (t1/2=+26 min) (Fig. 4f and Supplementary Fig. 7d). 

Moreover, similar to ConA, PKIs also had an inhibitory effect when added at late times post-

infection. The role of EGFR as a postbinding factor was further confirmed by kinetic assays 

under serum-free conditions. In line with previous reports
22

, HCV entry kinetics are delayed 

under serum-free conditions (Fig. 4g). EGF significantly (P<0.05) reduced the time for HCVcc to 

escape the inhibiting effects of an CD81-specific antibody in serum-starved cells from 44 ± 8 min 

to 27 ± 6 min (mean ± SD of three independent experiments), suggesting that EGF markedly and 

significantly (P<0.05) accelerates the rate of HCV entry (Fig. 4g). In summary, these data 

suggest that EGFR is required for efficient viral entry by modulating early and late steps of 

postbinding events. 

Postbinding steps of HCV entry are mediated by HCV co-entry factors SR-BI, CD81, 

CLDN1 and OCLN. Since PKIs inhibited HCV entry at similar time-points as an CD81-specific 

antibody we investigated whether PKIs interfere with CD81-CLDN1 co-receptor interactions 

using a FRET-based assay
15,23,24

. PKIs significantly (P<0.0005) reduced CD81-CLDN1 FRET in 

polarized HepG2 cells (Fig. 4h and Supplementary Fig. 7e). Similar results were obtained using 

RTK-specific siRNAs (Fig. 4h and Supplementary Fig. 7e) confirming that the observed 

inhibition is RTK-specific and not mediated by off-target effects of the PKIs. These results 

suggest that EGFR and EphA2 regulate the formation of the CD81-CLDN1 co-receptor 

complexes that are essential for HCV entry
23

 and that Erlotinib and Dasatinib inhibit HCV entry 

by interfering with the CD81-CLDN1 co-receptor association(s). 

Since kinetic assays demonstrated that PKIs inhibited late steps of viral entry (Fig. 4f and 

Supplementary Fig. 7d), we investigated the impact of these kinases in a viral glycoprotein-

dependent cell-cell fusion assay
25

. Both PKIs significantly (P<0.05) inhibited membrane fusion 
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of cells expressing glycoproteins derived from genotypes 1a (H77), 1b (Con1) and 2a (J6) 

(Fig. 4i and Supplementary Fig. 7f), whereas the EGFR ligand EGF enhanced membrane fusion 

of cells expressing HCV envelope glycoproteins (Fig. 4i). In contrast, neither Erlotinib nor EGF 

had a marked effect on the membrane fusion of cells expressing measles virus envelope 

glycoproteins. Comparable results were obtained in EGFR and EphA2 silenced cells (Fig. 4i, 

data not shown) confirming a functional role of the RTKs during viral fusion. 

 

Impact of RTKs in cell-cell transmission and viral spread. To investigate the relevance of 

RTK-mediated virus-host interactions for cell-cell transmission and viral spread, we used a cell-

cell transmission assay
26

(Fig. 5a–c). Erlotinib and Dasatinib significantly (P<0.0005) blocked 

HCV cell-cell transmission during short-term co-culture experiments (24 h) (Fig. 5d–f and 

Supplementary Fig. 8a–c). A marked inhibition of cell-cell transmission was also observed 

when EGFR and EphA2 were silenced using specific siRNAs: infection of GFP-positive target 

cells directly correlated with levels of RTK cell surface-expression (Fig. 5g,h and 

Supplementary Fig. 8d,e). Since PKIs markedly inhibited cell-cell transmission, we investigated 

whether Erlotinib and Dasatinib inhibit viral spread in the HCVcc system when added post-

infection during long-term experiments. Both PKIs dose-dependently inhibited viral spread when 

added 48 h post-infection to HCV-infected cells for up to 14 days (Fig. 5f and Supplementary 

Fig. 8c). Cell viability was not affected by long term PKI treatment. A specific decrease in viral 

spread was also observed in cells with silenced RTK expression (Fig. 5i and Supplementary 

Fig. 8f). Taken together, these data demonstrate that PKIs reduce viral spread and suggest an 

important functional role of these RTKs in cell-cell transmission and dissemination. 
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Erlotinib inhibits HCV infection in vivo. To address the in vivo relevance of the identified 

virus-host interactions, we assessed the effect of Erlotinib on HCV infection in vivo in the 

chimeric uPA-SCID mouse model
27-29

. Erlotinib dosing and administration was performed as 

described previously for cancer xenograft models
30

. Erlotinib treatment caused a marked and 

significant (P<0.05) delay in the kinetics of HCV infection (Fig. 6). The median time to reach 

steady-state levels of infection increased from 15 days (placebo group) to 30 days (Erlotinib 

group) (median of pooled data from 6 placebo- and 8 Erlotinib-treated animals). Furthermore, 

Erlotinib treatment decreased steady-state HCV RNA levels 11.4 fold (mean of pooled data from 

6 placebo- and 8 Erlotinib-treated animals; P<0.05). Following discontinuation of treatment, viral 

load reached similar levels as in control animals (Fig. 6). The treatment was well tolerated and 

did not induce any marked changes in safety parameters such as alanine transaminase (ALT), 

albumin or body weight (data not shown). Erlotinib plasma concentrations were similar as 

described previously in preclinical studies of cancer mouse models
30

 (data not shown). Taken 

together, these data support a functional role of EGFR as a co-factor for HCV entry and 

dissemination in vivo and demonstrate that Erlotinib has antiviral activity in vivo. 
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DISCUSSION 

Using RNAi screening we uncovered a network of kinases with functional impact for HCV entry 

and identified EGFR and EphA2 as novel co-factors for HCV entry. The implications of our 

results are two-fold: (i) the identification of kinases as novel HCV entry factors advances our 

knowledge on the molecular mechanisms and cellular requirements of HCV entry and (ii) the 

discovery of PKIs as antivirals defines a novel strategy for prevention and treatment of HCV 

infection. 

EGFR is a RTK that regulates a number of key processes, including cell proliferation, 

survival, differentiation during development, tissue homeostasis, and tumorigenesis
31

. EphA2 

mediates cell positioning, cell morphology, polarity and motility
32

. Since PKIs had no effect on 

HepG2 polarization (Supplementary Fig. 9), it is unlikely that changes in polarity explain their 

mode of action. Our results rather highlight a role of these RTKs in the formation of HCV entry 

factor complexes and membrane fusion. EGF accelerated HCV entry suggesting that EGFR plays 

a key role in the HCV entry process allowing HCV to efficiently enter its target cell (Fig. 4g). 

Applying FRET proximity analysis we found that inhibition of EGFR or EphA2 activity reduced 

CD81-CLDN1 association(s) (Fig. 4h and Supplementary Fig. 7e). Since EGFR activation has 

been reported to promote CLDN1 redistribution
33,34

 and CD81 or CLDN1 cell surface expression 

levels were not modulated by EGFR silencing (Fig. 4a,b), we hypothesize that EGFR activation 

modulates CLDN1 and/or CD81 trafficking that are necessary to form receptor complexes. 

The observations that Erlotinib inhibited late steps in the kinetic infection assay (Fig. 4f 

and Supplementary Fig. 7d) and HCV cell fusion assay25 suggest a functional role for EGFR in 

pH-dependent fusion of viral and host cell membranes25,35. 
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Functional experiments using specific ligands, antibodies and kinase inhibitors 

demonstrate that both ligand-binding and kinase domains are required for EGFR to promote 

HCV entry. EGFR ligands enhance HCV infection and an EGFR-specific antibody inhibits HCV 

infection (Fig. 3). This antibody binds between ligand binding domain III and the autoinhibition 

(tether) domain IV of the extracellular part of EGFR
36

 and prevents EGF and TGF-α-induced 

receptor dimerization
37

. Thus, it is likely that the domain and/or receptor dimerization targeted by 

the antibody are required for HCV entry. Taken together, these findings support a model in which 

EGFR-ligand binding activates EGFR kinase function that is required for HCV entry. 

Similar results were obtained for EphA2 where antibodies specific for the extracellular 

domain of EphA2 inhibited HCV entry into PHH and EphA2 surrogate ligands decreased viral 

entry (Supplementary Fig. 6). Since addition of surrogate ligands only reduced HCV entry to a 

small extent it is conceivable that the effect of EphA2 on HCV entry could be mediated as well in 

a ligand-independent and ligand-dependent manner. This is consistent with other well 

characterized EphA2 functions such as cell invasion and migration
38

. 

Since functional and mechanistic studies demonstrate that the expression and activity of 

EGFR and EphA2 appear to be involved in similar entry steps, it is likely that both RTKs are part 

of the same entry regulatory pathway. Since Erlotinib and EGF modulated entry of HCVpp but 

showed minimal effects on other viruses studied (Supplementary Fig. 10), it is likely that the 

uncovered molecular mechanisms on co-receptor interactions are most relevant for HCV entry. 

Finally, our results have important clinical implications for the prevention and treatment 

of HCV infection as they demonstrate for the first time that clinically licensed PKIs have 

significant antiviral activity in vitro and in vivo. Furthermore, the identification of a RTK-specific 

antibody inhibiting HCV infection (Fig. 3) provides a new strategy to target RTKs to prevent and 
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treat HCV infection. Taken together, these results demonstrate that small molecules or antibodies 

targeting RTKs as HCV entry factors hold promise as a novel class of antivirals and may offer a 

perspective for urgently needed antiviral strategies for prevention and treatment of resistant HCV 

infection. 
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FIGURE LEGENDS 

Fig. 1. EGFR is a co-factor for HCV entry. (a,b) Silencing EGFR expression in HCV-

permissive cells. (a) EGFR mRNA (qRT-PCR analysis) and (b) protein expression (Western 

blot) in Huh7.5.1 cells transfected with EGFR-specific individual siRNAs (si1–4). Silencing of 

CD81 mRNA expression by CD81-specific siRNA served as control. EGFR mRNA (relative to 

GAPDH mRNA) and protein expression compared to cells transfected with control siRNA 

(siCTRL) is shown. (c,d) Inhibition of HCV infection and entry in cells with silenced EGFR 

expression. (c) HCVcc infection in Huh7.5.1 cells transfected with individual siRNAs shown in 

panels a,b. siCTRL and CD81-specific siRNA served as internal controls. Data are expressed as 

percentage HCVcc infection relative to siCTRL-transfected cells. (d) Entry of HCVpp containing 

envelope glycoproteins of various isolates
14,39

 in Huh7.5.1 cells transfected with si4. VSV and 

measles virus pp entry or cells transfected with CD81 siRNA served as controls. Data are 

expressed as percentage pp entry relative to siCTRL-transfected cells. (e,f) Rescue of HCV entry 

in cells with silenced EGFR expression by exogenous EGFR. (e) HCVpp entry and EGFR 

protein expression in Huh7.5.1 cells co-transfected with EGFR-specific individual si3 and a 

cDNA encoding for RNAi-resistant EGFR (pEGFR-WT)
40

. (f) HCVpp entry and EGFR protein 

expression in PHH co-transduced with lentiviruses expressing shEGFR and wild-type EGFR 

cDNA (EGFR-WT)
40

. Protein expression was quantified using Image Quant analysis of Western 

blots. Data are expressed as percentage HCVpp entry relative to CTRL cells or as percentage 

EGFR expression normalized for ß-actin expression. *** P<0.0005. 
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Fig. 2. Inhibition of EGFR activation by kinase inhibitors reduces HCV entry and infection. 

(a) Effect of Erlotinib on HCV entry and infection in Huh7.5.1 cells. HCVcc (Luc-Jc1; J6-JFH1) 

infection and HCVpp (J6) entry in Huh7.5.1 cells pre-incubated with indicated concentrations of 

Erlotinib are shown. Data are expressed as percentage HCVcc infection or HCVpp entry relative 

to solvent-treated control cells (means ± SEM). (b) Effect of Erlotinib on HCV replication. 

Northern blot analysis of HCV RNA and GAPDH mRNA in Huh7.5 cells electroporated with 

RNA from subgenomic HCV JFH1 replicon and incubated with solvent CTRL, HCV protease 

inhibitor BILN-2061 or Erlotinib (ERL) is shown. Analysis of HCV RNA in cells transfected 

with replication incompetent HCV RNA (GND, Δ) served as negative control. (c) Effect of 

Erlotinib on HCVpp and MLVpp entry in HepG2-CD81 cells. Pseudovirus entry into non-

polarized and polarized HepG2-CD81 cells (generated as described
15

) pre-incubated with 

Erlotinib (10 µM) is shown. (d) Effect of Erlotinib on HCVpp entry into PHH. HCVpp entry in 

PHH pre-incubated with Erlotinib is shown relative to entry into solvent-treated control cells. 

IC50 value is expressed as median of three independent experiments ± standard error of the 

median. (e,f) Effect of PKIs on HCV entry and infection in PHH and Huh7.5.1 cells. (e) HCVpp 

entry into PHH and (f) HCVcc infection in Huh7.5.1 pre-incubated with 1 µM Erlotinib (ERL), 

Gefitinib (GEF), Lapatinib (LAP), Blebbistatin (BLEB) or Wortmannin (WORT) is shown. Cell 

viability was assessed using MTT assay. 

 

Fig. 3. Modulation of HCV entry by EGFR ligands and an EGFR-specific antibody. (a) 

Modulation of EGFR phosphorylation by EGF, Erlotinib and EGFR-specific antibody. EGFR 

activation was assessed in PHH incubated with the indicated compounds using the Human 

Phospho-RTK Array Kit. Phospho-tyrosine (P-Tyr) and phosphorylation of an unrelated kinase 
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(MERTK) served as internal positive and negative controls. (b,c) Effect of EGFR ligands on 

HCVpp entry. HCVpp entry (HCV-J) into serum-starved Huh7.5.1, polarized HepG2-CD81 and 

PHH in the presence of EGF (b) and TGF- (c) is shown. (d) Reversion of EGF mediated-

enhancement of HCVpp entry by Erlotinib. HCVpp entry into Huh7.5.1, polarized HepG2-CD81 

and PHH incubated with EGF or EGF and Erlotinib is shown. (e) Flow cytometric analysis of 

non-permeabilized PHH binding EGFR-specific or control monoclonal antibody (mAb). (f) 

Inhibition of HCV entry by EGFR-specific mAb. HCVpp entry into PHH pre-incubated with 

EGFR-specific or control mAb is shown. Viability of cells was assessed using MTT assay. IC50 

value is expressed as median of three independent experiments ± standard error of the median. 

(g) Reversion of EGF-induced enhancement of HCV entry by an EGFR-specific antibody. 

HCVpp entry into PHH pre-incubated with EGF and EGFR-specific mAb. (h,i) Effect of EGF, 

EGFR-specific mAb and Erlotinib on HCV infection in PHH. Intracellular HCV RNA in PHH 

infected with (h) HCVcc or (i) serum-derived HCV (one representative experiment) was 

measured by qRT-PCR. **, P<0.005; ***, P<0.0005. Unless otherwise indicated: EGFR-specific 

and control mAbs: 10 µg mL
–1

, EGF: 1 µg mL
–1

, ERL= Erlotinib: 10 µM. 

 

Fig. 4. EGFR mediates HCV entry at postbinding steps by promoting CD81-CLDN1 co-

receptor interactions and membrane fusion. (a,b) HCV entry factor expression after RTK 

silencing or PKI treatment. (a) Cell surface expression of entry factors in EGFR or EphA2-

silenced Huh7.5.1 cells assessed by flow cytometry. SR-BI silencing served as positive control. 

(b) Western blot analysis of HCV entry factor expression in PKI- or siRNA-treated Huh7.5.1 

cells. (c–e) Effect of Erlotinib and EGFR-specific mAb on HCV binding and postbinding steps. 

(c) Flow cytometric analysis of HCV glycoprotein sE2-binding to Huh7.5.1 cells incubated with 
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EGFR-specific mAb or transfected with siEGFR. SR-BI-specific reagents served as positive 

controls. (d) HCVcc infection of Huh7.5.1 cells and (e) HCVpp entry into PHH after inhibition 

of binding and postbinding steps by the indicated compounds (EGFR-specific mAbs: 10 and 50 

µg mL
–1

) (f,g) Effect of Erlotinib and EGF on HCV entry kinetics. Time-course of HCVcc 

infection of Huh7.5.1 cells following incubation with (f) Erlotinib or indicated compounds or (g) 

EGF at different time-points during infection (Supplementary Methods). (h) Effect of Erlotinib 

and EGFR silencing on CD81-CLDN1 association(s). FRET of CD81-CLDN1 co-receptor 

associations in HepG2-CD81 cells incubated with Erlotinib or EGFR-specific siRNA (means ± 

SEM). (i) Role of EGFR in viral membrane fusion. Viral glycoprotein-dependent fusion of 293T 

with Huh7 cells incubated with EGF, Erlotinib or EGFR-specific siRNA was assessed as 

described
25

. *, P<0.05; ***, P<0.0005. Unless otherwise indicated: EGFR-specific and control 

mAb: 10 µg mL
–1

, EGF: 1 µg mL
–1

, Erlotinib: 10 µM. 

 

Fig. 5. Functional role of EGFR in viral cell-cell transmission and spread. (a) Experimental 

set-up. HCV producer cells (Pi = HCV RNA-electroporated Huh7.5.1) co-cultivated with non-

infected target cells (T = GFP-expressing Huh7.5)
26

 were incubated with siEGFR or PKIs. Cell-

free HCV transmission was blocked by an E2-neutralizing antibody (25 µg mL
–1

)
26

. HCV-

infected target cells (Ti = GFP+, HCV NS5A+) were quantified by flow cytometry
26

. (b) 

Immunofluorescence analysis of Pi, T and Ti cells stained with an NS5A-specific antibody. (c) 

Infectivity of Pi-T cell co-cultivation supernatants (cell-free HCV transmission). (d,e) 

Quantification of infected Ti cells during Erlotinib (ERL, 10 µM) treatment in the absence (total 

transmission) and presence (cell-cell transmission) of E2-specific antibody by flow cytometry. (f) 

Effect of PKIs on viral spread. Long-term HCVcc infection of Huh7.5.1 cells incubated with 
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Erlotinib 48 h post-infection at the indicated concentrations. Medium with solvent (CTRL) or 

PKI was replenished every 2nd day. Cell viability was assessed using MTT test. (g) EGFR 

expression in target cells with silenced EGFR expression. Cell surface EGFR expression was 

analyzed by flow cytometry and target cells were divided in three groups displaying high, 

medium and low EGFR expression. (h) HCV infection in GFP-positive target cells expressing 

EGFR at high, medium and low levels (see panel g) assessed as described above. (i) Effect of 

EGFR silencing on viral spread. Long-term analysis of HCVcc infection in Huh7.5.1 cells 

transfected with EGFR-specific or control siRNA 24 h post-infection. Cell viability was assessed 

using MTT test.*, P<0.05; **, P<0.005; ***, P<0.0005. 

 

Fig. 6. Erlotinib modulates HCV kinetics and inhibits infection in vivo. Chimeric uPA/SCID 

mice repopulated with PHH
27,28

 were treated with Erlotinib or placebo during infection with 

patient-derived HCV as indicated by the bar and dashed lines. Erlotinib administration and 

dosage were performed as previously described for xenograft tumor mouse models
30

. Serum 

HCV load was analyzed at the time points indicated. Results are shown as median viral load of 

Erlotinib- (n=4) or placebo-treated control mice (n=3). (a,b) Two independent studies (with a 

total of 2 x 7 mice, respectively) are shown. (c) Pooled data of results shown in a,b (n=14); *, 

P<0.05. 
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METHODS 

For more detailed Methods see Supplementary Methods. Unless otherwise stated, data are 

presented as means ± SD of at least three independent experiments performed in duplicate or 

triplicate. 

 

Infection of cell lines and primary human hepatocytes with HCVpp, HCVcc and serum-

derived HCV. Pseudotyped particles (pp) expressing envelope glycoproteins from different 

HCV strains (Supplementary Methods), VSV, MLV, influenza, measles and endogenous feline 

leukemia virus (RD114) and HCVcc were generated as described
14,15,21,41-45

. Infection of Huh7, 

Huh7.5.1 cells and PHH with HCVpp, HCVcc (TCID50 10
3
-10

4
 mL

–1
 for Huh7.5.1 experiments, 

TCID50 10
5
-10

6
 mL

–1
 for PHH experiments) and serum-derived HCV (genotype 1b)

46
 was 

performed as described
14,19,21,47

. Polarization of HepG2-CD81, determination of TJ integrity and 

cell polarity index were performed, measured and calculated as previously described
15

. Gene 

silencing was performed 3 d prior to infection as described for the RNAi screen (Supplementary 

Methods). Inhibitors, antibodies or ligands were added 1 h prior to HCVpp or HCVcc infection 

and during infection unless otherwise stated. Experiments with RTK ligands were conducted with 

serum-starved cells. Unless otherwise stated, HCV entry and infection was assessed by luciferase 

reporter gene expression. 

 

Analysis of HCV replication. Electroporation of RNA derived from plasmid pSGR-JFH1 or 

replication-deficient mutant pSGR-JFH1/GND () was performed as described
42

. Four hours 

after electroporation, cells were incubated with inhibitors. Total RNA was isolated and HCV 

RNA was analyzed by Northern blot as described
48

. 
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Rescue of gene silencing. To assess whether silencing of endogenous RTKs could be rescued by 

expression of RNAi-resistant RTK expression, 4 x 10
6
 Huh7.5.1 cells were co-electroporated 

with 10 µg siRNA targeting the 3’UTR of the endogenous cellular mRNA (siEGFR si3, 

siEphA2 si4, HS-CDC2_14) and a RTK encoding plasmid expressing siRNA-resistant mRNA 

containing a deletion of the 3’UTR (pEGFR, pEphA2, pCDC2)
40,49,50

. 2.5 x 10
4 

 cells cm
–
² were 

seeded 72 h prior to infection with HCVcc (Luc-Jc1; genotype 2a/2a) or HCVpp (H77; 

genotype 1a). EGFR rescue in PHH was performed by co-transduction with lentiviruses 

expressing shEGFR
40

 and/or EGFR
40

 72 h prior to infection with HCVpp (HCV-J; genotype 1b). 

 

Analysis of EGFR phosphorylation in PHH and Huh7.5.1 cells. EGFR phosphorylation was 

assessed in cell lysates using the Human Phospho-RTK Array Kit (R&D Systems Inc.), where 

RTKs are captured by antibodies spotted on a nitrocellulose membrane. Levels of phospho-RTK 

were assessed using an HRP-conjugated pan phospho-tyrosine-specific antibody followed by 

chemiluminescence detection as described by the manufacturer. Phospho-tyrosine (P-Tyr) and 

phosphorylation of the unrelated c-mer proto-oncogene tyrosine kinase (MERTK) served as 

internal positive and negative controls. PHH were incubated in EGF-free William’s E medium. 

Huh7.5.1 cells were serum-starved overnight prior to addition of ligands, inhibitors and 

antibodies. 

 

Analysis of HCV binding, postbinding and entry kinetics. HCV glycoprotein E2 binding to 

cells was performed as described
18

 using polyclonal SR-BI
21

- or monoclonal EGFR-specific 

antibodies (100 µg mL
–1

) or SR-BI- or EphA2-specific serum (1:100) and corresponding 
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controls. HCV postbinding and entry kinetics were performed as described
19,21

 (Supplementary 

Methods and Supplementary Fig. 7). 

 

Receptor association using fluorescence resonance energy transfer (FRET). Homotypic and 

heterotypic interactions of CD81 and CLDN1 were analyzed as described
15,23,24

. The data from 

10 cells were normalized and the localized expression calculated. 

 

Membrane fusion. HCV membrane fusion during viral entry was investigated using a cell-cell 

fusion assay as described
25

. 

 

Cell-cell transmission of HCV. Cell-cell transmission of HCV was assessed as described
26

. 

Briefly, producer Huh7.5.1 cells were electroporated with HCV Jc1 RNA and co-cultured with 

gene-silenced or naïve target Huh7.5-GFP cells in the presence or absence of PKIs (10 µM). An 

HCV E2-neutralizing antibody (25 µg mL
–1

) was added to block cell-free transmission
26

. After 

24 h of co-culture cells were fixed with PFA, stained with a NS5A-specific antibody (0.1 µg mL
–

1
), and analyzed by flow cytometry

26
. Total and cell-cell transmission were defined as percentage 

HCV infection of Huh7.5-GFP+ target cells (Ti) in the absence (total transmission) or presence 

(cell-cell transmission) of an HCV E2-specific antibody. 

 

HCV infection and treatment of chimeric uPA/SCID mice. Chimeric mice repopulated with 

PHH
27,28

 were infected with serum-derived HCV (genotype 2a, 1 x 10
4
 HCV IU per mouse) via 

the orbital vein during isofluoran anesthetization (PhoenixBio Inc., Japan). Erlotinib 

administration and dosage (50 mg kg
–1

 day
–1

) were performed as previously described in 
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xenograft tumor mouse models
30

. Four mice received 50 mg kg
–1

 day
–1

 Erlotinib and three mice 

placebo (p. o.) from day –10 until day 20 of infection in two independent experiments (total 2 x 7 

animals). Plasma HCV RNA, ALT, albumin and Erlotinib were monitored as described
28,51

. All 

experimental procedures used to treat live animals in this study had been approved by the Animal 

Ethics Committee of PhoenixBio in accordance with the Japanese legislation. 

 

Toxicity assays. Cytotoxic effects on cells were assessed in triplicates by analyzing the ability to 

metabolize 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
52

. Formazan 

crystals were solubilized 5 h after adding MTT (0.6 mg mL
–1

) as described
52

. 
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