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Abstract

An important question in the literature focusing on motor control is to determine which laws drive biological limb
movements. This question has prompted numerous investigations analyzing arm movements in both humans and
monkeys. Many theories assume that among all possible movements the one actually performed satisfies an optimality
criterion. In the framework of optimal control theory, a first approach is to choose a cost function and test whether the
proposed model fits with experimental data. A second approach (generally considered as the more difficult) is to infer the
cost function from behavioral data. The cost proposed here includes a term called the absolute work of forces, reflecting the
mechanical energy expenditure. Contrary to most investigations studying optimality principles of arm movements, this
model has the particularity of using a cost function that is not smooth. First, a mathematical theory related to both direct
and inverse optimal control approaches is presented. The first theoretical result is the Inactivation Principle, according to
which minimizing a term similar to the absolute work implies simultaneous inactivation of agonistic and antagonistic
muscles acting on a single joint, near the time of peak velocity. The second theoretical result is that, conversely, the
presence of non-smoothness in the cost function is a necessary condition for the existence of such inactivation. Second,
during an experimental study, participants were asked to perform fast vertical arm movements with one, two, and three
degrees of freedom. Observed trajectories, velocity profiles, and final postures were accurately simulated by the model. In
accordance, electromyographic signals showed brief simultaneous inactivation of opposing muscles during movements.
Thus, assuming that human movements are optimal with respect to a certain integral cost, the minimization of an absolute-
work-like cost is supported by experimental observations. Such types of optimality criteria may be applied to a large range
of biological movements.
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Introduction

In order to perform accurate goal-directed movements, the

Central Nervous System (CNS) has to compute neural commands

according to the initial state of the body, the location of the target,

and the external forces acting on the limbs. Arm movement planning

requires solving redundancy problems related to angular displace-

ments, joint torques, muscular patterns, and neural inputs [1].

Experimental studies reported stereotypical kinematic features

during pointing and reaching arm movements (e.g., quasi-straight

finger paths, bell-shaped finger velocity profiles [2–4]). These

features were found to be robust despite changes in mass, initial/

final positions, amplitudes, and speeds of displacements [5–9].

Therefore, many studies have attempted to identify the

principles of motion planning and control, hypothesizing that

movements were optimal with respect to some criteria. The

present article addresses the question whether motor planning is

optimal according to an identifiable criterion.

A promising approach to answer this question, called inverse

optimal control, is to record experimental data and try to infer a

cost function with regard to which the observed behavior is

optimal [10]. In the theory of linear-quadratic control, the

question of which quadratic cost is minimized in order to control

a linear system along certain trajectories was already raised by R.

Kalman [11]. Some methods allowed deducing cost functions

from optimal behavior in system and control theory (linear matrix

inequalities, [12]) and in Markov decision processes (inverse

reinforcement learning, [13]). In the field of sensorimotor control

and learning, some authors suggested that motor learning results

from the optimization of some ‘‘loss function’’ related to the task

(e.g., pointing accuracy) providing, therefore, a technique allowing

to measure such function from experimental data [14].

Nevertheless, in most optimal control studies focusing on arm

movements, a cost function is chosen and used in a mathematical

model to check its validity a posteriori by comparing the theoretical

predictions to the experimental observations.
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Kinematic models include minimum hand acceleration [15]

and minimum hand jerk criteria [16]. These models produce

horizontal arm movements that globally fit well with experimental

data, providing smooth symmetric velocity profiles and straight

trajectories in space. Dynamic models include minimum torque-

change [17] and minimum commanded torque-change [18]

criteria. They also accurately reproduce certain types of

movements (point-to-point and via-point movements performed

in the horizontal plane) but in several cases provide non-realistic

double-peaked speed profiles (see for instance Figure 11 in [19]).

In the Riemannian geometry framework, a model used geodesics

to separately determine the geometrical and temporal movement

features, allowing therefore a unification of previous computa-

tional models [19]. Specifically, the geodesic model accurately

predicts the spatiotemporal features of three dimensional arm

movements. However it results in hand paths that are excessively

curved for planar movements. Additional criteria have also been

considered, such as energy-like criteria [20–25] and effort related

criteria [26], which minimize the peak value of the work, the

metabolic energy expenditure, or the amount of neural control

signals necessary to drive the arm. These models quantitatively

reproduce some specific features of reaching and grasping, such as

trajectories, velocity profiles, or final postures. Stochastic models,

which are grounded on the hypothesis that noise in the nervous

system corrupts command signals, have also been proposed. The

minimum variance model was aimed at minimizing endpoint

errors and provides not only accurate simulated trajectories of

both eye saccades and arm pointing movements in the horizontal

plane, but also the speed-accuracy trade-off described by Fitt’s law

[27]. In the optimal feedback control theory, noise is assumed to

induce movement inaccuracy. If errors interfere with task goals,

then the controller corrects deviations from the average trajectory.

Otherwise the errors are ignored and, thus, variability in task-

irrelevant dimensions is allowed [28–30].

Despite extensive literature concerning direct optimal control of

arm movements, the hypotheses seem too restrictive in some

models. For instance, in several models [19,26], the static (gravity-

related) and dynamic (speed-related) torques are calculated

separately; therefore their predictions are independent from the

gravity field. This assumption partly relies on the physiological

observations that muscle activity patterns show two components: a

tonic one (gravity-related) and a phasic one (speed-related) [31,32].

Nevertheless, some authors reported difficulties in solving optimal

control problems while taking into account gravitational forces in

the optimization process [33,34]. Thus, this assumption was also

aimed at simplifying computations. Furthermore, the models

previously cited are generally not consistent with the observation

that the kinematics of arm movements performed in the sagittal

plane depends on the direction with respect to gravity (i.e., upward

versus downward movements) [35–38] whereas such a directional

difference is significantly attenuated in microgravity [39].

A possible explanation of these findings would be that the CNS

uses the gravity to move the limbs efficiently, rather than simply

offset it at each instant. This idea guided the development of the

theoretical model presented here. During a movement, the

energetic consumption is related to the work of muscular forces.

However, work is a signed physical quantity that may cancel itself

out, even though both active and resistive forces consume energy in

muscles. Therefore, work has to be always counted positive in order

to express the energy expenditure of a movement: this is the absolute

work of forces. The problem of minimizing this absolute work was

never solved previously, despite its apparent simplicity and its

potential interest for neurophysiologists. A reason might be the

mathematical difficulty due to the non-differentiability of the cost

function (induced by the absolute value function). Thus, while most

existing models deal with smooth cost functions (i.e., functions that

have continuous derivatives up to some desired order), this study

relies on this non-smoothness property. The cost chosen here

includes two terms: the first represents the absolute work and the

second is proportional to the integral of the squared acceleration.

In this article, two theoretical results are reported. Firstly, an

‘‘Inactivation Principle’’ states that minimizing a cost similar to the

absolute work implies the presence of simultaneous inactivation of

both agonistic and antagonistic muscles acting on a joint during

fast movements. Secondly, a reciprocal result is that the presence

of such inactivation along optimal trajectories implies the non-

smoothness of the cost function. Therefore, by using transversality

arguments from Thom’s Differential Topology [40], Pontryagin’s

Maximum Principle [41], and Non-smooth Analysis [42], an

equivalence between the non-smoothness of the cost function and

the presence of simultaneous inactivation of both agonistic and

antagonistic muscles is established. The proposed model permits to

simulate accurately the kinematics of fast vertical arm movements

with one, two, and three degrees of freedom. Moreover,

experimental observations actually show simultaneous silent

periods on the electromyographic (EMG) signals of opposing

muscles during fast arm movements.

Results

The main results of this study are presented in the next two

subsections. The theoretical analysis is exposed in the first

subsection. In order to check the model, features of human arm

movements were measured and are compared with the model

predictions in the second subsection.

Theoretical Analysis
The current subsection summarizes the mathematical theory

which is more fully presented in the Materials and Methods

Section. The reader who may not be interested in the full

mathematical development of the model may read this subsection

only, as a general survey.

Control systems. The mechanical systems of articulated

segments considered here move in the gravity field and are

Author Summary

When performing reaching and grasping movements, the
brain has to choose one trajectory among an infinite set of
possibilities. Nevertheless, because human and animal
movements provide highly stereotyped features, motor
strategies used by the brain were assumed to be optimal
according to certain optimality criteria. In this study, we
propose a theoretical model for motor planning of arm
movements that minimizes a compromise between the
absolute work exerted by the muscles and the integral of
the squared acceleration. We demonstrate that under
these assumptions agonistic and antagonistic muscles are
inactivated during overlapping periods of time for quick
enough movements. Moreover, it is shown that only this
type of criterion can predict these inactivation periods.
Finally, experimental evidence is in agreement with the
predictions of the model. Indeed, we report the existence
of simultaneous inactivation of opposing muscles during
fast vertical arm movements. Therefore, this study
suggests that biological movements partly optimize the
energy expenditure, integrating both inertial and gravita-
tional forces during the motor planning process.

The Inactivation Principle
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controlled by external forces produced by muscles. In practice,

vertical arm movements are considered with one, two, and three

degrees of freedom (denoted by 1-dof, 2-dof, and 3-dof,

respectively).

The equation describing a fully-actuated mechanical system (S)

has the general form:

Sð Þ€xx~w x, _xx,uð Þ, ð1Þ

where the control u (the forces or torques) acts on the acceleration

vector of generalized coordinates €xx, with at least as many control

variables (ui)i = 1..m as the number n of degrees of freedom of the

system. When considering agonistic-antagonistic pairs of muscles,

it will happen that m.n, precisely m = 2n, i.e., one agonistic and

one antagonistic muscle for each degree of freedom.

However, for the sake of simplicity, in the rest of the study, the

assumption will be that m = n which means that the control

variables consist of the net forces or torques acting on each joint.

Moreover, we assume that:

N x belongs to Rn (or to a more general object: a n-dimensional

differentiable manifold).

N u belongs to a subset U of Rm with 0 M intU (the notation intU

means the ‘‘interior’’ of the subset U).

Since there are physiological bounds on the forces produced by

muscles, U is a product of intervals of the type:

U~ u{
1 ,uz

1

� �
| . . . |u{

n ,uz
n

�
,

if the system is exactly-fully-actuated, or:

U~ 0,uz
1

� �
| . . . | 0,uz

n

� �
| u{

1 ,0
� �

| . . . | u{
n ,0

� �
,

in the case of a pair of agonistic-antagonistic muscles for each

degree of freedom. In both cases u{
i v0, uz

i w0, i~1, . . . n.

N In the case m = n, Q is smooth, i.e., Q[C? R3n,Rn
� �

, and such

that the Jacobian matrix Lw
Lu

x, _xx,uð Þ is always invertible.

Then, in order to get the general control systems, we set X = (x,

y) = (x, ẋ) and rewrite the system as:

Sð Þ _XX~W X ,uð Þ, X[R2n, u[U5Rn: ð2Þ

Optimal control problem. Here, pointing movements

between two targets are defined by their duration T and by a

pair of initial and final conditions (xs,xt) in the configuration space.

The limb moves from xs to xt, starting and ending with zero

velocity.

Movements are assumed to be optimal with respect to a certain

integral cost of the form:

J uð Þ~
ðT
0

f x,y,uð Þdt: ð3Þ

In the paper f is referred to as the cost function. The term J is

called the integral cost or simply the cost. It is sometimes referred to

as the optimality criterion.

The aim is to find the control u (e.g., the torques) and the

corresponding admissible trajectory X that minimizes the above

integral cost. An efficient way to solve this kind of problem is to use

Pontryagin’s Maximum Principle [41]. A statement of this

principle is provided in the mathematical part of the Materials

and Methods Section.

Remark 1. (1) A simplifying assumption is that the duration T of

the motion is fixed. This is not essential, since: (i) Pontryagin’s

Maximum Principle also allows to deal with free movement

durations: the time T is then determined by a supplementary

condition of optimality, see [41]; (ii) as in [26], one could search

for the time T that leads to a given amount of the integral cost.

Here, the latter approach is better suited because the optimal cost

will be a strictly decreasing function of T (see Theorem 1 in [43]).

(2) Movements are driven in the configuration space, and positions

of targets are defined in practice by their coordinates in the

Cartesian space. There is a one-to-one relationship between target

coordinates and limb configuration for 1-dof and 2-dof planar

movements, but not for 3-dof planar movements. In this case, an

infinity of final postures is compatible within the reach of a target

in task-space. Nevertheless a solution can be found once again by

mean of Pontryagin’s Maximum Principle using transversality

conditions [41]. (3) Since this study focuses on the command of

transient movements, the questions of transition between posture

and movement and stability of the final posture are not addressed.

Nevertheless, it will happen that we consider the dynamics of

muscles in the Mathematical Theory Subsection. In this case, the

controls become motor orders sent by the motoneurons to each

muscle. Thus, the initial and final torques necessary to maintain

the arm at equilibrium are specified in this optimal control

problem.

In order to study the control of movements by means of optimal

control theory, various functions f were proposed previously in the

literature. These functions, such as the famous minimum jerk [16]

and minimum torque change [17], were generally smooth

functions. Nevertheless in our case a non-smooth cost function

appeared more suitable.

For actuated mechanical systems, the physical quantity that

measures energy is the work of forces. However, the work of a

force pulling in the direction arbitrarily defined as positive may

cancel with the work of the force pulling in the opposite direction.

Thus, the absolute work measures the energy expenditure of a

movement. Indeed, the work of both the agonistic and antagonistic

muscles requires a consumption of energy, provided by the

hydrolysis of ATP to ADP, a physiological process taking place in

muscle cells. The Mathematical Theory Subsection gives a precise

definition of the absolute work Aw, which can be expressed as:

Aw uð Þ~
ðT
0

Q y,uð Þdt,

but the function Q is not smooth: it contains some ‘‘absolute values’’

that are Lipschitz-continuous, but non-differentiable at u = 0. For

instance in the 1-dof case, Q(y,u) = |yu| where y is the angular

velocity and u is the net torque. The absolute work term counts the

mechanical energy actually spent to control the system (S).

Such a similar non-smooth cost function has been proposed by

other authors [23] and thus it appears that the non-smoothness of

the cost function arises naturally in motion planning problems. It is

worthy to note that this is not an artificial mathematical

construction.

Remark 2. An intuitive (but different) reason for considering non-

smooth (or even discontinuous) cost functions in optimal control

studies of arm movements could be that the forces acting on a joint

result from distinct muscles.

The Inactivation Principle
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In this study, the integral cost is assumed to have the general

form:

J uð Þ~
ðT
0

eff x,y,uð ÞdtzAw: ð4Þ

This expression represents a compromise between the absolute

work Aw and some other comfort term defined by the function eff . The

terminology comfort term is purposely left vague. For instance

(non-exhaustive list), one may choose the acceleration squared (as

in [15]) or the torque squared (as in [23]) for the function eff .

This additional term is not crucial. One could assume that the

CNS only minimizes the absolute work, but it seems to also

minimize some integral costs accounting for the smoothness or

precision of the movements [15–17,27]. While the definition of the

mechanical energy spent is well established, what should be the

comfort term is more subjective. It may suggest that the motor

system would avoid large accelerations, so as not to expose tendons

and articulations to large jerks.

Here, in all examples and simulations, we will assume that eff is

proportional to the acceleration squared. For instance in the 1-dof

case, eff ~a _yy2 where a is a strictly positive constant. In that case, the

term
Ð T

0
eff x,y,uð Þdt is just the acceleration energy in the sense of signal

processing and will be denoted by Ae.

Theoretical results. An important concept in this study is

that of inactivation.

Definition 1. A partial inactivation (or simply inactivation) is an

occurrence during a certain strictly positive time-interval of an

optimal trajectory corresponding to ui = 0 for some i, i.e., the ith

control is zero during this time-interval. A total inactivation is a

simultaneous inactivation of all controls.

Here, the controls (ui)i = 1..n are just the net torques applied at

each joint.

An important theoretical result is what we call the Inactivation

Principle. In mathematics, a principle is more than just a theorem.

It is a statement of a general result that can be made true in

different contexts, or more precisely transformed into a theorem

under rather different types of technical assumptions.

Inactivation Principle. Minimizing a cost of type given by

Equation 4 implies the presence of stable partial inactivation in all nontrivial

(nonequilibria) pointing movements for T sufficiently short (i.e., there is a time

threshold for partial inactivation to occur). Moreover, there are stable optimal

trajectories that contain total inactivation.

This principle can be made very general and requires rather

weak assumptions (see Remark 3 in the Mathematical Theory

Subsection). The proof relies on arguments from non-smooth

analysis [42], and is in the spirit of singularity theory (see for

instance [44]). Non-smoothness of the cost function implies the

presence of inactivation along optimal trajectories. This principle

becomes a regular theorem under the two following hypotheses: (1)

the strict convexity of the cost function; and (2) the change of sign

of the optimal control. Although technical, the convexity

hypothesis is reasonable since: (a) most of the cost functions

considered in the literature are actually strictly convex; (b) the set

of strictly convex cost functions is very large; and (c) it ensures that

what is minimized has a unique minimum. The change of sign

assumption is clearly necessary (and actually observed), during fast

point-to-point movements: indeed, after the agonistic muscles have

been activated to accelerate the limb toward the target, they have

to be deactivated in mid-flight and the antagonistic muscles

activated in turn, to brake the movement.

Notably, this theoretical result is also valid for much more

detailed models, which take into account viscoelastic properties of

the muscular system and which specify the terminal equilibrium

signals (e.g., muscle forces that compensate for elastic and

gravitational forces, as in [45]).

In particular, the Inactivation Principle applies in two important

cases. Firstly, it holds when considering that the net torque actually

comes from agonistic and antagonistic torques. The result is that

both torques are zero during the inactivation period. Secondly,

this principle also holds when assuming that the torques are

produced by muscles with non-zero response times, i.e., when the

torques cannot immediately reach their maximum value. For

instance, when the control is the derivative of torques (called

gradient constraints case) or when the dynamics of muscles is

modeled, the inactivation period is still present for fast movements

minimizing the cost given in Equation 4.

These results are crucial for interpreting the inactivation on net

torques as simultaneous inactivation of both agonistic and

antagonistic muscles in practice.

A reciprocal question is whether partial or total inactivation

could be predicted by other kinds of cost functions, notably by the

smooth cost functions of the minimum jerk or torque change

models.

Thus, does the presence of such periods of inactivation along

optimal trajectories determine specific properties of the cost

function?

In answer to this question, the following proposition is

demonstrated:

Necessity of non-smoothness. If some optimal trajectories contain

inactivation, then the term f in Equation 3 cannot be smooth w.r.t. u at u = 0.

This necessity of non-smoothness is stated in mathematical

terms in the Mathematical Theory Subsection and the proof is

given in Supporting Information (Text S1).

More precisely, it can be shown without any special assumption

on the system (S), that the occurrence of total inactivation implies

the generic non-smoothness of cost functions given in Equation 3.

For partial inactivation, the set of terms f must be restricted to an

open set of cost functions, strictly convex with respect to u.

However, the set of strictly convex functions is very large and

contains most of the cost functions from the literature.

Optimal solutions. Simulated movements, minimizing the

compromise Aw/Ae, are depicted below and illustrate the

theoretical results.

A simulated 1-dof movement minimizing the cost in Equation 4

is shown in Figure 1. In this example, bounds on the net torque

and its derivative are imposed, forming a gradient constraint.

Adding such a constraint allows us to control the derivative of joint

torques in order to get smoother motor patterns, i.e., speed profiles

with zero-acceleration at the initial and terminal times.

Notably, two important results hold in all instances of the

model.

Firstly, in accordance with the Inactivation Principle, an

inactivation period is observed slightly after the time of peak

velocity during an upward movement (emphasized by a rectan-

gular frame in Figure 1). During inactivation, the net torque acting

at the shoulder is zero.

Secondly, speed profile is asymmetric, i.e., for an upward

movement, the acceleration duration is shorter than the

deceleration duration.

Although not illustrated, similar features appear during

downward movements: the inactivation occurs slightly before the

time of peak velocity, and more time is spent to accelerate the

movement than to brake it.

The Inactivation Principle
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Simulated 2-dof vertical arm movements are also depicted in

Figure 2. Partial inactivation, illustrating the Inactivation Princi-

ple, occurs at each joint separately (elbow and shoulder).

Moreover, fingertip velocity profiles are asymmetric during

upward and downward movements, as for the 1-dof case. Since

the response time of muscles was not modeled in this case, jumps

on the joint torques occur at the initial and final times, leading to

non-zero accelerations on the corresponding velocity profiles.

Experimental Verification
Although human vertical arm movements are studied here, the

above theoretical results may apply to locomotion, whole-body

reaching, and more generally to any mechanical system described

in the Mathematical Theory Subsection.

Firstly, we show that minimizing the compromise Aw/Ae is

consistent with temporal and spatial features of biological arm

movements. Secondly, we report simultaneous inactivation of

agonistic and antagonistic muscles during arm movements. This

suggests that the proposed criterion is also relevant at the muscular

level and gives insights concerning the cost minimized during fast

arm movements.
Kinematic level analysis. In previous works [35,36], during

upward and downward arm movements performed in the sagittal

plane, fingertip velocity profiles showed asymmetries depending

on movement direction and speed, and fingertip paths were

slightly curved. For 2-dof vertical arm movements (targets T2-T29,

see Figure 3), movement duration (MD) was equal to 0.4360.05 s.

The relative time to peak velocity (TPV) was equal to 0.4260.02

and 0.5360.04 for upward (U) and downward (D) directions

respectively. These asymmetries were significant (t-tests, p,0.001).

Figure 4 (upper row) illustrates typical tangential velocity profiles

of fingertip motion.

Simulations by means of the model proposed in the present

study were consistent with these experimental results (see Figure 2),

since TPV is 0.46 and 0.54 for U and D directions, respectively.

Typical fingertip paths can be observed on the stick diagrams

(depicted in Figure 4). Fingertip paths were curved: average

fingertip path curvature (FPC) was equal to 0.1460.04. These

values were close to those (0.20) simulated by means of the model.

Figure 5 illustrates typical 3-dof arm movements (targets T3-T19

and targets T1-T39). This experiment was designed to test the

influence of the initial arm configuration upon finger kinematics as

well as the influence of movement direction (U versus D) upon

final arm posture. Indeed, in a redundant system such as a 3-dof

arm movement, the CNS must select the final posture of the arm

among an infinite number of possibilities. The MD recorded in

this condition was on average 0.3860.06 s, and finger kinematics,

as in the experiments described above, were significantly

asymmetric (p,0.001) with respect to the movement direction

(U: FPC = 0.1360.03, TPV = 0.4760.02; D: FPC = 0.0960.03,

TPV = 0.5160.02). The simulated movements fitted quite well

with those recorded in practice (U: FPC = 0.15, TPV = 0.46; D:

FPC = 0.14, TPV = 0.53). Moreover, the simulated final arm

postures (wrist: 14u, elbow: 68u, shoulder: 223u for U and wrist:

25u, elbow: 74u, shoulder: 288u for D) were similar to those

measured experimentally (wrist: 1963u, elbow: 6364u, shoulder:

22563u for U and wrist: 2063u, elbow: 9065u, shoulder:

29965u for D).

Figure 1. Results for a simulated 1-dof upward movement, with gradient constraints on the torque. The theoretical phase of inactivation
of the muscles is shown (rectangular frame). Note that the time to peak velocity (TPV) is 0.47 in this case. It would be equal to 0.53 for the
corresponding downward movement, according to experimental findings showing the same directional asymmetries. The signal u corresponds to the
ratio between the net torque acting at shoulder joint and the arm’s moment of inertia.
doi:10.1371/journal.pcbi.1000194.g001

The Inactivation Principle
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Thus, the proposed optimality criterion seems to be well suited

for the planning of redundant vertical arm movements.

Interestingly, optimizing the compromise Aw/Ae allows us to

reproduce the kinematic asymmetries observed in vertical arm

movements. However, this does not prove whether these

directional asymmetries are caused by gravity, inertia, or both.

Indeed, according to some authors, the difference in initial arm

configurations between upward and downward movements would

determine different inertial interactions between the upper arm

and the forearm, which would in turn cause the observed

asymmetries [19,26].

Nevertheless, similar directional asymmetries were observed

during 1-dof movements (i.e., fully-extended arm) performed in

the sagittal plane, while the distribution of the masses around the

shoulder joint remained approximately constant [37,38].

In this 1-dof case, arm kinematic features in the sagittal plane

were well explained by the model. The MD recorded in this

condition was on average 0.3660.04 s. Since the fingertip path

was necessarily a circular arc, the TPV was the only significant

measure. The experimental results confirmed those of previous

studies (see Figure 6). The TPV parameter was significantly

smaller for upward than downward movements (0.4260.02 versus

0.5460.04, respectively, p,0.001). In accordance with this,

simulations by means of the proposed model predicted smaller

TPV values for arm movements performed against gravity

compared to movements performed with gravity (0.47 versus

0.53, respectively).

Moreover, this asymmetry did not result from the additional

term Ae but from the absolute work term Aw. Indeed, the

minimization of the absolute work alone (~0 in Equation 4) in the

Figure 2. Results for a simulated 2-dof arm movement. (A) Upward direction. (B) Downward direction. Torques and angular velocities,
respectively noted u (N.m) and y (rad/s), are plotted with respect to time (seconds), along with the finger velocity (m/s). The successive inactivation
periods at each joint and the asymmetries of the velocity profiles are clearly visible.
doi:10.1371/journal.pcbi.1000194.g002
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1-dof case inherently led to lower TPV values of upward

compared to downward movements. Interestingly, the difference

between U and D movements in the gravity field was caused by

the zero-torque period, during which the arm is approximately in

free fall.

Muscular level analysis. In previous studies [35,36], during

vertical arm movements performed at slow speeds (movement

durations longer than 0.7 s), only flexor muscles were active:

mainly the anterior deltoid, which initiated the action during

upward movements or braked the action during downward

movements. However, at fast speeds (movement durations

shorter than 0.7 s), extensor muscles were also active, since

gravity alone was not sufficient to accelerate downward and

decelerate upward movements.

Here, simultaneous inactivity of muscles during rapid arm

movements, near the time of peak velocity of the fingertip, was

specially examined, to check the Inactivation Principle. From an

experimental point of view, silent phases should simultaneously

appear on the EMG signals of opposing muscles, if the proposed

cost function is relevant at the muscular level (this is related to the

direct optimal control approach). Conversely, if such an

inactivation is checked, then, under the assumption that motor

planning minimizes a certain integral cost, one can conclude that

this cost contains a term similar to the absolute work. Thus, the

presence of inactivation will imply certain properties of the cost

function (this is related to the inverse optimal control approach).

Before considering new results, it is worthy to note that, in

accordance with the theoretical predictions, simultaneous inacti-

vation may not appear in practice if movements are too slow, too

small, or involve muscles with large response times. However, the

appearance of inactivation is a phenomenon theoretically

independent of the following factors: gravity and number of

degrees of freedom of the motion.

The presence of inactivation periods was first investigated by

measuring EMG signals of different muscles during rapid pointing

movements performed with the arm fully extended (1-dof case).

Figure 6 shows typical experimental results.

The first and second columns show upward and downward

movements, respectively. Muscle silent phases are noticeable in

this figure (emphasized by a rectangular frame), in agreement with

the theory. The main flexor and extensor muscles acting on the

shoulder joint are simultaneously inactive, so that the net torque

resulting from their actions is almost zero during this short period.

For upward movements, simultaneous inactivation of all

muscles appeared clearly during a short time interval in the

second half of the motion. In some trials, the triceps remained

slightly contracted, thus actively maintaining the arm fully

extended. For downward movements, an inactivation also

appeared, although less clearly, during the first half of the

movement. This simultaneous inactivation of all muscles lasted on

average for approximately 30 ms and was clearly observed in 85%

of trials, for upward movements. During this period the arm was

almost in free fall, an energetically costless movement. Notably,

the activities of all muscles stopped at the same instant. This

synchronization suggests that muscle inactivation results from an

active optimal motor strategy. Taking into account the electro-

mechanical delay which elapses between the muscle bundle

depolarization and the actual force production, this period of

inactivation appeared as was expected from the theory (i.e., slightly

before and after the maximum velocity for upward and downward

movements, respectively).

A typical muscular pattern for the vertical 2-dof case is depicted

in Figure 4. Here also, simultaneous inactivation of pairs of

muscles acting on each joint occurred. Notice the lag between the

inactivation at the elbow joint and at the shoulder joint, illustrating

that in the 2-dof case the inactivation occurred at each joint

separately. This is in agreement with the corresponding numerical

simulations (see Figure 2) and the theoretical results concerning

partial inactivation.

Figure 3. Illustration of the experimental setup. (Left) Black
trajectories show the 1-dof pointing task between targets T1 and T19.
Gray trajectories show the 3-dof experiment, starting from fully-
extended arm postures (targets T1-T39 and T19-T3). (Right) Vertical 2-
dof pointing movements, between targets T2-T29. The position of the
surface electrodes (for EMGs) and the kinematic markers is shown.
Abbreviations: DA, Deltoid (Anterior); DP, Deltoid (Posterior); BI, Biceps
and TR, Triceps.
doi:10.1371/journal.pcbi.1000194.g003

Figure 4. Typical experimental data of a 2-dof arm movement
performed in upward (left) and downward (right) directions.
Finger velocity profiles (upper part) and four EMGs (lower part) are
amplitude normalized. The periods of muscular inactivation are
emphasized by means of rectangular frames. The same abbreviations
as in Figure 3 are used.
doi:10.1371/journal.pcbi.1000194.g004
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Figure 5. Typical experimental data of a 3-dof vertical arm motion performed in upward (left) and downward (right) directions. (A)
Experimental results. Finger velocity profiles (upper part) and four electromyographic signals (lower part) are amplitude normalized. (B) Simulated
results. The shoulder, elbow and wrist joints were free to move. Torques and velocity are given in N.m and m/s, respectively. The solutions were
computed using Pontryagin’s Maximum Principle (as for the 2-dof case depicted in the Materials and Methods Section, but with more complicated
formulae). Moreover, the transversality conditions of Pontryagin’s Maximum Principle were necessary since the location of the target in task-space led
to a set of possible terminal postures, given by a 1-dimensional manifold. The periods of muscular inactivation are emphasized by means of
rectangular frames. The same abbreviations as in Figure 3 are used.
doi:10.1371/journal.pcbi.1000194.g005
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The appearance of simultaneous inactivation was also checked

in movements starting from different initial arm configurations

(i.e., starting from various initial arm postures; targets T1-T39 and

targets T19-T3).

For both upward and downward movements, this inactivation

phenomenon is shown in Figure 5, where muscular activities and

simulated net torques can be compared.

To summarize, for the set of movements and conditions tested,

both movement kinematics and muscles activities confirm the

relevancy of the theoretical model.

Discussion

Limb movement planning theory, presented in this study,

focuses on fast, open-loop, vertical arm movements, and is based

upon the assumption that such movements are optimal with

respect to a certain integral cost. Within this framework, the

question was to characterize possible cost functions.

Direct Optimal Control
A model that minimizes a cost based upon the absolute work

(i.e., an energetic optimality criterion) has been shown to allow

simulating plausible arm movements in the sagittal plane. This was

checked by means of three relevant kinematic features: fingertip

path curvature, asymmetry of fingertip velocity profiles, and final

arm posture.

Since this cost function is non-smooth, the Inactivation Principle

can be stated: for a large class of non-smooth cost functions, the

net torque acting on a joint is zero during a short period occurring

around the mid-path movements that are sufficiently rapid. This

principle is also valid if a pair of agonistic-antagonistic actuators is

considered, exerting opposite torques. Each of the torques is zero

during an inactivation period which still appears if the biome-

chanics of the muscles is considered, when response times are brief

(a few tens of milliseconds). For longer response times, complete

inactivation is progressively replaced by low-levels of muscular

activities.

Such quiet periods in the EMGs of opposing muscles were

observed during fast arm movements (see Figures 4, 5, and 6),

which suggests that this optimality criterion is suitable.

The suitability of a similar non-smooth cost function was also

found for animals in a recent study [46]. The author concludes

that the locomotor pattern of legged animals is optimized with

respect to an energetic cost based upon the ‘‘positive work’’ of

forces.

However, the direct optimal control approach does not prove

that the motor planning process actually minimizes energy

expenditure. It just shows that such a criterion is plausible because

it provides realistic behavior. Indeed, several other cost functions

or theories may lead to similar results.

For instance, muscle inactivation was also interpreted as a

consequence of the Equilibrium Point hypothesis [47]. According

to this interpretation, the threshold position control and the

principle of minimal interaction would, together, determine the

‘‘Global EMG minima’’ which appear simultaneously in all

muscles during rhythmic movements, near the point of direction

reversals. Nevertheless, in the theory proposed here, inactivation is

somewhat different: it appears near the time of peak velocity, and

the precise interval of inactivity may be different at different joints.

Moreover, inactivation is still predicted even if biomechanics of

muscles, inertia and external forces are taken into account, which

is not the case in Equilibrium Point theory [47].

Alternatively, it could be also considered that the CNS simply

activates and deactivates the muscles, explicitly determining

inactivation phases. However, this would be an argument against

our main assumption that the brain tries to minimize some costs.

Here, under this assumption, inactivation provides information on

the cost function.

Inverse Optimal Control
The theoretical results also allow us to characterize the non-

smoothness of the cost function once the simultaneous inactivation

of opposing muscles is measured in practice, during movements

presumed as optimal.

Using mathematical transversality arguments from differential

topology we proved that the minimization of an absolute-work-like

cost during arm movements is a necessary condition to obtain

inactivation phases along optimal trajectories. In other words,

assuming that human movements are optimal with respect to a

certain integral cost, the simultaneous inactivation of muscles that

we observed provides evidence for an absolute-work-like cost.

Notably, this simultaneous inactivation of opposing muscles,

which is a singular phenomenon, cannot be predicted by models

using smooth cost functions, such as the minimum endpoint

variance [27], the minimum jerk [16], or the minimum torque-

change [17]. Those models would predict deviations from ‘‘zero

torque’’, whereas singularity analysis proves the existence of an

exact inactivation period.

Simultaneous inactivation periods also appeared on intra-

muscular EMG traces recorded from monkeys when performing

horizontal arm movements (see Figure 5 in [48]). These findings

suggest that the minimization of the energy expenditure may be a

basic motor principle for both humans and animals.

It should be emphasized that such an equivalence between

specific movement features and well-identified properties of the

cost function is not common in studies using optimal control

approach for movement planning.

Figure 6. Typical experimental data of a 1-dof arm motion
performed in upward (left) and in downward (right) directions.
Finger velocity profiles (upper part) and four electromyographic signals
(lower part) are reported. Note the asymmetries of the speed profiles
and the simultaneous inactivation of all muscles which occurs near the
velocity peak. Data are amplitude normalized and the horizontal axis
denotes time (in seconds). Same abbreviations than in Figure 3. The
same abbreviations as in Figure 3 are used.
doi:10.1371/journal.pcbi.1000194.g006
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Validity of the Model
The simulated movements replicated the experimental records

accurately, except, obviously, for the bang-bang command signals

which provide non-zero accelerations at the beginning and end of the

movement (see Figure 5). The patterns of motor command are

actually smoothed by the biomechanical characteristics (low-pass

filters) of the muscles. As pointed out by several authors some models

have been rejected hastily due to the lack of biological validity of their

optimal solutions (bang-bang behaviors) [15,49]. This problem was

also discussed in a study where the authors used a similar non-smooth

cost function based upon the ‘‘positive work’’ of forces [23]. They

noticed that the abrupt velocity profiles predicted by their model were

non-realistic but might actually be smoothed by modeling muscles

dynamics. In fact, depending on the precision of modeling, different

conclusions may be drawn. This is illustrated in Figure 1 where

gradient constraints on the torques lead to smoother motor patterns

whereas Figure 10 shows solutions in a simpler case of torque control.

In the first case the acceleration is continuous while in the second case

the acceleration jumps at the initial and final times (to make the

transition between posture and movement). Nevertheless, in both

cases, inactivation is present and fingertip velocity profiles reproduce

the experimental directional asymmetries. Thus, these relevant

features of movements are not affected by such changes in modeling.

The reason for not systematically considering more precise levels of

modeling is twofold. Firstly, it causes important additional compu-

tational difficulties, and secondly, many more parameters, which are

not always well-known, appear in the model.

Here, the model depends on a few parameters. Firstly, the

maximum torque that can be developed by each muscle is finite. In

particular, this determines the shortest possible movement duration in

order to complete the pointing task. Nevertheless these maximum

torques did not seem to be reached in practice (at least during the

movements tested here) so that their precise values were not

important for the present study. Secondly, the weighting parameters

that appear in the cost could depend on the individual and the task

goal. However, they are not critical with respect to the qualitative

behavior of the optimal solutions and, although their values could be

discussed, the simulations obtained using this model were accurate for

a large range of these parameters. Importantly, the whole theory

holds without precise constraints on these parameters. A first example

is given by the strongly consistent kinematic difference in the 1-dof

case for movements performed in the upward versus the downward

direction. For instance, for an upward movement (1-dof, 45u and

400 ms), the relative time to peak velocity (TPV) ranged between

0.43 and 0.5 for weighting parameters ranging between 0 and 10. For

the corresponding downward movement, TPV ranged between 0.57

and 0.5. The classical models [16–18] were not able to reproduce this

directional difference in the speed profiles observed in vertical arm

movement executed with 1-dof [37]. Moreover, it has been found

that this difference disappeared for movements performed in the

horizontal plane, either in upright or reclined postures [37,38]. This

behavior is experimentally well established and can be easily verified

with simulations. Interestingly, it is predicted by our optimality

criterion, whatever the choice of the tuning parameters. A second

example concerns the final posture selected by the model. The exact

terminal limb configuration depends on these weighting parameters.

However, we tested several instances of the model, for weighting

parameters ranging between 0.05 and 1. In all instances, the

simulated terminal postures were in the range of those measured in

practice.

In order to check the validity of the present model, its

predictions were also compared with well-known experimental

findings, without trying to fit the data. The tuning parameters used

are defined in the Materials and Methods Section.

Movement curvature is known to depend on movement

duration [36,50]. Here, the 2-dof model predicts a change in the

fingertip path curvature (FPC) when movement duration varies.

For the movements tested in Figure 2, the FPC ranged between

0.18 and 0.23 for movement durations of between 0.2 s and 1 s.

Moreover, the final postures have been found to be invariant with

respect to the speed of the movement [8] and to the addition of a

mass of 600 g on the forearm [9]. Here, in the 3-dof case, the final

posture does not significantly vary with movement duration. For

instance, the final postures changed by less than 3u (maximum

change at each joint) while the movement duration ranged between

0.2 s and 1 s (tested for U and D movements that appeared in the

left column of Figure 5). Also, adding a mass of 600 g to the forearm

did not change the simulated final limb configuration: the model

predicted less than 0.5u of variation at each joint.

In the proposed model, the final posture is selected as the final

limb configuration that minimizes the amount of the compromise

Aw/Ae necessary to bring the finger to the target. Movements

directed toward a single target were tested for various starting

configurations of the arm. It resulted in changes in the final

posture (about 1u, 10u, and 15u of variability at the shoulder, the

elbow, and the wrist levels, respectively). Thus, the final posture

depends on the initial configuration of the arm, in agreement with

experimental results [21].

It must be noted that the minimum torque-change and the

minimum force-change models failed to predict the curvature of

movements when antigravity torques were implied in the

optimization process, according to Figure 3 in [33]. In contrast,

the finger trajectory for a 2-dof arm predicted by our model (for

the same movements of duration equal to 400 ms) was quite

realistic (Figure 7A). This was also in agreement with the

experimental finger paths observed in Figure 4 in [6] for other

movements performed in the sagittal plane (see Figure 7B).

Although the proposed model was only tested in a sagittal

workspace, it appears to be well-suited for a large set of

movements and may, thus, motivate future extensions of the

model to 3-dimensional movements.

Integration of Gravity
Several investigators have proposed that the CNS optimizes

inertial forces and compensates gravitational forces at each instant

[19,26]. Static and dynamic forces were assumed to be controlled

separately. Although plausible, this idea is hardly compatible with

several experimental results. For instance, when considering an

upward movement in the sagittal plane performed with the arm

fully-extended (1-dof case), according to such a viewpoint,

agonistic (anti-gravitational) muscles should be active throughout

the movement (corresponding to a tonic component of EMGs)

[31]. In this case, a muscular activity counteracting the gravity

would be necessary to continuously maintain the arm, as if it were

at equilibrium at each instant, and would be noticeable in EMGs.

However, EMG recordings showed that the activities of the

agonistic muscles were quasi-null near the time of peak velocity

suggesting, thus, that no muscle was acting against gravity at this

instant. Moreover, it may explain why, after subtracting the tonic

activity from rectified EMG data, some authors obtained negative

phasic activities of some muscles (e.g., see [51,52]). Rather than

resulting from errors in the evaluation of the tonic component of

muscles activity, the gravitational and inertial forces could just be

integrated into the same motor plan, within the minimization of

energy expenditure. In that case, an explicit separation between

tonic and phasic activities of muscles could be impossible, at least

for fast movements.
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It must be noted that separating static and dynamic forces is not

the same as separating posture and movement. Indeed, static and

dynamic forces are present during posture maintaining. Neuro-

anatomical and experimental evidences for distinct controls of

posture and movement were reported in [53]. Thus, the present

results concerning inactivation do not contradict the hypothesis

that, while maintaining posture, anti-gravity control seems to be

tightly related to the muscular system’s viscoelastic properties (see

[54] for a study of equilibrium control during quiet standing). This

problem was not addressed here since we focused on the control of

the transient phase of fast movements.

Conclusions
In conclusion, from a methodological point of view, the novelty of

the present work is to introduce a hypothetical-deductive approach

in studies focusing on motor planning of arm movements. The

possible existence of the inactivation phenomenon was deduced

from a mathematical analysis which aimed to reproduce directional

asymmetries in arm movements performed in the sagittal plane.

Then, the presence of these inactivation periods produced by the

model was confirmed by the EMG signals obtained from

experimental data. The mathematical analysis showed that this

inactivation was a necessary and sufficient condition for the

minimization of an absolute-work-like cost. As far as we know, this

is the first time that such a condition has been proved in studies

investigating optimality principles in human movement. These

results suggest that, considering that inactivation is a short and quite

singular phenomenon, more attention should be paid to this specific

movement feature in future studies.

Two major conclusions can be drawn:

1. Both inertial forces (necessary to accelerate movements) and

gravitational forces (acting on the limbs) appear to be

integrated in motor planning within the minimization of an

absolute-work-like cost.

2. The connectivity of the command circuits and the signals that

they process should result in synchronized periods of muscles

inactivation.

Materials and Methods

Experimental Procedures
Participants. Six male participants (mean age 29.668.9)

volunteered to participate in the experiment. All were healthy,

right-handed, and with normal or corrected-to-normal vision. The

experimental protocol used was in accordance with the principles

expressed in the Declaration of Helsinki.

Motor tasks. From a sitting position, participants performed

1-dof (shoulder rotation), 2-dof (shoulder and elbow rotations), and

3-dof (shoulder, elbow and wrist rotations) pointing movements in

the sagittal plane. The experimental apparatus and the pointing

movements are illustrated in the Figure 3. In all experimental

conditions, participants were instructed to execute visually-guided,

fast arm movements towards the targets without final correction

(here denoted Ti or Ti9, i = 1..3, and that consisted of a small

sphere of 5 mm in diameter). The duration of these movements

was about 0.4 s. In order to familiarize themselves with the motor

tasks and the experimental apparatus, they were trained (5

movements in each experimental condition) by means of a

metronome set at 0.4 s. During the experiments, a single data

acquisition file consisted of an upward-downward sequence of

pointing movements between paired targets. A significant pause

(.1 second) was requested between two pointing movements.

Participants performed 10 trials in each condition (i.e., a total of 60

pointing movements per participant). After data analysis, all

pointing movement durations were found to range between 0.3 s

and 0.5 s and the final precision was similar (error less than 3 cm)

between conditions. Thus, all participants were considered to have

successfully performed the requested tasks.

Single-joint arm pointing (targets T1-T19). The two

targets were placed in the sagittal plane (shoulder abduction equal

to 0u) and symmetrically (40u above and below) from the

participants’ right shoulder joint. The participants performed

upward and downward pointing movements (amplitude: 80u), with

the arm fully extended (i.e., rotation around the shoulder joint

only). Movements started either from an upward or downward

position (50%). Note, that participants’ elbow and wrist joints were

motionless during this experiment.

Two-degree of freedom arm pointing (targets T2-T29).
The initial configuration of the arm, for the target T2, was the

following: shoulder 0u flexion and 0u abduction; elbow 90u flexion

and 90u pronation. The two targets (inter-target distance: 90 cm)

were placed symmetrically in the sagittal plane (45 cm above and

below) from the participants’ right shoulder joint. The horizontal

distance of the lower target from the participants’ right shoulder

joint corresponded to the length of the forearm-wrist-finger

horizontal alignment. Movements started either from an upward

Figure 7. Simulated fingertip paths in the 2-dof case. (A) Finger trajectories for different movements toward targets located on a circle. Initially
the finger position is at the center of the circle. For more details about the task and to compare the results, see [33,52]. (B) Finger trajectories for four
different movements performed in the sagittal plane (T1 to T5, T2 to T6, T3 to T7, and T4 to T8). For more details about the task and to compare the
results, see [6].
doi:10.1371/journal.pcbi.1000194.g007
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or downward position (50%). In this condition, the wrist was

artificially immobilized by means of straps.

Three-degree of freedom arm pointing (targets T1-T39

and targets T19-T3). The participants were asked to start from a

fully-extended arm position (in the sagittal plane, shoulder

abduction equal to 0u) and to reach a target placed in a position

such that an elbow flexion was necessary, in addition to a shoulder

joint rotation (see gray trajectories in Figure 3). In this condition,

the wrist was free to move. The target T3 was placed with respect

to the target T1 (15 cm backward and 15 cm upward). The inter-

target distance was 70 cm. The target T39 was placed symmet-

rically with respect to the target T19. Movements started either

from an upward or downward position (50%).

Material. The system used to capture arm movements was

an optoelectronic device (SMART-BTS, Milan, Italy). Nine

cameras were used to capture the movement of four retro

reflective markers (15 mm in diameter), placed at well-defined

anatomical locations on the right side of the body (acromial

process, humeral lateral condyle, ulnar styloid process, and the

apex of the index finger). Surface electrodes which captured

muscular activity were placed on the following muscles: the biceps,

the triceps, the anterior deltoid, and the posterior deltoid (see

Figure 3 for an illustration of the placement of electrodes and

markers). Two silver-chloride surface electrodes of 10-mm

diameter were positioned on the belly of the muscle (with the

skin previously shaved and cleaned) with an inter-electrode

distance (center to center) of 2 cm. The reference electrode was

placed on the left ankle. The placement of surface electrodes was

then checked by asking subjects to produce isometric contractions

at each joint and in various directions. Sampling frequencies were

120 Hz and 960 Hz for kinematics and EMGs, respectively.

Data processing. Data processing was performed using

custom software written in Matlab (Mathworks, Natick, MA).

Recorded kinematic signals were low-pass filtered using a digital

fifth-order Butterworth filter at a cut-off frequency of 10 Hz.

Finger movement onset was defined as the moment at which linear

tangential velocity of the index fingertip exceeded 5% of its peak

and the end of movement as the point at which the same velocity

dropped below the 5% threshold. Movement duration (MD) was

defined as the time-interval between the onset and the offset times.

The following kinematic parameters were then calculated: the

relative time to peak velocity (TPV), defined as the ratio of

acceleration duration to total movement duration, and the

fingertip path curvature (FPC), defined as the ratio of maximum

path deviation from a straight line connecting the initial and the

final points of the trajectory. Both FPC and TPV parameters were

often considered as relevant indices for the planning of arm

movements [36,37,55].

Stick diagrams were also reconstructed to depict the initial and

final arm configurations in the vertical plane.

EMG data were band-pass filtered (20–400 Hz). The root mean

square (RMS) of EMG data was computed over 5 ms intervals. The

electromechanical delay was evaluated by synchronizing the first

agonistic onset time with the onset time of the fingertip. The onset

time of an EMG burst was defined as the moment at which the

smoothed RMS signal (low-pass filtered at 5 Hz) exceeded 10% of

its peak. A muscle was considered as inactive when the

corresponding RMS was below 10% of its maximum value.

Individual, rather than averaging, EMG inspections were per-

formed because of the briefness of the phenomenon searched for.

Statistical analysis. All variables (i.e., MD, TPV and FPC)

were normally distributed (Shapiro-Wilk’s test) and their variance

was equivalent (Levene’s test). Statistical comparisons were

performed by means of paired t-tests.

Simulations. Simulations were performed using custom

software written in Maple (Maplesoft, Waterloo, ON) for the

formal calculations and in Matlab for the numerical computations.

The optimal solutions were actually found by adjusting the

‘‘adjoint vector’’ (see next section) by means of the fsolve Matlab

function (Gauss-Newton method).

The Mathematical Theory
This section is devoted to technical details and proofs of the

results presented in the Theoretical Analysis Subsection. It is

organized as follows.

Firstly, we present the general setting of the optimal control

problem under consideration. Secondly, we present the examples

that will be used to illustrate the theory. After presenting some

prerequisites that may be helpful to understand the main

mathematical results, we state two theorems concerning the

Inactivation Principle and the necessity of non-smoothness. Then,

some details on the computation of the optimal solutions using

Pontryagin’s Maximum Principle [41] are reported (for the 1-dof

and 2-dof cases). Finally, three extensions of the model are given in

the case of i) gradient constraints on the control; ii) distinct control

of agonistic and antagonistic torques; and iii) modeling the

dynamics of agonistic and antagonistic muscles.

The general setting and the optimal control

problem. We consider mechanical systems with generalized

coordinates x[Rn and Lagrangian:

L x, _xxð Þ~ 1

2
_xxT M xð Þ _xx{V xð Þ,

where M(x) is the inertia matrix (which we assume to be symmetric

and invertible) and V(x) is the potential energy (here due to gravity).

We divide the external generalized forces acting on the system

into two components: the first one, denoted by t = S(x)u, resulting

from the input u and the second one, denoted by N(x, ẋ) representing

any other forces acting on the system, mainly friction forces.

We assume that the control acts on every degree of freedom,

that is, u[Rn and S(x) is invertible. Moreover, in the exactly-fully-

actuated case that we consider first, we assume to directly control

each degree of freedom, that is S(x) = Id. This is assumption is

always verified up to some feedback. Indeed, we can always add a

‘‘feedback pre-compensator’’ of the type t = S(x)u. From a

theoretical point of view it is just a change of variable. From a

practical point of view, it requires the knowledge of the state x of

the system, or some estimation of it.

The equations of motion are given by substituting the value of L

into Lagrange’s equation,

d

dt

LL

L _xx
{

LL

Lx
~S xð ÞuzN x, _xxð Þ~tzN x, _xxð Þ:

They are exactly of the form given by Equation 1, with

w x, _xx,uð Þ~M xð Þ{1
N x, _xxð Þ{+V xð Þ{C x, _xxð Þ _xxztð Þ, ð5Þ

where the Coriolis matrix C x, _xxð Þ[Mn Rð Þ is defined as:

Cij x, _xxð Þ~ 1

2

Xn

k~1

LMij

Lxk

z
LMik

Lxj

{
LMkj

Lxi

� �
_xxk:

Then, in order to get the control system, we set X = (x, y) = (x, ẋ)

and rewrite the system as:

The Inactivation Principle
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Sð Þ _XX~W X ,uð Þ, X[R2n, u[U5Rn:

We can also write the equations of motion in the Hamiltonian

formalism.

We define the Legendre transform: (x, ẋ)¨(x, p), by p~ LL
L _xx, and

we introduce the Hamiltonian h(x,p) of the problem:

h x,pð Þ~vp, _xxw{L x,pð Þ:

Then, we get the equations of the motion via the characteristic

field of the Hamilton-Jacobi equation:

_xx~
Lh

Lp
, _pp~{

Lh

Lx
ztzN x,pð Þ:

As a consequence, the work w of external forces, w = #(t+N(x,p))dx is

identically equal to the variation of the Hamiltonian:

_ww~ _hh:

In particular, if there is no friction (N = 0), the variation of the

Hamiltonian is equal to the work of controlled forces t during the

motion.

Thus, the work of controlled forces is:

w~

ð
tdx~

ðXn

i~1

tidxi~

ðXn

i~1

ti _xxidt:

Here, the work of controlled forces is counted algebraically: a

motion in one direction followed by a motion in the opposite

direction may give zero work.

In the following, we will consider the absolute work Aw of

controlled forces, which corresponds to the energy spent to control

the system:

Aw~

ðXn

i~1

ti _xxij jdt: ð6Þ

In coordinates X = (x,y), Ȧw is the function:

_AAw~
Xn

i~1

tiyij j:

The cost we will minimize is a compromise of the form:

J uð Þ~Awz

ðT

0

M X ,uð Þdt, ð7Þ

in which M(X,u) is a comfort term that for technical reasons we will

assume to be smooth and strictly convex w.r.t. the control u

(assumption A).

Remark 3. (1) More generally we could consider an integral cost

of the form:

J uð Þ~
ðT

0

Q _AAw,X ,u
� �

dt, ð8Þ

LQ

L _AAw
=0 never vanishesð Þ, ð9Þ

where Q is smooth and Q(Ȧw(u), X, u) is strictly convex w.r.t. u (2)

The assumption of strict convexity, although technical, is natural:

it implies that the function Q has a unique minimum with respect

to u. The weakest possible hypothesis to obtain the Inactivation

Principle (see Theorem 2) is precisely that Q has a unique

minimum w.r.t. u. In that case, existence of a minimizing

trajectory will not be guaranteed (it has to be assumed). Assuming

strict convexity is a way to assume both a unique minimum w.r.t. u

and the existence of a minimizing trajectory (see [43] for a precise

proof of this last fact). (3) Due to the absolute work term, the

proposed cost function is non-smooth (non-differentiable) w.r.t. u

at u = 0. However it is Lipschitz-continuous at u = 0. This slight

difference is important in our study. (4) In fact the typical non-

smoothness (Lipschitz) is that of the absolute value function. But it

can be easily taken into account the fact that ‘‘negative work’’ costs

less than ‘‘positive work’’ (this last fact was stressed by a referee): in

place of the function |u|, one has to consider the Lipschitz

function l|u| for u.0 and m|u| for u#0. We decided here to limit

ourselves to the ‘‘non-weighted’’ absolute work, for the sake of

simplicity in exposition.

We now define our optimal control problem. We consider the

following controlled system (S):

Sð Þ _XX~W X ,uð Þ, X[R2n, u[U5Rn:

Fix a source point Xs~ xs,0ð Þ[R2n, a target point

Xt~ xt,0ð Þ[R2n and a time T.

Then, the optimal control problem is:

Pð Þ minimize the cost J uð Þ in Equation 8 among all the

trajectories of Sð Þ connecting Xs to Xt in time T :

The following theorem proves that this problem is well-posed.

Theorem 1 (existence of optimal trajectories). The

minimum is reached by some optimal trajectory.

This is shown in [43] in the 1-dof case, and is a consequence of

boundedness of the controls and convexity with respect to u of

both the cost function and the system (S). The idea is that a

minimizing sequence of trajectories converges for some compact-

ness reason of Ascoli type, and the limit is a trajectory of the system

by convexity. General results of this type may be found in [56].

The main examples. We will consider different examples of

mechanical systems throughout the paper.

In all these examples, the cost is the compromise between the

absolute work Aw and the acceleration energy Ae, i.e., a

compromise of type given by Equation 7 with:

M X ,uð Þ~
Xn

i~1

ai €xxið Þ2: ð10Þ

The parameters (ai)i = 1..n are strictly positive constants. This

comfort term expresses the fact that sensorimotor system penalizes

large accelerations (thanks to learning) in order to protect

articulations and tendons. Such an optimality criterion was used

in [15].
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In the 1-dof case, this weighting parameter was set to 0.25. We

set a1 = 0.25, a2 = 0.25 and a1 = 0.05, a2 = 0.1, and a3 = 0.25 in the

2-dof and 3-dof cases, respectively. Nevertheless, we also simulated

movements with weighting parameters ranged between 0.05 and

1, and all these instances of the model lead to plausible

movements. Therefore, these parameters may be considered as

tuning parameters to improve the quantitative fitting of the model

to each participant.

Note that this term M(X,u) is strictly convex with respect to u (in

accordance with assumption A).

We will now consider the different mechanical systems

describing vertical movements of an arm with 1-dof and 2-dof.

Example 1. The one-degree of freedom arm. We consider

a 1-dof arm moving in the vertical plane, in the gravity field, and

without friction.

The control system is:

S1dð Þ _xx~y

_yy~u{k cos xð Þ:
ð11Þ

Here, the constant k reflects the action of the gravity field, u[R

is the net torque acting at the joint, and u is bounded (u2#u#u+

with u2,0,u+).

Example 2. The two-degree of freedom arm. We consider

a 2-dof arm moving in the vertical plane, in the gravity field, and

with friction forces.

The mechanical equation of the movement is:

t~H hð Þ€hh{ĥh hð Þr _hh
� �

zG hð ÞzB _hh, ð12Þ

in which H is the (symmetric positive definite) matrix of principal

inertia moments, ĥh hð Þr _hh
� �

is the Coriolis term, G is the vector of

gravitational torques, and B is the matrix of friction terms (a

constant here). The term t is the vector of external torques (the

controls in our case), i.e., t = u. We get (see also Figure 8):

t1~H11
€hh1zH12

€hh2{ĥh _hh2
2{2ĥh _hh1

_hh2

zG1zB11
_hh1zB12

_hh2,

t2~H21
€hh1zH22

€hh2zĥh _hh2
1

zG2zB21
_hh1zB22

_hh2,

ð13Þ

with

H11~m1l2
c1zI1zm2l2

c2zI2zm2 l2
1z2l1lc2 cosh2

� �
,

H12~m2l2
c2zI2zm2l1lc2 cosh2,

H21~H12,

H22~m2l2
c2zI2,

ĥh~m2l1lc2 sinh2,

G1~g m1lc1 cosh1zm2 lc2 cos h1zh2ð Þðf

zl1 cosh1Þg,

G2~gm2lc2 cos h1zh2ð Þ,

Bij~constants following 18½ �,

in which the following notations are set and the numerical values

come from [57]:

Ms total mass of the subject (kg),

Ls height of the subject (m),

m1 mass of the arm (<Ms60.028 kg),

m2 mass of the forearm (+hand) (<Ms60.022 kg),

l1 length of the arm (<0.1866Ls m) or measured on the

subject,

l2 length of the forearm (<(0.146+0.108)6Ls m) or

measured on the subject,

lc1 length from shoulder to center of mass of the arm

(<l160.436 m),

lc2 length from shoulder to center of mass of the forearm

(<l260.682 m),

g gravity field (<9.81 m.s22),

I1 inertia of the arm w.r.t center of mass

(<m16(l160.322)2 kg.m2),

I2 inertia of the forearm w.r.t center of mass

(<m26(l260.468)2 kg.m2).

The variables will be denoted as follows:

x1~h1,y1~ _hh1,x2~h2,y2~ _hh2,u1~t1,u2~t2.

Let H and B denote the matrices:

H x2ð Þ~
H11 H12

H21 H22

� �
and B~

B11 B12

B21 B22

� �
:

Then, the control system can be rewritten as:

_xx1~y1

_xx2~y2

_yy1

_yy2

~H{1
u1{G1zĥh y2

2z2y1y2

� �
u2{G2{ĥhy2

1

 !
{B

y1

y2

� �
8>>>><>>>>: :

Figure 8. Mechanical model of the 2-dof human arm. The
subscripts 1 and 2 denote the shoulder and elbow joints respectively.
Generalized coordinates h, joint torque t, moment of inertia I, segment
mass m, segment length to the center of mass lc, and gravity
acceleration g are denoted.
doi:10.1371/journal.pcbi.1000194.g008
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For all x2 H is invertible. We set

H{1~
H11 H12

H21 H22

 !
:

The explicit expression of the elements of H21 is:

d~m1l2
c1m2l2

c2z m1l2
c1zm2l2

1

� �
I2zI1 m2l2

c2zI2

� �
zm2

2l2
1 l2

c2 1{cos2x2

� �
,

and:

H11~
m2l2

c2zI2

d
,

H12~H21 x2ð Þ~{
m2l2

c2zm2l1lc2cos x2zI2

d
,

H22~
m1l2

c1zI1zm2l2
1zm2l2

c2z2m2l1lc2cos x2zI2

d
:

For both Examples 1 and 2 it will be interesting to consider the

‘‘small angles assumption’’, i.e., the linearization of the system

around some reference angles and zero velocity.

Since in the paper we only consider pointing movements, i.e.,

going (in short time T) from some initial condition (x, ẋ) = (xs, 0) to

some terminal condition (xt,0) (both equilibria of the system), this

assumption corresponds to the fact that xt is close to xs.

With this assumption, both examples become much simpler, as

expressed by Equations 14 and 15 below, and calculations can be

done explicitly. Without it, some numerical steps remain.

Nevertheless in these numerical steps it is of great interest to

know a priori the qualitative scenario for the optimal controls,

which is of course the same as with the small angles assumption.

Thus, although the small angles assumption may be irrelevant

from an experimental point of view, it is useful for finding the

optimal solution of the complete systems given in Examples 1 and

2.

Example 3. One-degree of freedom, small angles
assumption. Assuming the arm to be horizontal at the initial

condition, we get cos(xs) = 1 and the linearized system around (xs,0)

is the following standard linear control system:

S1dlð Þ _xx~y

_yy~u{k:
ð14Þ

Example 4. Two-degree of freedom, small angles
assumption. As in the previous example, we neglect friction

terms. Therefore, in the linearization around an equilibrium point

(x, ẋ) = (x, y) = (xs, 0), we get no occurrence of y: the linear part is

zero and the quadratic part in y disappears at y = 0. Therefore, the

linearized system is of the following form:

S2dlð Þ _XX~AXzBuzF , ð15Þ

where X = (x,y) and A, B, F are of the form:

A~
0 Id2

~AA 0

� �
, B~

0

~BB

� �
, F~

0

~FF

� �
:

Here, eAA, eBB are 262 matrices, eBB is invertible and eFF[R2. It

follows that (S2dl) is a controllable linear system. Note also that the

original system (S2d) is feedback-linearizable. This last point is

important at several places in the paper.

Mathematical prerequisites. Our theory of inactivation

relies on three mathematical facts:

N Thom’s transversality theory,

N The classical Pontryagin’s Maximum Principle,

N The characterization of the extrema of non-smooth (but

Lipschitz-continuous) functions.

For the sake of completeness, we restate here the main points 2

and 3. Well-written introductions to Transversality theory may be

found in [40], [58], and [59].

Extrema of a strictly-convex (locally) Lipschitz-contin-
uous function. Let f(u) be a locally Lipschitz function of the

variable u[Rn. It means that, in restriction to any compact set V of

Rn:

f uð Þ{f vð Þk kƒKV u{vk k,

for a certain constant KV depending on V. Here, we use any

arbitrary norm over Rn. A locally Lipschitz function is clearly

continuous. It is a less obvious fact that it is also almost everywhere

differentiable.

Following F. Clarke [42], we define the generalized gradient of f

at u0 denoted by huf(u0), as the convex envelop of all possible limits

of derivatives of f at points un[Rn, and unRu0. Note that, in

general, huf(u0) is a set. Of course, if f is continuously differentiable

on a neighborhood of u0, its generalized gradient at u0 coincides

with the usual one and the set is reduced to a singleton.

For instance, if f uð Þ~ uj j,f : R?R, then f is everywhere

continuously differentiable except at u = 0, and possible values

for the derivative are 61. Then the generalized gradient huf is:

Luf u0ð Þ~ f 0 u0ð Þf g for u0=0,

~ {1,1½ � for u0~0:

The important facts for us will be the following:

(F1) In restriction to an arbitrary compact subset, a

strictly convex function has a minimum which is

attained uniquely;

(F2) A necessary and sufficient condition for u* to be the

point where f reaches its (absolute) minimum is:

0[Luf u
1

� �
: ð16Þ

Note that, at a point where f is continuously differentiable in the

classical sense, this condition is equivalent to the classical one: the

gradient must be zero.

Pontryagin’s and Clarke’s Maximum principle. The

Maximum Principle gives necessary conditions of optimality for
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optimal control problems. For our problem Pð Þ, when W(X,u) and

Q(Ȧw, X, u) are smooth w.r.t. X, we can use the original

Pontryagin’s version whose statement is as follows.

Denote by

h l,X tð Þ,P tð Þ,u tð Þð Þ~lQ _AAw,X ,u
� �

zP:W X ,uð Þ,

the Hamiltonian of the problem, where l#0.

If (X(t),u*(t)) is an optimal trajectory of the problem, then there

exists P tð Þ[ Rnð Þ1 (dual space of Rn), P(t) being absolutely

continuous, (l,P(t)) never vanishing, such that:

1. optimal trajectories meet the Hamiltonian equations:

1ð Þ _XXi~
Lh

LPi

, 2ð Þ _PPi~{
Lh

LXi

, ð17Þ

2. the Hamiltonian h(l,X(t),P(t),u*(t)) reaches its maximum with

respect to u at each time t M [0,T].

Note that (l,P(t)) is called the adjoint vector and that, in fixed

time T, the Hamiltonian h does not necessarily vanish.

When moreover W(X,u) or Q(Ȧw, X, u) is non-smooth with

respect to X (but at least Lipschitz continuous), which will happen

in the section where we consider the case of gradient constraints

on the control, the adjoint Equation 17 (2), has to be replaced by

its non-smooth version (see [42]):

_PP[{LX h l,X tð Þ,P tð Þ,u tð Þð Þ,

where hXh denotes Clarke’s generalized gradient of h with respect

to X.

Also, even in the classical case, since we assume the cost

function Q(Ȧw(u), X, u) to be strictly convex w.r.t. u, the condition

of maximizing the Hamiltonian h w.r.t. u can be replaced by (if the

maximum is not attained on the constraints):

0[Luh: ð18Þ
In any case, even if the cost function is not strictly convex w.r.t.

u, this condition is necessary in order to maximize the

Hamiltonian.

Nonexistence of abnormal trajectories. In this section we

consider a general exactly-fully-actuated system. An extremal is a

trajectory of the system meeting the necessary conditions provided

by the Maximum Principle. A singular extremal is an extremal

corresponding to l = 0 (or equivalently, to the minimum-time

problem). Extremals corresponding to l,0 are called regular.

A bang extremal is an extremal such that for almost all t M [0,T],

one of the control variables ui can take the two values

ui~u{
i or ui~uz

i only.

Here, an abnormal extremal is a singular extremal which is not

bang.

Since our system is feedback-linearizable, it admits no such

abnormal extremal. To the best of our knowledge, this fact has

been noticed for the first time in [60]. Let us briefly recall its proof.

Setting ẋ = y, P = (p,q) and X = (x,y), our Hamiltonian h, with

l = 0, can be rewritten as:

h~pyzqw x,y,uð Þ: ð19Þ

Note also that, for our mechanical systems, Q is linear with

respect to u, and u enters via the term M(x)21 (Equation 5).

Therefore the condition of maximum of the Hamiltonian for an

abnormal extremal gives q = 0. This has to be true along the

abnormal trajectory (not pointwise): q(t) = 0 for all t. Therefore,

differentiating, we get that q̇(t) = 0 also, but by the Hamiltonian

equations:

0~ _qq~{
Lh

dy
~p:

Then, p(t) has also to be zero. This is a contradiction with the

maximum principle, which prescribes that (l,p(t),q(t)) never

vanishes.

The statement of the Inactivation Principle. A rough

statement of the Inactivation Principle is as follows: provided that

the total duration T of the motion is not too large (compared to the

minimum time Tmin), then there is partial inactivation along an

optimal trajectory minimizing a compromise J(u) between the

absolute work and a comfort term (J(u) of the form given by

Equation 7, or more generally Equation 8). Moreover,

simultaneous periods of inactivation of all controls may appear

in a stable way (stable w.r.t small smooth perturbations of the cost,

or of the system).

Note that Tmin is the minimum time to reach the target from the

source. It does exist and it is reached by a bang-bang control, due

to absolute bounds on the values of controls.

This is not a theorem, but a principle. To transform the

statement into a theorem, we need precise technical assumptions.

Let us consider some optimal trajectory (X,u*) defined on [0,T],

and meeting the following two technical assumptions (H1,H2):

(H1) Continuity of optimal control: u*(t) is continuous on

[0,T],

(H2) Change of sign for optimal control: some compo-

nent u
1
i of optimal control changes sign at some time tc M

]0,T[,while yi (t) keeps constant sign. It means that there

are some times t1t2, t1,tc,t2, such that u
1
i t1ð Þu1i t2ð Þv0

and yi(t)?0 for t1#t#t2.

Theorem 2. (Inactivation Principle). Along a regular optimal

trajectory of Pð Þ meeting hypotheses (H1,H2) there is partial inactivation. If

all regular extremals are continuous, then some of them passing through an

arbitrary X[R2n have total inactivation.

Proof. Along the optimal trajectory, the Hamiltonian h of the

optimal control problem has to be maximum, which means by

Equation 18 that 0[Lui
h for all i = 1,…,p. But,

h l,X tð Þ,P tð Þ,u1 tð Þ
� �

~lQ _AAw,X ,u
1

� �
zP:W X ,u

1
� �

,

and l,0 since we consider regular trajectories only. The

maximum condition for the Hamiltonian gives:

0[Lui
h X tð Þ,P tð Þ,u1 tð Þ
� �

: ð20Þ

The variables X(t) and P(t) being also continuous, the quantity

Lui
h X tð Þ,P tð Þ,u1 tð Þ
� �

is an interval I(t) (degenerating to a point as

soon as u
1
i tð Þ=0 and moving continuously with the time t. At a

time tc when u
1
i tcð Þ~0, it is a nontrivial time interval I(tc), since LQ

L _AAw
and l are both different from zero. Hence, since u

1
i tð Þ changes sign

at tc, it takes a certain strictly positive amount of time to cross I(tc).

Then u
1
i tð Þ remains exactly equal to zero during some nontrivial
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time interval. This is partial inactivation. Continuing, we take an

arbitrary X = (x,y), with yi?0 for all i = 1,…,n and l = 21. We

denote by (M(x)21)i the ith column of the invertible matrix M(x)21.

Then, for u = 0, we compute the set S~Luh X ,P,uð Þ. If we set

P = (p,q), then due to the fact that
LP:W X ,uð Þ

Lui
~q

Lw x,y,0ð Þ
Lui

~

q M xð Þ{1
� �

i
, we can choose q in order that 0 be exactly the

center of the set S5Rn, which is a hypercube with nonempty

interior. It is clear by construction that the extremals starting from

this point (X,P,0), if continuous, have total inactivation.

This proof is illustrated in Figure 9.

Let us examine now the validity of the assumptions (H1,H2)

above. We have first the following result.

Lemma 1. The optimal controls u*(t) corresponding to regular

trajectories of Pð Þ are continuous w.r.t. t.

Proof. The lemma 11 in [61] states the following. Consider a

function f: Rp|X?Rz, where X is a manifold and f is

continuous, with the additional property that for each compact

K , X, the restriction fK~f Rpj |K is proper. Then,

Q xð Þ~infv[Rp f v,xð Þ is a well defined mapping, continuous over

X. Examination of the proof of this result shows that it holds also

for f: Rp|X?R. We apply this lemma to our Hamiltonian h. Due

to assumption A and to the fact that l,0, h(t,u) = h(X(t),P(t),u) is a

strictly concave function of u. Moreover, it is continuous since X(t)

and P(t) are continuous functions of t. Let u(t0) be a discontinuity

value of the optimal control u(t). It means that we can find a

sequence tnRt0 such that u(tn)Rû?u(t0). Applying the above-

mentioned lemma to 2h(t,u), where u here is the variable n in the

lemma, we get that tR2h(t,u(t)) is a continuous map. But the

minimum being unique, this contradicts the assumption

u(tn)Rû?u(t0).

Note that in general, optimal control may not be continuous:

consider Example 1 with T = Tmin (the minimum time). Since

there is no abnormal trajectory, the optimal control (which is also

the minimum-time control) jumps between the bounds u2 and u+.

This means that assumption (H1) holds provided that the

optimal trajectory is regular, which is the case in general when

T.Tmin. This is verifiable for instance for a cost of type

compromise Aw/Ae.

Indeed, consider a singular extremal with T.Tmin. Then this

extremal corresponds to an extremal of the minimum-time

problem. Thus, CTwC
1
Tmin

, where CT and C
1
Tmin

are the cost of

the singular extremal and the optimal cost of the minimum-time

problem, respectively. Since the value of minimum cost is a strictly

decreasing function of T on the time interval [Tmin,+‘[ (see

Theorem 1 in [43]), there is a contradiction.

Assumption (H2) (the change of sign of the optimal control) is

also true in general. This can be proved in the following way.

The input-state mapping

PS : L?
0,T½ �,Rn?C0

0,T½ �,R2n ,

is continuous for the *-weak topology over L?
0,T½ �,Rn [59]. When

TRTmin from above, we consider the restriction uT of the optimal

control to the interval [0,Tmin]. This defines a sequence of controls

that (by boundedness) we can assume to be *-weak convergent to

some control u*(t). By construction, this u*(t) is a minimum time

control. Since uT(t) is continuous, if T is close enough to Tmin, uT(t)

has sign changes close to the sign changes of the minimum-time

control u*(t).

The fact that the minimum time control u*(t) has changes of sign

can be checked directly.

For instance, in Example 1, minimum time control can only

commute between the values u2,u+. These values are large

enough. Hence if there is no commutation, the control is constant

and large. Therefore ẏ(t) has constant sign and y(t) cannot go from

zero to zero.

Remark 4. The previous reasoning shows that in general

inactivation is located around instants that are close to the instants

where the minimum time-control changes sign (commutes). This

reasoning also shows that inactivation occurs automatically for a

duration T of the motion sufficiently close to the minimum time

Tmin. This is coherent with practical observations showing that for

larger T, simultaneous inactivation of agonistic and antagonistic

muscles disappear.

The necessity of the absolute work term for

inactivation. The purpose of this section is to show that, for

the occurrence of inactivation in optimal trajectories, it is

necessary that the minimized integral cost contains a term ‘‘like

the absolute work’’. This means a term with some non-smoothness

at u = 0 (remind that ui = 0 corresponds to inactivation at the level

of the ith degree of freedom).

We fix a ‘‘source-point’’ Xs[R2n, a ‘‘target-point’’ Xt[R2n, and a

time T.0. The points Xs and Xt correspond to zero velocity, i.e.,

are of the form (x, ẋ) with ẋ = 0. Given a function f on R3n, we

define the following optimal control problem:

Pf

� �
minimize the cost J uð Þ~

ðT

0

f X ,uð Þdt, among the

trajectories of Equation 2 joining Xs to Xt:

We also set F(X) =W(X,0).

Theorem 3. There exists an open and dense subset O of C? R3n,R
� �

(endowed with the C‘ Whitney topology) such that, if f M O, then Pf

� �
does

not admit minimizing controls which vanish on a subinterval of [0,T], except

maybe if the associated trajectory is an equilibrium point of F. In addition, for

every integer m, the set O can be chosen so that its complement has codimension

larger than m.

Figure 9. Intuitive illustration of the Inactivation Principle
proof.
doi:10.1371/journal.pcbi.1000194.g009
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Remark 5. (1) In the previous theorem, we use the Whitney

topology over the set of cost functions f to be minimized. It is the

usual topology in this setting. If we restrict to a fixed compact set, it

is equivalent to consider the usual topology of C‘ convergence

over this compact set. (2) The fact that the bad set (the set of

exceptional cost functions for which inactivation can be optimal)

has codimension infinity (i.e., codimension larger than m, for all m)

means that the good set is extremely large.

The proof of this theorem is given in Supporting Information

(Text S1).

The gist of the proof is the following: we assume that the cost

function is smooth, and we show that (up to exceptional and

unstable cases for the cost), the only optimal trajectories that are

constant can be either equilibria trajectories or bang trajectories

(i.e., trajectories lying in the boundary of the control set). This is

done by using transversality arguments: Thom’s transversality

theorem simply states in precise mathematical terms that,

‘‘generically’’, mathematical objects are in ‘‘general position’’.

For instance (see Page 67 in [40]), consider the following

statement: if f is a continuously differentiable function, ‘‘almost

all’’ horizontal lines are nowhere tangent to the graph of f. This

statement illustrates a type of reasoning that is common in

differential topology. Transversality gives the necessary framework

to justify such kinds of properties.

Roughly speaking, for inactivation to be optimal in a stable way

(i.e., remain optimal while not overly perturbing the cost to be

minimized) then it is necessary that the cost function f is non-

smooth at u = 0.

A similar theorem holds also for partial inactivation (inactiva-

tion of one control at least, on some nontrivial time-interval). But

in that case, for technical reasons, we have to restrict to the open

set SC of C‘-smooth functions all f that are moreover strictly

convex with respect to u. Here and only here, by strictly convex,

we mean the assumption that the Hessian of f w.r.t. u is

everywhere positive-definite. This assumption clearly defines an

open subset SC5C? R3n,R
� �

for the Whitney topology.

Theorem 4. There exists an open and dense subset O9 of SC such that,

if f M O9, then Pf

� �
does not admit minimizing controls, a component of

which vanishes on a subinterval of [0,T] (again except maybe if the associated

trajectory is an equilibrium point of F).

The proof of this more difficult result is also given in Supporting

Information (Text S1).

Detailed results for the one and two-degree of freedom

arms. The 1-dof case, n = 1. This case has been extensively

studied in [43]. Here we just revisit the main results. Notice that

the following results are obtained with Example 3 by minimizing

the compromise Aw/Ae.

In Figure 1, we have depicted the results we get for an upward

motion in the case of gradient constraints on the control. This is

the reason why we have moreover a gradient constraint reached at

the beginning and at the end of the motion. However, in this

figure, one can see very clearly the inactivation interval which

illustrates the Inactivation Principle.

We obtained the following seven different optimal strategies for

an upward movement, the equations of which are established from

Pontryagin’s Maximum Principle. Each of them is an optimal

solution of the problem, depending on the explicit values of the

parameters, like the movement duration T or the weighting

parameter a.

In the following, (p,q) will denote the adjoint vector, and (p0,q0)

will denote its initial value at t = 0.

The 7 qualitative types of optimal strategies are denoted by Sj,

j = 1,…,7 and correspond to the following sequences of controls:

(S1) (bang-max, bang-min):

u~uzð Þ? u~u{ð Þ;

(S2) The most general strategy (regular-bang, regular

non-bang, inactive, regular non-bang, regular-bang):

u~uzð Þ? u~ q{y
2a zk

� �
? u~0ð Þ

? u~ qzy
2a zk

� �
? u~u{ð Þ;

(S3) (regular non-bang, inactive, regular non-bang,

regular-bang):

u~ q{y
2a zk

� �
? u~0ð Þ

? u~ qzy
2a zk

� �
? u~u{ð Þ;

(S4) (regular-bang, regular non-bang, inactive, regular

non-bang):

u~uzð Þ? u~ q{y
2a zk

� �
? u~0ð Þ

? u~ qzy
2a zk

� �
;

(S5) (regular non-bang, inactive, regular non-bang):

u~
q{y

2a
zk

� �
? u~0ð Þ? u~

qzy

2a
zk

� �
;

(S6) (regular-bang, regular non-bang):

u~uzð Þ? u~
q{y

2a
zk

� �
;

(S7) (regular non-bang only):

u~
q{y

2a
zk

� �
:

The ‘‘inactive’’ pieces are inactivation periods, u = 0.

In the following we describe in details the strategies (S1)

(minimum time) and (S2).

We will use the notations ui(t), qi(t), xi(t), yi(t), for t M [0,ti] and i$1

for the functions u,q,x,y on the interval
Pi{1

j~0 tj ,
Pi

j~0 tj

h i
with

t0 = 0. For instance, u2(t) means u(t+t1) for t M [0,t2] and u3(t) means

u(t+t1+t2) for t M [0,t3].
Case S1. Fastest possible movements, critical time

Tc = Tmin. This is the singular case, corresponding to the

quickest possible movement. This solution is bang, i.e., depends

only upon the constraints u+, u2.

The corresponding equations for the solutions are the following,

assuming the small angles approximation:

N For t M [0,t1]

u1 ~ uz

y1 ~ uz{kð Þt
q1 ~ q0{p0t

x1 ~ xsz uz{kð Þ t2

2

8>>><>>>:

The Inactivation Principle
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N For t M [0,Tc2t1] (t2 = Tc2t1)

u2 ~ u{

y2 ~ y1 t1ð Þ{ k{u{ð Þt
q2 ~ q1 t1ð Þ{p0t

x2 ~ x1 t1ð Þzy1 t1ð Þt{ k{u{ð Þ t2

2

8>>><>>>:
with

Tc~Tmin~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dx uz{u{ð Þ
k{u{ð Þ uz{kð Þ

s
,

and commutation time t1,

t1~
k{u{ð ÞTc

2uz{k{u{
:

Case S2. The most general strategy, five-piece

trajectories. this case is also the most complicated scenario

and it appears when movement duration is close to Tmin, but with

T.Tmin.

N For t M [0,t1]

u1 ~ uz

y1 ~ uz{kð Þt
q1 ~ q0z uz{p0ð Þt
x1 ~ xsz uz{kð Þ t2

2

8>>><>>>:
N For t M [0,t2]

u2 ~ uzz k{p0

2a t

y2 ~ y1 t1ð Þz uz{kð Þtz k{p0

4a t2

q2 ~ q1 t1ð Þz uz{p0ð Þtz k{p0

4a t2

x2 ~ x1 t1ð Þzy1 t1ð Þtz uz{k
2

t2z k{p0

12a t3

8>>>>><>>>>>:
N For t M [0,t3]

u3 ~ 0

y3 ~ y2 t2ð Þ{kt

q3 ~ q2 t2ð Þ{p0t

x3 ~ x2 t2ð Þzy2 t2ð Þt{ kt2

2

8>>><>>>:
N For t M [0,t4]

u4 ~ { k{p0

2a t

y4 ~ y3 t3ð Þ{kt{ kzp0

4a t2

q4 ~ q3 t3ð Þ{p0t{ kzp0

4a t2

x4 ~ x3 t3ð Þzy3 t3ð Þt{ k
2

t2{ kzp0

12a t3

8>>>>><>>>>>:

N For t M [0,t5]

u5 ~ u{

y5 ~ y4 t4ð Þ{ k{u{ð Þt
q5 ~ q4 t4ð Þ{ u{zp0ð Þt
x5 ~ x4 t4ð Þzy4 t4ð Þt{ k{u{ð Þ t2

2

8>>><>>>:

The commutation times ti meet:

t1~
q0z2a k{uzð Þ

p0{k
,

t2~
2auz

p0{k
,

t3~2
2akzq0ð Þ uz{kð Þ{a uzð Þ2

p0{kð Þ p0zkð Þ ,

t4~{ 2au{

kzp0
,

t5~
q0z2akð Þ uz{kð Þ{a uzð Þ2z u{ð Þ2{2ku{ð Þ

p0zkð Þ k{u{ð Þ :

Of course, we have ti.0 for all i and
P5

i~1 ti~T . This implies

several constraints on p0 and q0. The initial adjoint vector can be

computed by requiring that y5(t5) = 0 and x5(t5) = xt. Explicit

formulae for p0 and q0 cannot be obtained but it is numerically

easy to compute these values, and to check if they are compatible

with the conditions above.

Figure 10 illustrates the different strategies, except the most

general, strategy (S2), which was depicted in Figure 1 in the case of

gradient constraints on the control.

As shown in this figure, inactivation occurs for T not too large.

The time T2 at which total inactivation disappears may be of

importance for experimenters.

We have computed it using the small angles assumption:

T2~

ffiffiffiffiffiffiffiffiffiffi
6Dx

uz{k

q
for uz

ƒ2k,

T2~

ffiffiffiffiffiffi
6Dx

k

q
elsewhere:

In this analysis, computations are tedious, but quite easy:

optimal control of a linear system with strictly convex (piecewise

quadratic) cost function. Hence all the results in this section are

obtained directly with the Maximum Principle.

Importantly, it can be shown (by comparisons) that the whole

optimal trajectories are entirely in {y$0} or {y#0}. Therefore,

there is just non-smoothness w.r.t. u, and we need only the usual

Pontryagin’s Maximum Principle (no necessity of Clarke’s version

in this case).

Let us give more insights concerning the optimal synthesis.

Consider the Hamiltonian H of the problem:

H~{l y uj jza u{kð Þ2
� �

zpyzq u{kð Þ, ð21Þ

where l$0 is the constant additional adjoint variable, and (p,q) is

the adjoint vector to (x,y). We can take l = 1 since singular

extremals do not appear for T.Tmin.

We set z = q2y and w = q+y. The condition y$0 is now w$z.

Figure 11 shows the (z,w) phase portrait of the optimal

trajectories obtained from the maximization of the Hamiltonian

The Inactivation Principle
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Figure 10. Different optimal strategies in the 1-dof case, depending on the movement duration T. The strategy S1 depicts the fastest
movement w.r.t. the bounds imposed on the control. Strategy S2 was depicted in Figure 1 with gradient constraints on the control u. Strategies S3,
S4, and S5 show inactivation phases (as well as S2). An inactivation phase corresponds to the period where the control signal u is zero. When T
becomes large (T$0.6 s in this case), the inactivation disappears (S6 and S7 strategies) according to experimental findings. The angular position and
velocity and the control signal are given in radians, rad/s, and rad/s2, respectively. Note that the control signal u corresponds to the ratio between the
net torque acting at shoulder joint and the arm’s moment of inertia.
doi:10.1371/journal.pcbi.1000194.g010
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w.r.t. u when p0.k. The typical trajectory drawn in the half-plane

y$0 (i.e., w$z) corresponds to the most general trajectories (S2).

The 2-dof case. Again, we want to minimize the compromise

Aw/Ae.

We write the Hamiltonian in the 2-dof case, omitting

dependence of different terms w.r.t. variables x1, x2. The adjoint

vector is denoted here (p1,p2,q1,q2).

H~{l y1u1j jz y2u2j jza1 _yy2
1za2 _yy2

2


 �
zp1y1zp2y2zq1 _yy1zq2 _yy2:

Then Pontryagin’s equations of the Maximum Principle are:

_xx1~y1

_xx2~y2

_yy1~H11: u1{G1zh: y2
2z2y1y2

� �
{B11y1{B12y2

� �
zH12: u2{G2{h:y2

1{B21y1{B22y2

� �

_yy2~H21: u1{G1zh: y2
2z2y1y2

� �
{B11y1{B12y2

� �
zH22: u2{G2{h:y2

1{B21y1{B22y2

� �

_pp1~ H11
LG1

Lx1
zH12

LG2

Lx1

� �
{2a1 _yy1zq1ð Þ

z H21
LG1

Lx1
zH22

LG2

Lx1

� �
{2a2 _yy2zq2ð Þ

Figure 11. Phase portrait for p0$k in the plane (z,w). The bisector (z = w) corresponds to the set of velocities equal to zero. The upper and
lower semi-plane corresponds to positive and negative angular velocities, respectively. An optimal path starts and ends on this line. This figure
illustrates the optimal phase portrait corresponding to the S2 strategy (for an upward motion). Regions are denoted by boxed numbers and the
commutation times correspond to switches between regions. For instance Region 5 corresponds to the inactivation region (i.e., the control signal is
zero here). Note that the different strategies illustrated in Figure 10 are easily understood with this phase portrait, since optimal paths may start and
end in different regions. The constants k, aU, aD, and u+ and u2 are parameters depending respectively on the mechanical model of the arm, the
coefficients involved in our cost function, and the boundary values imposed on the control u.
doi:10.1371/journal.pcbi.1000194.g011
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_pp2~ 2a1 _yy1{q1ð Þ H11 {
LG1

Lx2

z
Lh

Lx2

y2
2z2y1y2

� �� �
z

LH11

Lx2

u1{G1zh: y2
2z2y1y2

� �
{B11y1{B12y2

� �
zH12 {

LG2

Lx2
{

Lh

Lx2
y2

1

� 
z

LH12

Lx2
u2{G2{h:y2

1{B21y1{B22y2

� ��
z 2a2 _yy2{q2ð Þ H21 {

LG1

Lx2
z

Lh

Lx2
y2

2z2y1y2

� �� �
z

LH21

Lx2
u1{G1zh: y2

2z2y1y2

� �
{B11y1{B12y2

� �
zH22 {

LG2

Lx2

{
Lh

Lx2

y2
1

� 
z

LH22

Lx2
u2{G2{h:y2

1{B21y1{B22y2

� ��

_qq1~sign y1ð Þ u1j j{p1z 2a1 _yy1{q1ð Þ

|H11 h:2y2{B11ð ÞzH12: {h:2y1{B21ð Þ
�

z 2a2 _yy2{q2ð Þ H21 h:2y2{B11ð Þ
�

zH22: {h:2y1{B21ð Þ
�

_qq2~sign y2ð Þ u2j j{p2z 2a1 _yy1{q1ð Þ

|H11 h: 2y2z2y1ð Þ{B12ð ÞzH12: {B22ð Þ
�

z 2a2 _yy2{q2ð Þ H21 h: 2y2z2y1ð Þ{B12ð Þ
�

zH22: {B22ð Þ
�

Singular extremals (l = 0) again do not appear for T.Tmin.

Hence we take l = 1 and we have to maximize the following w.r.t.

u1,u2:

H u1,u2ð Þ { y1u1j jz y2u2j jf

za1 H11: u1{G1zh: y2
2z2y1y2

� ���
{B11y1{B12y2�

zH12: u2{G2{h:y2
1{B21y1{B22y2

� ��2

za2 H21: u1{G1zh: y2
2z2y1y2

� ���
{B11y1{B12y2�

zH22: u2{G2{h:y2
1{B21y1{B22y2

� ��2
o

zq1 H11: u1{G1zh: y2
2z2y1y2

� ���
{B11y1{B12y2�

zH12: u2{G2{h:y2
1{B21y1{B22y2

� ��
zq2 H21: u1{G1zh: y2

2z2y1y2

� ���
{B11y1{B12y2�

zH22: u2{G2{h:y2
1{B21y1{B22y2

� ��

We discuss this maximization in terms of the 9 regions in the u1,u2

plane corresponding to the ‘‘stratification by the sign of

coordinates’’.

This is done in Supporting Information (Text S1) where we

explain how to compute the extremals.

Notice that, as in the 1-dof case, many different strategies can

occur, with or without inactivation at each joint. The case of total

inactivation of both controls is also possible.

Numerical solutions are depicted in Figure 2.

The case of gradient constraints on the torques. This is a

rather simple extension of the theory. The results obtained in the

1-dof case have already been depicted in Figure 1. Here, we

explain what happens in this case only, however the case of 2-dof is

similar.

In this problem, we require moreover that the derivative of the

torque u is bounded.

We introduce the new control v = u̇ and the problem may be

rewritten, as (taking possibly frictions into account):

_xx~y, _yy~Q x,yð Þzu, _uu~v

v{
ƒvƒvz,v{

v0,vz
w0,

min
v

J vð Þ~Awz

ðT

0

~ff X ,uð Þdt:

Now the cost function is not differentiable anymore with respect

to the state (in place of the control in previous sections). Therefore,

Clarke’s non-smooth version of the Maximum Principle is needed

[42].

If (p,q,r) denotes now the adjoint variables, we get:

~HH~{l y uj jz~ff x,y,uð Þ
� �

zpyzq u{k cos xð Þzrv:

Once again, x,y,p,q,r,u are continuous (by nature now, just as

classical solutions of differential equations). The a priori fact that y

remains positive is just checked numerically. However, it is

expectable from the results obtained without gradient constraints

on the torques.

Also, for similar reasons as in a previous subsection, the abnormal

extremals may be excluded: maximality of the Hamiltonian for non-

bang trajectories implies that r is identically zero, which implies,

with two successive differentiations, that q and p respectively are also

identically zero. Total adjoint vector is zero, which contradicts the

maximum principle. Hence we may assume l = 1.

We assume that the gradient constraints n2 and n+ are large

enough for the optimal control to be of the following type: gradient

constraints which are active only at the beginning and at the end

of the motion. If we refer to the scenario occurring in 1-dof case,

this should be what happens: without the gradient constraints, the

gradient is never large. Then, there will be saturation of the

gradient constraints only because of the jumps at the beginning

and at the end of the motion. Numerical computations confirm

this scenario, as illustrated in Figure 1.

For instance, consider that xt.xs, i.e., an upward movement.

Then, to connect (in optimal way) the source (xs,0,us) to the target

(xt,0,ut), where us and ut are the stationary torques corresponding

respectively to the equilibrium positions xs and xt, the strategy must

be as follows: n = n+, for 0#t,T1; n2,n,n+ for T1#t#T2; n = n2

for T2,t#T.
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Therefore, inside the interval [T1,T2], the Hamiltonian is

maximum w.r.t. n and we must have r(t) = 0. Therefore dr
dt

~0. But

by Clarke’s maximum principle, it means that

dr
dt
[{Lu

eHH~yIz Leff
Lu

{q, in which I is the Clarke’s gradient of

the absolute value function at zero, i.e., I = [21,1].

Since dr
dt

~0, we conclude:

0[{Lu
eHH~yIz

Leff
Lu

{q:

This equation was exactly the cause of the presence of inactivation

when we proved the Inactivation Principle: it is Equation 20.

Therefore, the inactivation phenomenon persists under torque

gradient constraints.

Notice that, adding gradient constraints also permits getting

smoother velocity profiles with zero-acceleration at the initial and

final times.

The Inactivation Principle for agonistic-antagonistic

torques. The purpose here is to show that the Inactivation

Principle persists when considering that two opposing torques act

at each joint (one agonistic and one antagonistic). This is the case

m = 2n of the Theoretical Analysis Subsection.

For this analysis, we consider that u = u12u2, where

0ƒu1iƒuz
i and 0ƒu2iƒ{u{

i . Then u1i (resp. u2i) are the

agonistic (resp. antagonistic) generalized torque applied at the ith

degree of freedom.

For the case of net torque u, the cost that we consider is the

compromise given by Equation 4, i.e.,

J uð Þ~
ðT
0

eff x,y,uð ÞdtzAw,

with:

Aw~

ðT

0

Xn

i~1

uiyij jdt:

It means that, for agonistic-antagonistic torques, we shall

minimize:

J 0 u1,u2ð Þ~
ðT
0

eff x,y,u1{u2ð ÞdtzAw0,

where Aw9 is the total absolute work of external torques:

Aw0~

ðT

0

Xn

i~1

u1iyij jz
Xn

i~1

u2iyij j
 !

dt:

Firstly, let us assume that u1, u2 minimize J9, with optimal value

J9*. Consider u = u12u2.

Clearly, u applied to the system:

€xx~w x, _xx,uð Þ, ð22Þ

and, u1, u2 applied to the system:

€xx~w x, _xx,u1{u2ð Þ, ð23Þ

produce identical x-trajectories.

Therefore,

J uð Þ~
ðT
0

eff x,y,u1{u2ð Þz
Xn

i~1

u1i{u2ið Þyij j
 !

dt,

ƒ

ðT
0

eff x,y,u1{u2ð Þz
Xn

i~1

u1iyij jz
Xn

i~1

u2iyij jÞ
 !

dt,

~J 0 u1,u2ð Þ~J 0
1

This shows that the minimum J* = minuJ(u)#J9*.

Conversely, assume that u attains the minimum J* of J(u). We

define u1, u2 from u as follows (for i = 1..n):

u1i tð Þ~ui tð Þ if ui tð Þw0,

~0 elsewhere, and

u2i tð Þ~{ui tð Þ if ui tð Þv0,

~0 elsewhere:

ð24Þ

Again u12u2 = u. Hence applying u to Equation 22 produces the

same x-trajectory as applying u12u2 to Equation 23. Therefore, by

definition of u1, u2, we have:

J 0 u1,u2ð Þ~
ðT
0

eff x,y,u1{u2ð Þz
Xn

i~1

u1iyij jz u2iyij j
 !

dt,

~

ðT
0

eff x,y,u1{u2ð Þz
Xn

i~1

u1i{u2ið Þyij j
 !

dt,

It means that:

J 0 u1,u2ð Þ~J
1
, ð25Þ

which implies that J9*#J*. It is now clear that J9* = J*, and also

by Equation 25 the minimum is reached by in Equation 24.

Notably, by construction, the torques u1i, u2i have simultaneous

inactivation only when ui = 0, for i = 1..n.

We have proved the following theorem:

Theorem 5. (Simultaneous inactivation for agonistic-

antagonistic torques). In the case of agonistic-antagonistic torques,

minimizing a cost containing the absolute work leads to a simultaneous

inactivation of both torques, exactly at the same times where the optimal net

torque is inactive.

Dynamics of the muscles and the triphasic pattern. In

this section, we still consider agonistic-antagonistic torques, but we

assume some dynamics on each muscle. For the sake of simplicity,

we assume a first order dynamics on the muscles, but this

restriction is not crucial. Also, we present the results in the 1-dof

case (n = 1) and we make the small angles assumption, in order to

make the computations more tractable.
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As in previous subsections, we minimize the compromise Aw/

Ae.

Then, adding the first order time constants s1, s2 on both

muscles, we get the following control system:

_xx~y

_yy~u1{u2{k

_uu1~{ u1

s1
zv1

_uu2~{ u2

s2
zv2

8>>><>>>: ð26Þ

with n1, n2$0.

We look for the minimum min
v1,v2

Ð T

0
yu1zyu2za _yy2 dt.

For this, we use the a priori fact (which is checked numerically)

that, as in the case of torque control, y remains positive during the

upward motion [43]. The Hamiltonian may be written as:

H~{y u1zu2ð Þ{a u1{u2{kð Þ2zpy

zq u1{u2{kð Þzr1 {
u1

s1
zv1

� �
zr2 {

u2

s2
zv2

� �

At this point, there is an important technical detail that

physiologically makes sense. It can be understood as muscular co-

activation at the end of the motion, a well know phenomenon in

physiology.

Due to the first order linear dynamics on the muscles, and the

constraints ui$0, we can only go back to zero asymptotically.

Therefore, the terminal condition ut
2~k is impossible, i.e., the

antagonistic torque cannot go back to exactly zero at the end of

the movement.

Hence we require, with e.0:

Ið Þus
1~k and us

2~0,

IIð Þut
1~kze and ut

2~e:
ð27Þ

Notice that when modeling muscles dynamics, the initial and

final values of both agonistic and antagonistic torques must be

specified in order to maintain the arm at equilibrium.

Requirement (II) is the co-activation at terminal time T. Then,

explicit computations with the Maximum Principle, together with

a numerical research of the commutation times, show that the

optimal scenario is as shown in Figure 12.

One can recognize the classical scenario called ‘‘triphasic

pattern’’ [62], namely: an agonistic burst followed by an

antagonistic burst followed again by an agonistic burst (the

scenario ends with the above mentioned co-contraction of the

muscles).

In fact, our theory shows that it may be called ‘‘quadriphasic

pattern’’ since there is an inactivation interval between the first

agonistic pulse and the antagonistic one.

Supporting Information

Text S1 Some Mathematical Details and Technical Proofs

Found at: doi:10.1371/journal.pcbi.1000194.s001 (0.12 MB PDF)
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