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Abstract

The Joint Evolutionary Trees (JET) method detects protein interfaces, the core residues involved in the folding process, and
residues susceptible to site-directed mutagenesis and relevant to molecular recognition. The approach, based on the
Evolutionary Trace (ET) method, introduces a novel way to treat evolutionary information. Families of homologous
sequences are analyzed through a Gibbs-like sampling of distance trees to reduce effects of erroneous multiple alignment
and impacts of weakly homologous sequences on distance tree construction. The sampling method makes sequence
analysis more sensitive to functional and structural importance of individual residues by avoiding effects of the
overrepresentation of highly homologous sequences and improves computational efficiency. A carefully designed
clustering method is parametrized on the target structure to detect and extend patches on protein surfaces into predicted
interaction sites. Clustering takes into account residues’ physical-chemical properties as well as conservation. Large-scale
application of JET requires the system to be adjustable for different datasets and to guarantee predictions even if the signal
is low. Flexibility was achieved by a careful treatment of the number of retrieved sequences, the amino acid distance
between sequences, and the selective thresholds for cluster identification. An iterative version of JET (iJET) that guarantees
finding the most likely interface residues is proposed as the appropriate tool for large-scale predictions. Tests are carried out
on the Huang database of 62 heterodimer, homodimer, and transient complexes and on 265 interfaces belonging to signal
transduction proteins, enzymes, inhibitors, antibodies, antigens, and others. A specific set of proteins chosen for their
special functional and structural properties illustrate JET behavior on a large variety of interactions covering proteins,
ligands, DNA, and RNA. JET is compared at a large scale to ET and to Consurf, Rate4Site, siteFiNDER|3D, and SCORECONS on
specific structures. A significant improvement in performance and computational efficiency is shown.
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Introduction

Interface residues are essential for understanding interaction

mechanisms and are often potential drug targets. Reliable

identification of residues that belong to a protein-protein interface

typically requires information on protein structures [1] and

knowledge of both partners. Unfortunately, this information is

often unavailable and for this reason, reliable site prediction using

a single protein, independently from its partners, becomes

particularly valuable. Interactions of a protein with ligands, other

proteins, DNA or RNA are all characterized by sites which either

are conserved, present specific physical-chemical properties or fit a

given geometrical shape [2,3]. At times, the interface presents a

mixture of these three signals.

Interfaces differ from the rest of the protein surface typically

because buried interface residues are more conserved than

partially buried ones and because the sequences associated with

interfaces have undergone few insertions or deletions. However,

on average, the most conserved patches of residues overlap only

the 37.5% (628%) of the actual protein interface and an analysis

of 64 different types of protein interfaces (formed from close

homologs/orthologs or from diverse homologs/paralogs) demon-

strated that conserved patches cannot clearly discriminate protein

interfaces [4].

The composition of interacting residues appears to distinguish

between different types of interfaces [5,6]. In particular,

hydrophobic residues [7] and specific charge distributions [5,8]

have been shown to be characteristic of protein-protein interfaces.

Protein interaction sites with ligands, DNA and RNA are usually

highly conserved and the signal of conservation is likely to be

sufficient for good predictions. The same does not hold true for

protein-protein interfaces, where we show that combining

information coming from conservation and the specific physical-

chemical properties of the interacting residues, enhances the

signal.

We propose a predictive method, named Joint Evolutionary

Trees (JET), that extracts the level of conservation of each protein

residue from evolutionary information, combines this information

with specific physical-chemical properties of the residues, and

predicts conserved patches on the protein surface of known three-

dimensional structures. Defined in this way, JET is able to detect

protein interfaces with very different types. It does not require

information on potential interaction partners and it belongs to the

family of methods which have been inspired by the Evolutionary
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Trace approach (ET) [9,10]. Similarly to ET, JET analyzes a

protein sequence P and structure, and finds information (from a

careful analysis of the evolutionary distances between sequences

homologous to P) on binding interfaces by detecting conserved

patches on the surface of the structure of P. JET has been designed

with large-scale applications in mind which requires the approach

to be adjustable for different datasets and to guarantee predictions

even with weak signals. Because of this, various evolutionary

hypotheses on protein interfaces have been tested and new

methodological approaches have been developed within JET.

Two main hypothesis on interaction sites have been tested. The

first asserts that specific physical-chemical properties of patches

always co-exist with some degree of conservation of the patch. The

second claims that interaction sites on a protein surface are

composed of an internal core which is conserved, with concentric

layers of residues around the core which are progressively less

conserved.

We also addressed four main methodological points. The first

concerns the problem of accurately quantifying the strength of

residue conservation in a set of sequences whose similarity to P has

been automatically evaluated by PSI-BLAST. This means

reducing the interfering effects of sequences wrongly selected by

PSI-BLAST (that is, sequences that are not homologous to P) on

the topology of the associated distance tree, and ensuring, as far as

possible, diverse sequence identity within the samples. To this end,

we introduce a new discrete combinatorial paradigm of compu-

tation to investigate potentially large sets of biological sequences by

randomly sampling small subsets a sufficient number of times to

ensure statistical overlap of the sampled sets. This method turns

out to be powerful and also computationally efficient.

The second point concerns the core of the ET methodology

which relies on the definition of a trace, a notion that quantifies the

conservation of a residue position within a distance tree of

sequences similar to P and that was originally introduced in [9].

This definition turns out to be insufficient to properly characterize

residue conservation and a ‘‘hybrid’’ definition was proposed in

[11] which combines the original notion of a trace, based on tree

topology, with information entropy of the residue position within

the pool of aligned sequences. In JET, we clarify the limits of the

original combinatorial definition by redefining a trace based on

tree topology and demonstrate that information entropy is not

required.

The third point concerns the evaluation of patches of conserved

residues as potential internal cores of interaction sites. We tested

the hypothesis that such cores correspond to the largest patches

found for the protein and observed that this is generally the case. A

novel method estimating the size of relevant clusters of conserved

residues and of clusters of residues with specific physical-chemical

properties has been tailored around the specific protein being

treated P. The method is based on a random generation of clusters

over the protein surface of the protein in question P. An

evaluation of the size of a cluster based on a random generation

is used also in [11]. The important difference between the two

approaches is that, in the latter case, the estimation is made for

arbitrary proteins.

Finally, since JET is based on the random choice of small sets of

sequences for constructing multiple trees, it could yield slightly

different answers in different runs. This fluctuation has been

analyzed and exploited to further improve our algorithm. An

iterative version of JET (iJET) provides a list of consensus residues

belonging to interaction patches. When JET is used for large-scale

analyses, this turns out to be a safe and successful approach. When

the user uses JET on a single protein, it is possible to run it once, or

to explore the set of potentially interacting residues by varying a

consensus threshold during iterations. In difficult cases, this can

allow the user to refine the detection of interacting residues.

Materials and Methods

The sequence S corresponding to the available PDB structure is

called reference sequence.

Below, we describe in detail the basic steps constituting JET.

The methods developed for each step are designed for large-scale

applications. The aim is to insure that the system always provides a

prediction even with weak signals. To achieve this we made the

approach adaptable to different datasets in terms of the number of

retrieved sequences, the amino acid distance between sequences,

and the selective thresholds for cluster identification.

JET first recovers a set of sequences homologous to S using PSI-

BLAST and selects a pool of sequences that uniformly represents a

broad range of sequence identities. These sequences are then used

to construct a large number of small distance trees that will be

analyzed to determine the importance of the residues in S. Based

on the residue ranking JET clusters together the most important

residues and detects patches on the surface of the three-

dimensional structure, predicted to be potential binding sites.

PSI-BLAST Search
JET performs a PSI-BLAST search [12] at http://www.ncbi.

nlm.nih.gov/Blast.cgi, or locally, to select as many as 5000

sequences. It does it on chains with at least 20 residues. Retrieved

sequences are filtered to eliminate redundant sequences, that is

sequences with .98% sequence identity to S, and to eliminate

very divergent sequences, that is sequences with ,20% sequence

identity.

A second filter is defined on the length of the alignment which

should cover at least the 80% of the length of the reference

sequence S, and on the number of inserted gaps which should be

,10% of the size of the alignment.

A third filter cuts-off sequences with an e-value $1025.

If the pool of remaining sequences does not contain at least 100

sequences, then the cut-off on the length of retrieved alignments is

automatically decreased by 10% of the length of S progressively

until reaching 51% of the length of the reference sequence (this

condition ensures that all selected sequences will overlap with each

other). If the number of sequences retrieved is insufficient, we reset

Author Summary

Information obtained on the structure of macromolecular
complexes is important for identifying functionally impor-
tant partners but also for determining how such interac-
tions will be perturbed by natural or engineered site
mutations. Hence, to fully understand or control biological
processes we need to predict in the most accurate manner
protein interfaces for a protein structure, possibly without
knowing its partners. Joint Evolutionary Trees (JET) is a
method designed to detect very different types of
interactions of a protein with another protein, ligands,
DNA, and RNA. It uses a carefully designed sampling
method, making sequence analysis more sensitive to the
functional and structural importance of individual residues,
and a clustering method parametrized on the target
structure for the detection of patches on protein surfaces
and their extension into predicted interaction sites. JET is a
large-scale method, highly accurate and potentially
applicable to search for protein partners.

Joint Evolutionary Trees Detect Protein Interfaces
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the length of the alignment to 80% of the length of the reference

sequence S and restart the analysis with an e-value of 1024. We

repeatedly increase the e-value and decrease the length by filtering

sequences progressively with e-values 1023, 1022, 1021, 1, 10,

100, until a sufficient number of sequences is retrieved.

At the end of the retrieval step we obtain a set S of selected

sequences.

Gibbs-like Sampling of Sequences Chosen with PSI-
BLAST

We want to align small sets of ST sequences in S approximately

NT times. With the purpose of using most of the information

contained in S and to guarantee overlapping of sequences among

trees, we set ST~NT~
ffiffiffiffiffiffi
Sj j

p
whenever Sj jw100 and we fix

ST ,NT~10 otherwise. Each set of ST sequences contains the

reference sequence S. Since the distribution of sequences based on

sequence identity might not be uniform, we order sequences in S
in four classes characterized by 20–39% (including 20 and 39), 40–

59%, 60–79%, and 80–98% sequence identity. This ensures a

comparable set of representatives for different groups of identity

within each set of aligned sequences. We then randomly select

ST=4 distinct sequences from each class. (If ST=4 is not an integer,

we pick the remaining sequences, that is vST=4 sequences,

successively, starting from the class of sequences characterized by

the smallest sequence identity.) We require that each class contains

enough sequences to ensure diversity within the NT generated

alignments. Ideally, this corresponds to requiring that the

inequality C
ST=4
Ni

§2:NT holds, where Ni is the number of distinct

sequences in the i{th class with i~1 . . . 4. In practice, we may

find classes with insufficiently varied sequences to supply the NT

sets to be aligned. In this case, if the class is empty, we ignore it. If

it is not empty, we decrease the number of sequences to pick up

within this class to a maximum x such that Cx
Ni

§2:NT . We pick

the missing ST=4ð Þ{x sequences from the other classes, satisfying

C
ST=4
Ni

§2:NT . We order the classes with respect to the

combinations C
ST=4
Ni

and choose the sequences starting from the

class with greatest value. In the event that there is a class where the

inequality cannot be satisfied due to lack of sequences, we decrease

the coefficient 2 within the inequalities (for all i~1 . . . 4) by a

maximum of five steps towards the coefficient 1. For each step we

apply the procedure above to the new class of inequalities.

This way, we obtain a good compromise between an ideally

uniform distribution of sequence identities within an alignment

and the diversity of sequences amongst different alignments.

Multiple Sequence Alignments and Trees Construction
Sequences in a pool are aligned using CLUSTALW with the

Blosum62 matrix [13]. The Score Distance method [14] has been

used to define the distances between sequences obtained by the

alignment; no contribution is made for gaps in the sequence nor by

the ends.

To align distantly related proteins, Gonnet [15] and HSDM

[16] matrices are preferable and an automatic selection between

Blosum62, Gonnet and HSDM has been implemented in JET.

The criteria is as follows. Given an alignment of two sequences ij
the score distance method computes the effective score of the

alignment

Seff i,jð Þ~ S i,jð Þ{Smin i,jð Þ
Smax i,jð Þ{Smin i,jð Þ

where S i,jð Þ is the score produced by the alignment using a

substitution matrix, Smax i,jð Þ~ S i,ið ÞzS j,jð Þ
2

, Smin i,jð Þ~E:N, E is

the e-score value of the matrix (E~{0:5209 for Blosum62,

E~{0:6152 for Gonnet, and E~{0:3665 for HSDM) and N is

the number of pairs of aligned residues ij. Based on this, one

computes distances between two sequences as

deff i,jð Þ~{log Seff i,jð Þ
� �

To properly compute distances, one

needs to guarantee Seff i,jð Þw0. In the case of distantly related

proteins, it is possible that Smin i,jð ÞwS i,jð Þ and the value can

become negative. When this occurs for some pairs ij using

Blosum62, we take sequences i and j (whenever different from the

reference sequence S) out of the set and recompute distances until

the condition is satisfied for all pairs. We require that the number

of sequences in the tree covers 75% of the original number of

sequences and is $10 (this corresponds to the minimal size of an

acceptable tree). If at least one of these conditions is not satisfied

then we repeat the analysis using the Gonnet method. If this also

fails to pass the test the HSDM method will be used.

For each multiple alignment, a distance tree is constructed

based on the Neighbor Joining algorithm (NJ) [17]. The midpoint

rooting method is used to find the point that is equidistant from

the two farthest points of the tree, and to root the tree there.

Tree Analysis and Tree Traces
If x,y are two nodes belonging to a branch of T , let d x,yð Þ be

the distance between x and y provided by the tree construction.

The root of T has rank 1. A node x, which is not a leaf, has rank n,

if all nodes y of T such that d y,rootð Þvd x,rootð Þ have rank vn
and at least one of them has rank n{1. If two nodes x,y (which

are not leaves) are such that d x,rootð Þ~d y,rootð Þ then their rank

is the same. The maximum rank definable on a tree T is ST , that

is the number of sequences in T : See Figure 1, top.

Consensus sequences of rank n and backtrace sequences of rank n are used

to define tree traces.

Let Sx be the sequence associated with the leaf x in T . A

consensus sequence associated to a leaf x of T is a sequence (of the same

length as S) where position i is occupied by the residue in Sx

aligned to the i-th residue of S: If no residue in Sx is aligned to the

i-th position of S then a gap will appear in the consensus sequence.

A consensus sequence of a node x of rank n is a sequence (of the same

length as S) where the i{th position is occupied by those residues

common to the consensus sequences associated with the children

of x. See Figure 1, top.

A back-trace sequence of a node x of rank n, is a sequence (of the same

length as S) which records all residues in the consensus sequence

associated to x that do not already belong to the back-trace of the

father of x. The back-trace sequence of the root is the consensus

sequence of the root. See Figure 1, bottom.

Given nvNT , let xn be a node in T with rank n; we look at all

positions p along the branches of T such that

d root,pð Þ~d root,xnð Þ and we collect in a set T n subtrees of T

associated with positions of level n as follows: given a position of

level n along some branch (defined below), we include the subtree

of T rooted at this point in T n only if the subtree contains more

than two nodes; if the position coincides with a branching node of

T , then we include two copies of the subtree in T n. Each subtree

in T n has a backtrace associated to its root. A tree trace of level n is a

residue which is not a tree trace of level ƒn{1 and that occurs in

backtraces of at least 2 subtrees in T n. A residue in the backtrace

sequence of the root of T is conserved in all sequences, in

particular in S, and it is called a tree trace of level 1.

Notice that this definition is much weaker than the correspond-

ing definition of trace for ET. In fact, in ET, a residue is a trace of

level n only when the residue is conserved in all subtrees of T n. See

Figure 2.

Joint Evolutionary Trees Detect Protein Interfaces
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Relative Trace Significance and Average Trace Value
The set of tree traces resulting from the analysis of all generated

metric trees will be used to define the relative trace significance for the

residues in the PDB structure. Let t~1 . . . N be the generated

trees, and j~1 . . . Sj j index the residue positions in S. We say that

a residue rj at position j in S is a trace with degree of significance

dj~
1

Mj

XMj

t~1

Lt{lt
j

Lt

where lt
j is the tree trace level of residue rj in tree t, Lt is the

maximum level of t and Mj is the number of trees where the

residue appears as a trace. Values dj vary in the interval [0,1], and

represent an average over all trees of the residue importance:

traces appearing often at small (big) levels will get values close to 1

(0). We can consider Lt in the formula to be smaller than the

maximum level attainable, that is St. This corresponds to the 95%

(a default parameter of the method) of residues which have a trace

value for a tree. Note that the condition does not imply that some

residues have no trace (indeed traces are read out of many trees).

The average trace value for a residue rj is computed with respect to

the relative trace significance of it and the one of its neighboring

residues:

trace jð Þ~ wI
: 1

Ij j

P
h[I dh

� �
zwj

:dj

wI zwj

where I is the set of residue positions which are neighbors of rj

(that is, a neighbor is a residue with a distance ,5Å from rj of at

least one of its atoms), and where we fixed by default the weight

values at wI~3 and wj~4, favoring the residue rj compared to

its neighbors. trace jð Þ is the actual value that is used in JET to

rank residues and to establish the importance of a residue

position j.

Surface Atoms, Surface Residues, and Surface Clusters
Surface residues are residues with at least 5% of accessible surface

[18]. Surface atoms have at least 1Å2 of accessible surface.

Accessibility is calculated with NACCESS 2.1.1 [19] with a probe

size of = 1.4Å. In practice we shall use surface atoms belonging to

surface residues only. A surface cluster is a set of surface residues to

which a residue r belongs if at least one of the surface atoms of r is

at distance ,5Å from a surface atom in some other residue of the

cluster. Several surface clusters can be detected for a single

protein. Note that a surface cluster contains residues that are in

contact because of surface atoms and excludes contacts based on

internal atoms. As a consequence of this definition, clusters which

are not contiguous patches at the protein surface are separated

and, in some cases, several smaller surface clusters are obtained.

See Figure 3.

This definition reflects the idea that protein-protein interactions

depend on atomic-level detail.

Number of Residues on Protein Surfaces and Average
Interface Fractions

An inverse relation between the fraction of the surface covered

by the interface and the total protein surface has been observed in

[20] based on a dataset of 1256 protein chains. We approximated

the data in [20] with the function fintfrac xð Þ~ 26:54=xð Þz0:03
(plotted in Figure 4), where x is the number of surface residues. We

used this analytical expression to parameterize the clustering

algorithm described below.

Clustering Algorithm with Seeds
Two thresholds are defined from the distribution of trace values

computed with JET. The cluster-trace threshold is the trace

determined with a confidence level of fintfrac xð Þ
�

4 on the

distribution of trace values and the residue-trace threshold is the trace

determined with a confidence level of 2:fintfrac xð Þ for the same

distribution. These thresholds are used to construct and evaluate

appropriate clusters.

The clustering algorithm is structured in three steps. The first

two steps are used to construct ‘‘cluster seeds’’ that will be

extended into clusters at the third step of the construction.

First, the algorithm orders all trace residues from the largest to

the smallest. Next, it chooses residues with the highest trace value,

greater than the residue-trace threshold, and either creates a new

Figure 1. Schema of the tree trace computation. Top: tree with
nodes labeled with consensus sequences: conserved residues are traced
from the leaves back to the root. Ranks of nodes are labeled in red and
Nt~7. Subtrees of nodes of rank 2 and 3 are contoured with colored
boxes. Bottom: tree with nodes labeled with back-trace sequences:
back-traces are traced from the root back to the leaves. 3 subtrees
corresponding to level 2 (blue, green and rose boxes) and 4 to level 3
(turquoise, orange, green and rose boxes). On the bottom left, schema
of the computation of tree traces of level 2 and 3 based on 3 and 4
subtrees. Tree traces of level 2 (3) occupies the second (fifth) position in
the sequence and it is denoted by X.
doi:10.1371/journal.pcbi.1000267.g001

Joint Evolutionary Trees Detect Protein Interfaces
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isolated cluster or adds the residue to an old cluster by checking

that the average trace of the new cluster (either the isolated one or

the one obtained by extension) is greater than the cluster-trace

threshold. Notice that residue traces may be smaller than the

cluster trace threshold. The set of clusters C obtained in this way is

filtered by the next step of the algorithm.

In the second step, the algorithm computes a threshold for the

size of the ‘‘cluster seeds’’. To do so it takes the distribution of trace

values obtained by running JET on a given protein and randomly

reassigns the same trace distribution to surface residues of the

protein. It clusters with the clustering algorithm described above

and repeats this procedure 6000 times. It calculates the

distribution of the size of the clusters and the distribution of the

number of clusters obtained, to determine the percentile of a size Z,

that is, the fraction of the population which has a size §Z, and the

percentile of the number of clusters M, that is the fraction of the

population with a number of clusters §M.

Then it selects the clusters in C (obtained in the first step) those

within a percentile of size ,0.1. For all other clusters C [ C, it

considers more relaxed conditions for selection. Namely, it selects

clusters C which are smaller in size, but have a high average trace

compared to the others in C. This notion is coded into the

following two numerical conditions:

P size Cð Þð ÞzP Cj jð Þ
2

va and
mtrace Cð Þ
mtrace Cð Þvb

where P computes the percentile in a distribution and a,b are set

at 0.15 and 1, respectively, for a first round of selection and to 0.25

and 0.95 for a second round of selection. If no cluster is selected,

then the algorithm goes back to the random distribution, repeats

the analysis by increasing the percentile level by 10% and

recomputes a new, more lax, threshold until at least one cluster is

found. The clusters obtained at the end of the second step of the

clustering algorithm are called cluster seeds.

The third step of the algorithm extends the cluster seeds with

neighboring residues by maintaining a sufficiently high average

trace of the cluster. To do this, the cluster-trace threshold is set at a

confidence level of fintfrac xð Þ
�

2. Neighboring surface residues are

those that respect the definition of a cluster once added. The

algorithm collects all neighboring surface residues and adds them

one by one by decreasing trace value, each time checking that the

Figure 2. Examples of tree trace levels. Left: residues I and D at position i in the alignment are conserved in two subtrees (dotted box), and this
sets i as a tree trace of level 3. Right: residue I and D are conserved in two subtrees detectable at levels 3 and 9 respectively, and this sets i as a tree
trace of level 9.
doi:10.1371/journal.pcbi.1000267.g002

Figure 3. Clustering based on surface atoms. Structure of the catalytic subunit of cAMP-dependent protein kinase (PDB file 1apm). The
experimental interaction site is colored blue in (C). Clustering based on surface residues detects one conserved cluster that gives rise to two non-
contiguous surface patches. One of them (A) corresponds to the actual interface and the other (B), which is positioned opposite to (A), does not.
Clustering based on surface atoms distinguishes the two patches and considers only one of them (A) as a cluster seed.
doi:10.1371/journal.pcbi.1000267.g003

Joint Evolutionary Trees Detect Protein Interfaces

PLoS Computational Biology | www.ploscompbiol.org 5 January 2009 | Volume 5 | Issue 1 | e1000267



cluster-trace and the residue-trace thresholds are respected. When

all neighboring residues are treated, the algorithm extends the

resulting cluster further by searching for a new set of neighboring

surface residues and by applying the extension procedure

described before until no further extension is obtained.

The algorithm then outputs the final set of clusters. The number

of clusters may be smaller than the number of cluster seeds

because extension may lead to the fusion of some initial clusters.

Note that the residue-trace threshold guarantees that we are

going to cluster a pool of residues among the 2:fintfrac xð Þ best trace

residues. The cluster-trace is used to guarantee that the average

trace of the seed cluster remains high.

Detection of Sites Based on Physical-Chemical Signals
Statistical analysis of physical-chemical properties of protein-

protein interfaces reveals a biased amino-acid content within

interfaces and allows the definition of propensity values for

interface residues [21]. These values are listed in Text S1. We use

propensity values to rank residues in a protein. For each residue rj

we define

pctrace jð Þ~
wI
: 1

Ij j
P

h[I ph

� �
zwj

:pj

wIzwj

where pj~dj
:propensity jð Þ2, dj is the degree of significance of rj ,

propensity jð Þ is the propensity value of rj . Notice that the formula is

similar to trace jð Þ and parameters I , wI and wj are defined as for

trace jð Þ. We employ the ranking on pctrace jð Þ for computing

cluster seeds C1 based on physical-chemical signals by running the

first and second step of the clustering procedure (with a cluster-trace

threshold determined by using the distribution of trace values

dependent on pctrace jð Þ). Then we compute cluster seeds C2 based

on conservation using the ranking of trace values (with a cluster-trace

threshold computed from the trace distribution). Cluster seeds in the

set C1|C2 are extended with the third step of the clustering

procedure. For this we use a mixed trace value for a residue rj at

position j, instead of the usual trace value, which is defined as

trace jð Þzpropensity jð Þð Þ
2

that is, the average between trace and propensity. The cluster-trace

threshold is computed from the distribution of mixed trace values.

Note that cluster seeds detected by different signals can again fuse

into a single cluster as discussed later for a allophycocyanin structure.

Size of predicted clusters computed with mixed trace values and

number of surface residues are reported in Figure 4 for all proteins

in the Huang dataset. Points fluctuate around the fintfrac curve

(which represents reference values) and this is due to the multiple

parameters used for clusterisation.

Automatic Determination of Experimental Interaction
Sites from Known Complexes

The experimental interaction sites for the proteins listed in Text

S2, Text S3 and Text S5 are determined using the crystal structure

of the protein and NACCESS [19] for the detection of residues

exposed to the solvent.

JET finds signals corresponding to different interactions of a

protein, namely with other proteins, ligands, DNA or RNA, as

well as the chain-chain interactions in multimeric proteins. Hence,

it becomes important to consider all it is known of such

interactions to correctly evaluate predictions (see Figure 5). Given

a protein, we considered all interactions between its chains. In

addition, we collected information on other potential interactions

by searching in the PDB archive for protein complexes containing

a chain that displays at least 95% sequence identity to a chain in

the PDB file of the experimental structure. All sites for the

homologous chains (defined by an interaction with other chains in

the ‘‘homologous’’ PDB file) are considered. For all PDB files (the

reference and the homologous ones), we also looked at all chain-

ligand interactions described in them, and selected those involving

ligands that are known to have a functional role. For this, we used

a list of enzyme compounds associated to reactions stored in

KEGG database (a flatfile was downloaded at ftp://ftp.genome.

jp/pub/kegg/ligand/enzyme/enzyme) and discharged all com-

pounds which were absent in the list. All identified interactions

were grouped together to define the set of ‘‘true’’ interacting

residues of the experimental structure to be evaluated. We define a

residue to belong to an interaction site if at least 10% of the

accessible surface of the residue (within the protein) becomes non

accessible due to the interaction (within the complex).

Evaluation of JET
To properly evaluate JET performance on a given protein we

rely on the following quantities: the number of residues correctly

predicted as interacting (true positives, TP), the number of residues

correctly predicted as non-interacting (true negatives, TN), the

number of non-interacting residues incorrectly predicted as

interacting (false positives, FP) and the number of interacting

residues incorrectly predicted as non-interacting (false negatives,

FN). We use four standard measures of performance: sensitivity

Sen~TP= TPzFNð Þ, specificity Spe~TN= TNzFPð Þ accuracy

Acc~ TPzTNð Þ= TPzFNzTNzFPð Þ and positive predictive

value PPV~TP= TPzFPð Þ. We also consider scores to evaluate

the statistical pertinence of the above measures. Expected values

are calculated as TPexp~C:S, TNexp~ 1{Cð Þ N{Sð Þ,
FPexp~C: N{Sð Þ, FNexp~ 1{Cð Þ:S, where C~P=N is the

coverage obtained with JET, P is the number of surface residues

predicted by JET, N is the total number of surface residues and S
is the number of residues in the real interaction site. Note that the

calculation of expected values assumes that C:N residues have

been selected at random as being positives on the structure of the

protein under study. This means that expected values depend on the

protein studied. We can now compute sensitivity Senexp, specificity

Speexp accuracy Accexp and positive predictive values PPVexp for

Figure 4. Protein surface size and interface fraction. Plot of the
fintfrac function relating surface size and fraction of the surface covered
by the interface. Dots correspond to JET predictions on all proteins in
the Huang dataset, where predicted interface sites are computed with
mixed trace values.
doi:10.1371/journal.pcbi.1000267.g004
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the random case: C, 1{C, 1{Cð Þ: 1{S=Nð Þð ÞzC:S=N, S=N

respectively. Pertinence scores are computed as follows: sensitivity

score ScSen~Sen{Senexp, specificity score ScSpe~Spe{Speexp,

accuracy score ScAcc~Acc{Accexp and PPV score

ScPPV~PPV=PPVexp.

To compare JET performance and the ET analysis described in

[22], we used the Matthews’ correlation coefficient (MCC) [23]

defined as MCC~ TP:TN{FP:FNð Þ=K where

K~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ

p
.

When JET gives no answer (for example, due to an insufficient

number of sequences retrieved by PSI-BLAST), then all interface

residues are treated as negatives with TP~FP~0, TN being the

difference between the surface size and interface size (computed as

the number of residues) and FN being the interface size. Notice

that TNzFN are all the negatives.

All evaluation scores reported in the Tables, Text S2, Text S3,

and Text S5 are multiplied by 100.

Dataset of Structures for Testing JET and Comparisons to
ET

The Huang dataset of 62 protein complexes constituted of 43

homodimeric chains, 24 heterodimeric chains and 19 transient

chains [4] has been used to test JET performance and to compare

it to ET (see below). The PDB code, chain and size of all proteins

in the Huang dataset are listed in Text S2. Some of the chains

appear in complexes of different types: heterodimers and

homodimers include four combinations of the same chains, and

homodimers and transients include two combinations.

Several additional protein structures discussed in the text are

listed in Text S3. All results reported in Tables, Text S1, Text S2,

and Text S3 have been obtained with sequences retrieved from the

PSI-BLAST server.

To check JET behavior on interfaces belonging to different

functional categories, we used the Kanamori dataset of 265

interfaces which contains 72 signal transduction proteins, 43

enzymes, 19 inhibitors, 36 antibodies, 31 antigens, 64 other

proteins [22]. This dataset was originally constituted to evaluate

the possibility to employ information on residue conservation

coming from ET to direct docking.

Structures of proteins and complexes used for the analysis were

downloaded from Protein Data Bank http://www.rcsb.org/pdb/

home/home.do.

Comparison with ET
ET predictions (that is, residue average trace values and

clusters) have been obtained using locally ET Viewer ( http://

mammoth.bcm.tmc.edu/traceview/). ET default values are:

500 BLAST retrieved sequences, a sequence identity between

26–98% for retrieved sequences, a cut-off of 0.7 on the length

of retrieved sequences, a maximum BLAST e-value at 0.05, a

coverage of 25% for clustering residues belonging to the whole

protein (not only those lying on the surface). Note that for

small proteins, the 25% protein coverage corresponds essen-

tially to surface coverage, but that, in general, one should

expect ET to cover much less protein surface.

Comparison with ET on Kanamori Dataset
ET predictions were taken from [22]. iJET was run with

default values and complexes interfaces were evaluated with

NACCESS. Six chains (1cdk:I, 1cdm:B, 1i4o:C, 1jdp:H, 1nrn:R

and 1vrk:B) in Kanamori dataset were too small (#20aa) to be

evaluated with iJET and in this case the evaluation of the

complex considered TP = 0 and FN = 0 for these chains.

Figure 5. JET prediction of multiple interaction sites based on conservation signals, and known binding complexes. b-subunit of
Escherichia coli DNA polymerase III holoenzyme; the PDB file 2pol contains the two homodimeric chains. Top: Complex shown in (A) and (C) is formed
of two monomers which are shown slightly separated and inclined away from the viewer in (B). Conserved residues are colored from blue (most
highly conserved) to white, and non-conserved residues are colored from white to red (no trace of conservation being found). Note the conserved
zones at the contact surfaces between the two monomers (visible for the upper monomer in (B)). The complex shows a conserved face (A) and a non-
conserved one (C). Bottom: the conserved face is in contact with two other chains (PDB files 1jql:B (D) and 1unn:CD (E)) which are not included in the
PDB file 2pol. The results of JET can be understood when chains 1jql:B and 1unn:CD are added to 2pol giving meaning to the conserved sites
detected.
doi:10.1371/journal.pcbi.1000267.g005

Joint Evolutionary Trees Detect Protein Interfaces

PLoS Computational Biology | www.ploscompbiol.org 7 January 2009 | Volume 5 | Issue 1 | e1000267



Implementation
JET has been implemented in Java and Java 3D. A list of all

default values for JET parameters and instructions on how to use it

is given in Text S4. The program can be found at http://www.

ihes.fr/,carbone/data.htm. JET output files can be visualized

with available programs like VMD, used to generate all figures of

protein structures in this article [24].

Results

JET successfully addressed a series of problems inherent to the

automatic prediction of protein interfaces and introduced for this a

number of new conceptual features. We describe the novel

contributions and conclude by validating JET on different types of

interfaces.

The Sequence Sampling Problem: A Solution by Cases
Large-scale predictions of interaction sites from evolutionary

signals are highly sensitive to the degree of variability within the

available sequences. The Huang dataset contains a pool of

proteins which, overall, turns out to be quite well-sampled by a

PSI-BLAST search. This resulted in an average of 358, 210, 61

and 29 sequences for the 20–39%, 40–59%, 60–79%, 80–98%

identity classes for the whole set of proteins. There are however a

few exceptions which are worth discussing since a large-scale

approach needs to handle such cases appropriately. Notably, an

adjustment of the number of trees and number of sequences in a

tree is important to ensure the most appropriate sequence

sampling within the trees.

Families of highly conserved proteins only: the case of

1n5y. A very high sequence identity between retrieved

sequences implies too many residues will be characterized by a

high trace value. A way to handle this situation is to retrieve more

sequences until at least two identity classes are represented. No

protein in the Huang dataset required retrieving more than 1000

sequences, see Text S2. There are however proteins such as DNA

transferase 1n5y that only yield sequences in the class 80–98%

among the first 1000 sequences retrieved by PSI-BLAST. This

bias requires selecting a larger pool as demonstrated by the

evaluation shown in Table 1. Very satisfactory results are achieved

using iJET and increasing the pool size to 5000.

Families of mostly divergent proteins. Almost no

sequences in the dataset we studied fall into this case. The B

and C chains of cyclin dependent kinase 1g3n are exceptions that

collect very few sequences with sequence identity .39%. Filtered

sequences of chains 1g3n:B and 1g3n:C have an average sequence

identity of 28.8 and 23.4, respectively. The transient interface is

poorly detected for chain B, but reasonably well for chain C (with

a scPPV~2). In such cases, performance is variable and depends

strongly on the retrieved pool of sequences.

Very small families of related proteins. Some proteins

might have very few retrieved sequences. In this case, JET will

constructs a few small trees, namely, 10 trees of 10 sequences each.

Under these extreme conditions, successful predictions seem to

depend on a combination of two factors: good sequence variability

(that is, the retrieved sequences should be neither too close nor too

divergent) and a reasonable length (longer sequences should

provide better results). Among the proteins analyzed here, the Shc

PTB domain 1shc:A (195aa), the oncogene protein 1ycr:A (85aa),

and the protein mimicry of DNA 1ugh:I (82aa) fall in this category.

JET performs best on 1shc:A, the longest protein chain in this

group, with all sequence identity classes represented. Physical-

chemical properties (and not only conservation) play a role in the

prediction (see Text S3). Similar observations hold for 1ycr:A. All

retrieved sequences of 1ugh:I fall into class 20–39% and this

suggests that JET’s poor performance may be due to a

combination of low sequence identity and insufficient sequence

representation (see Text S2).

The retrieval of few sequences might induce JET to accept large

e-values. For 1ugh:I, for instance, sequences of e-value 92 have

been accepted. One might wonder about the biological meaning of

such filtering choice, and 1ugh:I demonstrates that without such a

lax condition, no prediction could be made. ET method failed to

predict on this difficult example.

Table 1. JET, iJET, and ET evaluation on chain 1n5y:A.

Evaluation on Chain 1n5y:A

Retr Seq Tool Sen ScSen PPV ScPPV Spe ScSpe Acc ScAcc

1000 JET - cons 11.9 2.8 35.0 1.3 91.9 1.0 70.4 1.5

JET - cons+pc 12.7 5.2 45.5 1.7 94.4 1.9 72.4 2.8

iJET 7.6 2.4 39.1 1.5 95.6 0.9 72.0 1.3

5000 JET - cons 18.6 7.9 46.8 1.7 92.2 2.9 72.4 4.3

JET - cons+pc 22.9 12.4 58.7 2.2 94.1 4.6 74.9 6.7

iJET 22.0 12.7 63.4 2.4 95.3 4.7 75.6 6.8

478 ET 20.3 2.6 30.8 1.1 83.2 0.9 66.3 1.4

Sequence Identity of Retrieved Sequences for Chain 1n5y:A

5000 sequences 1000 sequences

Sequence identity 20–39 40–59 60–79 80–98 20–39 40–59 60–79 80–98

# filtered sequences 0 0 44 2307 0 0 0 1000

Predictions for DNA transferase chain 1n5y:A when 1000 or 5000 sequences are retrieved using PSI-BLAST. Best predictions are obtained with iJET (in bold) run on 5000
retrieved sequences. JET results are improved when physical-chemical properties are taken into account (compare JET-cons with JET-cons+pc). For different classes of
sequence identity we report the number of sequences collected in each class after filtering. The 478 sequences retrieved by ET with BLAST have sequence identities in
the range 90–96%.
doi:10.1371/journal.pcbi.1000267.t001
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The Interface Size Problem: A Parameterized Solution
Depending on the size of a protein we should expect that a

different proportion of residues will belong to interfaces [20]. As

discussed in Material and Methods, the clustering algorithm uses

an estimation of the size of the expected interaction site as a

function of the size of the protein. This estimation varies

significantly for proteins of different sizes z. Roughly, zw300aa
corresponds to an interface that covers ,10% of the entire surface,

200aavzv300aa to ,15%, 100aavzv200aa to ,25% and

zv100aa to a fraction varying (rapidly) from 25% to 90%. It

might seem that for small proteins, JET covers a large proportion

of the surface, but this has advantages as illustrated by the 85aa

long Mdm2 protein chain 1ycr bound to the transactivation

domain of p53. JET predictions cover 46% of the surface and by

doing so, detect 71% of the interaction site, that is 10 residues

interacting with P53 out of 16 (see comparisons with ET below).

Better Predictions and Computational Advantage in
Using Gibbs-like Sampling of Sequences

One of the characteristics of JET is to use several distance trees

of randomly sampled sequences instead of just one distance tree

grouping all sequences recovered with PSI-BLAST. In Figure 6,

we show the improvement in JET predictions solely due to

dividing sequences amongst several trees. This is done by varying

the number of trees k, and by evaluating JET performance. (For

each k, we ensure that JET treats roughly the same quantity of

sequence information by requiring each tree to contain 625=k
sequences. Note that due to a random choice of sequences for each

tree, there is a high probability that the k trees will share some

common sequences). Improvements come from a consensus in

residue trace values as a consequence of the degree of significance

of a trace. This is determined by the number of trees used in the

prediction. The plot shows better predictions for larger number of

trees and also that the methodology leads to decreasing the noise

due to incorrect alignments, the presence of non-homologous

sequences in the pool, biased samples and so on.

Figure 7 illustrates the execution time of JET (excluding the

PSI-BLAST step) when it is applied to the same pool of 400

sequences, but varying the number of trees. Sequences in the

pool are all homologous to the sequence of chain 9atc:A. If k
trees are considered, each tree contains 400=k sequences which

are randomly selected in the four identity classes as explained

in Material and Methods. The plot shows that execution time

is proportional to the number of sequences in the trees, with

the major contribution coming from the CLUSTALW

alignment.

Looking at Surface Residues versus All Residues
Given a protein structure, JET estimates the size of the largest

surface cluster for the protein (obtained by taking the largest

cluster computed over 6000 iterations of the random clustering

procedure). Based on the number of estimated residues, it predicts

an interaction site of the appropriate size. The need for a

structure-specific estimation results from the absence of a

correlation between protein size and size of the largest surface

cluster as illustrated in Figure 8 (black dots) for the Huang dataset.

On the contrary, there is a linear correlation between protein size

and cluster size when all protein residues are considered (see

Figure 8, (grey dots), where random clustering is carried out on all

protein residues and not only surface residues). Based on this

property, [25] proposed a linear correlation and used it to predict

the largest acceptable protein cluster for a given protein. Our

Figure 6. JET and number of distance trees. JET predictions (based
on conservation and specific physical-chemical properties) for Esche-
richia coli aspartate transcarbamoylase structure 9atc:A have been
evaluated on 625 sequences obtained with PSI-BLAST. Each of the k
tree used contains 625=k sequences. Each dot in the figure corresponds
to a single run of JET.
doi:10.1371/journal.pcbi.1000267.g006

Figure 7. JET computational time. JET computational time (in seconds) has been evaluated for 400 sequences homologous with that of
Escherichia coli aspartate transcarbamoylase 9atc:A. Each of the k trees used contains 400=k sequences, as indicated by the curve ‘‘number of
sequences in trees’’. For the evaluation, we used a Dual Intel Xeon (64-bit) 3.2GHz 2GB memory with Linux system.
doi:10.1371/journal.pcbi.1000267.g007
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analysis shows that cluster size predictions based on structure-

specific estimations are better.

Comparison between JET and ET: Improvement Due to
the Clustering Procedure

JET is a prediction tool that uses evolutionary information to

detect conserved interaction sites and was inspired by the

Evolutionary Trace approach. Comparisons with ET are

therefore necessary. The performance of JET and ET on the

Huang dataset are presented in Text S2 for each protein and a

synthesis is provided in Table 2 (compare lines ‘‘ET’’ and ‘‘JET-

cons’’) for homodimer, heterodimer and transient interfaces. The

two systems perform in a comparable way when clustering is not

applied. After clustering, JET covers 38% (Sens~37:8) of the

interface against 35% for ET. The interface residues predicted

by JET correspond to real interface residues with a probability of

0.6 (PPV~59) against 0.5 for ET. JET prediction scores are two

times better than random predictions (ScPPV~2). JET found

86% of residues which are not in the interface (Spe~85:6)

against the 84% for ET. The combination of these evaluating

factors implies an average accuracy of 71% for JET against 68%

for ET.

Differences in ET and JET performance with and without

clustering suggests that the clustering procedure employed in ET is

less successful than that proposed here.

In [10], it is argued that ET works best for families of

homologous proteins with sequence identities higher than 40%.

JET correctly detects functional sites of protein families well below

this threshold. In Text S2, we provide the number of sequences

retrieved with PSI-BLAST and the sequence identity classes for all

proteins in the Huang dataset. For a large majority of these

proteins, most retrieved sequences fall into the 20–39% class.

For small proteins, the usage of an adapted curve (discussed

above, see Figure 4) for evaluating protein coverage, also improves

JET performance with respect to ET. An example is the Mdm2

protein chain 1ycr:A (discussed above, see also Figure 9D) where a

46% JET coverage contrasts with a 24.6% ET coverage, and

results in the detection of 71% of the interaction sites (10 residues

out of 16 interacting with P53) against only 41% for ET (5 residues

out of 16). To understand this contrast, it is important to look at

the scores ScSens, ScPPV , ScAcc and ScSpe listed in Text S3,

which describe behavior of the two approaches compared to a

random choice of residues. Note that in the case of 1ycr:A, most of

the 25% residues covered by ET are surface residues, since the

chain is small.

Comparison between JET and ET: Improvement Due to
the Integration of Physical-Chemical Properties

Over the Huang dataset, a considerable improvement of JET

performance is shown in Table 2 (compare lines ‘‘ET’’ and ‘‘JET -

cons+pc’’) when clustering is carried out on mixed traces, coupling

both conservation signals and physical-chemical properties

(Acc~72, Sen~43, PPV~58:5 and ScPPV~2). In this way

JET predictions improve considerably, as seen in the allophyco-

cyanin structure 1all:B (Figure 10 and Text S3) where by using

physical-chemical properties together with conservation, JET

detects 66.7% of the interaction site, while conservation alone

only detects 51.1%. ET detects 40% of the site.

The leucine dehydrogenase structure 1leh in Figure 11, again

illustrates that using physical-chemical properties improves the

Figure 8. Protein size and size of the largest cluster. Sizes of the
largest protein cluster (grey) and of the largest surface cluster (black)
are plotted for all proteins in the Huang dataset. Size is defined by the
number of residues.
doi:10.1371/journal.pcbi.1000267.g008

Table 2. JET, iJET, and ET evaluation on the Huang dataset.

Sen ScSen PPV ScPPV Spe ScSpe Acc ScAcc

No Clustering

ET 35.4 14.0 50.4 1.6 83.9 5.1 68.4 7.8

JET – cons 34.7 13.3 50.3 1.6 84.5 5.8 67.6 7.5

With Clustering

Homodimers

ET 35.7 15.1 51.9 1.7 86.0 6.6 69.9 8.8

JET - cons 34.7 17.1 60.4 2.0 90.5 8.1 73.5 10.5

JET - cons+pc 37.9 18.9 61.2 2.1 89.5 8.4 73.1 11.0

iJET 36.2 18.6 62.7 2.1 90.8 8.4 73.9 10.9

Heterodimers

ET 35.5 15.4 55.6 1.8 86.3 6.4 68.2 8.7

JET - cons 41.7 17.5 60.8 2.0 84.2 8.4 70.2 10.5

JET - cons+pc 47.9 21.1 59.6 1.9 83.8 10.5 71.2 12.6

iJET 46.6 21.2 62.1 2.0 85.6 11.0 72.7 13.0

Transients

ET 29.7 10.5 50.7 1.5 82.2 1.4 63.8 5.7

JET - cons 38.9 12.9 57.5 1.8 77.8 3.9 67.0 6.6

JET - cons+pc 39.7 12.9 55.9 1.7 78.3 5.1 67.3 7.0

iJET 37.5 14.0 59.1 1.9 81.7 5.1 68.2 7.6

All Confounded

ET 34.2 14.2 51.8 1.7 85.1 5.2 68.5 7.9

JET – cons 37.9 16.4 59.0 2.0 85.6 7.1 71.4 9.5

JET - cons+pc 41.6 18.4 58.4 1.9 84.9 8.1 71.6 10.5

iJET 39.8 18.5 60.5 2.0 86.9 8.2 72.6 10.6

Comparison of JET and ET without clustering (top table) and with clustering
(bottom table). Without clustering, JET and ET performance is comparable. JET
performance with clustering is computed when signals of conservation alone
(JET - cons) and mixed with information on physical-chemical (JET - cons+pc)
properties of residues are considered. Results in the Table are averages of single
runs of JET on proteins in the Huang dataset. Performance of iJET is also
presented for clustered residues which have been obtained by a consensus of 7
runs over 10. Average performance is computed on homodimer, heterodimer
and transient proteins in the Huang dataset. Average values computed for all
proteins (all confounded) are given; proteins belonging to different categories
(due to multiple chains establishing both homodimer and heterodimer
interfaces for instance), are only counted once. For each type of interface, ET
and iJET are compared and bold characters indicate best performance.
doi:10.1371/journal.pcbi.1000267.t002
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detection of interaction sites: the ligand site is constituted by very

conserved residues, while the protein interface displays strong

physical-chemical signals. The latter, combined with residue

conservation, help JET to extract a suitable cluster describing

the interaction site. ET fails to detect the site (see Text S3). Here,

the PDB file used did not contain information on the ligand

interaction and thus residues predicted to belong to the ligand

interface were erroneously classed as false positives by our

automatic procedure. This example illustrates the difficulty of a

large-scale evaluation of a prediction system.

Variability Due to Gibbs-like Sampling and Evaluation of
Residues by Consensus: iJET

To check whether clusters predicted in different runs of JET

represent a consensus or not we iterated JET 10 times and

analyzed its performance. Namely, given a protein, we considered

a consensus prediction defined as the ensemble of residues that appear

in a cluster at least i times, for i~1 . . . 10, out of the 10 iterations

of JET on the protein structure. We then evaluated JET on each

protein of the Huang dataset for increasing values of i (see

Figure 12). As expected, for increasing i, predictions show a better

PPV, but a worse sensitivity. This corresponds to an increased

selectivity in choosing residues to belong to clusters. If conserva-

tion is coupled with physical-chemical properties, then specificity,

accuracy and PPV curves show the best prediction at i~7. The

evaluation of JET iterated 7 times on the Huang dataset is

presented in Table 2 (line ‘‘iJET’’).

The take-home message from this study is that different runs of

JET are likely to provide slightly different outcomes and that a

robust prediction of residues at the interface can be drawn from

i~7 iterations. In this case, JET obtains very good average scores:

Sens~40, PPV~60, Spe~87, Acc~73. Compare it with ET:

Sens~34, PPV~52, Spe~85, Acc~68:5. JET is consistently

better for homodimers, heterodimers and transients interfaces. It is

important to stress that the iterative procedure suggests a list of

residues that do not necessarily form clusters (as defined above),

but patches of residues (and possibly isolated residues) that have

been consistently (that is, in most JET runs) been classed as being

part of an interaction interface. The iterated version of JET (based

on 10 iterations) is called iJET.

In Figure 13, we illustrate iJET behavior for different values of i

on several protein structures. Structures B, C, D show that for iv7
(column in the middle) we could detect residues belonging to the

real interface that are missed for i~7 (right hand column). This

means that in a single protein analysis, it could be worthwhile for

the user to try different values of i and evaluate the best i ad hoc.

Figure 9. iJET predictions on several types of interfaces.
Structures: allophycocyanin 1all:B (A), phosphotransferase 1apm:E (B),
human CDC42 gene regulation protein 1grn:AB (C), oncogene protein
1ycr (D), signal transduction protein 1shc (E), large fragment of Thermus
aquaticus DNA polymerase I 2ktq (with the DNA chain in yellow) (F).
Top: iJET predictions with residues occurring at least 7 times out of 10
runs highlighted using a blue scale. Dark blue corresponds to 10 runs
(the majority of residues in the figure). Bottom: experimental interaction
sites.
doi:10.1371/journal.pcbi.1000267.g009

Figure 10. JET prediction of an interaction site based on the
combination of conservation and physical-chemical signals.
Allophycocyanin structure (PDB file 1all:B). Top: residues are colored
from blue (strong signal) to red (low signal) passing through white by
conservation (A) and by physical-chemical properties (B), with
inaccessible residues in red. The experimental interaction site is blue
in (C). Bottom: cluster seeds computed based on conservation (D) and
based on physical-chemical properties (E) are colored from blue to
white accordingly to trace jð Þ and pctrace jð Þ values respectively.
Prediction (F) is computed by extending both seeds in (D) and (E);
colors map mixed trace values.
doi:10.1371/journal.pcbi.1000267.g010

Figure 11. JET prediction of several interaction sites based on
the combination of conservation and physical-chemical sig-
nals. Leucine dehydrogenase structure from Bacillus sphaericus (PDB
file 1leh). (A–E) are as in Figure 10. JET predicts two sites (F), the protein
interaction site (on the top) and the ligand binding site.
doi:10.1371/journal.pcbi.1000267.g011
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For instance, for the structures of Figure 13, residues appearing

,7 times (colored in pink) are not always interface residues (see A

and B). For a large-scale analysis such tests are impossible and the

value of i needs be fixed. As we have shown, setting i at 7 is

appropriate for the Huang dataset.

In Text S2 and Text S3, a comparison between iJET and single-

run JET (using combined conservation signals and physical-

chemical residue properties) shows that single-run JET can

produce better results than the average obtained with iJET. The

reason for this lies in the variable information content of pools of

sequences retrieved by PSI-BLAST. This suggests that many of the

sequences may be noisy in relation to the interaction site, although

this noise can be eliminated in certain runs. Note that if JET is run

on a single tree constructed out of sequences retrieved by PSI-

BLAST, the result remains identical for all iterations. Computa-

tional strategies to ameliorate iJET will be discussed elsewhere.

The Protein Length Effect
Small proteins are clearly more difficult to analyze than large

ones. This is shown in Table 3 that revisits the performance of

iJET presented in Table 2 with respect to protein length. Small

proteins (with ,200aa) display a less stable behavior compared to

larger ones ($200aa): evaluation scores for the two classes of large

proteins in Table 2 are closer than for the two classes of small

proteins. Specificity and accuracy remain essentially unchanged

for large proteins and much lower values are attaint for small

proteins. As expected, best sensibility and PPV are reached for

small proteins due to a large coverage (see Figure 4).

Comparison with Consurf and Rate4Site
iJET has been compared to Consurf [26] and Rate4Site [27] on

the Src SH2 domain of the 1fmk structure discussed in [26,27].

iJET run 10 times on sequences which were automatically

downloaded from the PSI-BLAST site, and where each residue

trace value is the maximum trace value over the 10 runs.

Consurf and Rate4Site run on 233 homologous sequences

(Figures 2, 3A, and 3B in [27]). The site between SH2 and the C-

tail of the tyrosine kinase domain predicted by iJET is comparable

to Consurf and Rate4Site predictions (compare Figures 2 and 3 in

[27] and Figure 14, left). The three systems do not detect any

residue in the SH2-kinase domain interface nor in the SH2-linker

loop site. iJET detects as important (due to both conservation and

physical-chemical properties) residue TRP148 sitting in the SH2–

SH3 domain interface (Figure 14, right). Consurf detects no

conserved residue, while Rate4Site identifies the site. By using 34

close SH2 homologues from the Src family [27], clear signals of

conservation belonging to the multiple interaction sites are

detected by the three systems. This is expected since the Src

family is highly conserved. In this case, SH2–SH3 domain and

SH2-kinase domain are well detected (see Figure 3 in [27] and

Figure 15). The SH2-linker loop interface is detected as highly

variable by Consurf while Rate4Site assigns to it an average

conservation. iJET correctly detects the site even though it assigns

to it a signal of average strength (see Figure 15, left). This is

possible because of the cluster seed extension procedure in the

clustering algorithm that does not require a residue to be

conserved to belong to a cluster. It is important to see that no

other residue located close to the conserved region is erroneously

detected by iJET (see Figure 15, right).

In conclusion, JET appears to perform better than Consurf and

slightly less well than Rate4Site for the SH2–SH3 site. It

demonstrate to be a successful platform for detecting very difficult

signals like the linker loop interaction, where both Consurf and

Rate4Site failed. Compared to Consurf, we can observe that it is

able to detect important residues (such as TRP148) starting from a

very mixed pool of sequences. It is interesting to notice that iJET

and Rate4Site agree on the very variable residues, contrary to

Consurf prediction of variability (see residues on top of the

structure in Figure 14, left, and on bottom of the structure in

Figure 14, right, and compare them to Figures 2 and 3 in [27]).

Comparison with siteFiNDER|3D, Consurf, and ET Viewer
2.0

iJET is compared to siteFiNDER|3D [28], Consurf and ET

Viewer 2.0 on the N-terminal domain of MukB (1qhl:A). iJET run

on its own set of homologous proteins selected from its PSI-

Figure 12. iJET consensus on clustered residues. iJET predictions for the Huang dataset using conservation (grey), and conservation and
physical-chemical properties (black). Evaluations concern residues occurring i times over 10 runs of JET. For each i~1 . . . 10, we plot the average
evaluation over all proteins in the Huang datset.
doi:10.1371/journal.pcbi.1000267.g012
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Figure 13. iJET predictions and consensus on residues. Structures: b-trypsin proteinase 2ptc (A), RNA-binding protein 2cjk (with the RNA chain
in yellow) (B), nucleotidyltransferase 2pol (C), oxidoreductase 1leh (D). Left: experimental interaction site (blue). Center: residues appeared at least 2,
2, 3, and 4 times respectively for structures (A–D) over 10 iterations of JET. Right: residues appeared 7/10 times (that is, at least 7 times out of 10
iterations of JET). Central and right columns: predicted residues are colored from blue to pink depending on number of iterations selecting the
residue out of 10 runs; dark blue for 10/10, white for 7/10 and dark pink for 2/10.
doi:10.1371/journal.pcbi.1000267.g013
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BLAST output, and important residues are defined to appear at

least 8 times over the 10 JET runs. iJET pool of sequences gave

rise to the expected prediction with 29 residues out of 227 residues

in the chain, exhibiting a higher specificity than siteFiNDER|3D

evaluated on its own dataset of sequences (45 over 227). The

important residues determined by iJET are all clustered around

the putative G-loop and include Gly34, Asn36, Gly37 and Lys40

from the Walker-A motif (Figure 16). This result shows the high

specificity of iJET. Consurf run on its own set of sequences detects

the Walker-A site but with a specificity of 37 out of 227 residues,

therefore lower than iJET. ET Viewer 2.0 run on its own dataset

failed to make a useful prediction. As Consurf and ET Viewer 2.0

(when these latter are applied to some well chosen dataset of

sequences), JET detects as conserved other residues which lie in

the same face of the molecule (like Glu202 and Tyr206), and this

suggests a possible role in dimerization of MukB.

Prediction of Functionally Specific Residues and
Comparison with SCORECONS

We analyzed the structure of Arginine kinase ( 1bg0) discussed

in [29]. We run iJET and we selected as important those residues

that appear in JET clusters for 10 runs (Figure 17). Notice that this

is a very restricting condition for selection. iJET detected as

important (and conserved) and as belonging to the interaction site

the functionally specific residues GLU225, ARG229, ARG280

and ARG309 [30] (it misses ARG126). These residues, as well as

Table 3. iJET performance by protein length.

Sens PPV Spe Acc

1–99 58.39 75.42 58.39 63.73

100–199 46.24 61.32 81.81 66.95

200–299 41.34 66.47 91.56 73.26

. = 300 32.12 54.17 91.31 77.07

Evaluation of iJET on all proteins in the Huang dataset, organized by amino-acid
length. Four classes are considered. Highest scores (by columns) are in bold.
doi:10.1371/journal.pcbi.1000267.t003

Figure 14. iJET prediction of interaction sites for the SH2
domain of the human tyrosine kinase C-SRC. Structure: 1fmk.
Residues are colored from blue to red passing through white by
conservation and physical-chemical properties using maximal trace
values over 10 runs. Left: SH2 and C-tail of tyrosine kinase domain
interaction site (blue region). Right: TRP148 (blue) highlights the SH2–
SH3 domain site.
doi:10.1371/journal.pcbi.1000267.g014

Figure 15. JET and iJET predictions of interaction sites
calculated on close SH2 homologues. Structure: 1fmk. Non
selected residues are colored white. Colors are set on a scale from
red to blue passing through green. Left: cluster predicted by JET
covering the three known interacting sites of the human SRC SH2
domain; colors represent the mixed trace value of a residue. Right: iJET
predictions over 10 runs. Colors represent the number of runs selecting
a residue. Notice the residue located in the middle of the protein face: it
belongs to the linker loop interface, it displays average conservation
(green, left), and it has been detected once over 10 runs (red, right).
doi:10.1371/journal.pcbi.1000267.g015

Figure 16. N-terminal domain of MukB. Structure: 1qhl:A. Residues
are colored as in Figure 14. Left: full structure. Right: all residues
predicted by iJET and selected on at least 8 JET runs; the Walker-A motif
of the putative G-loop is detected.
doi:10.1371/journal.pcbi.1000267.g016

Figure 17. Arginine kinase. Structure: 1bg0. Residues are colored as
in Figure 14. Left: important residues predicted by iJET are plotted in
space-fill view. Right: functionally important residues (orange).
doi:10.1371/journal.pcbi.1000267.g017
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all others forming the interaction pocket, are not detected as

conserved in [29], using SCORECONS [31] and the program

alignment MUSCLE as input. Also, [29] detects only 2 over 5

residues as functionally important. This example confirms the

results obtained at large scale on the Huang dataset, where we see

that binding pockets are usually well detected. It shows JET

accuracy in detecting conservation signals.

JET Detection of Very Different Interaction Sites
JET is capable of detecting very different types of interface, as

illustrated here with several case studies. Some belong to the

Huang dataset (Text S2) and others are listed in Text S3. See

Figures 13 and 9. Comparison with ET provides an evaluation of

the power of JET in these cases. A large-scale analysis of interfaces

with different functional classification is realized on the Kanamori

dataset (Text S5) and follows.

Heterodimers, homodimers, and transients. Proteins in

the Huang dataset are organized in heterodimer, homodimer and

transient interfaces. We observe a similar behavior of JET (and iJET)

on heterodimers and homodimers (Table 2). As expected, transient

interfaces are more difficult to predict [6] as shown by the lower iJET

evaluation scores obtained for transients compared to heterodimers

and homodimers. The same observation holds for ET.

Ligand sites and protein interfaces. Ligand interaction

sites are often pockets involving very conserved residues. In

contrast, protein interface sites are less conserved regions and their

residues are often characterized by specific physical-chemical

properties, especially hydrophobicity. This point is nicely

illustrated by the leucine dehydrogenase structure 1leh in

Figure 11, which undergoes a conformational change when

leucine and NADH bind to the ligand pocket. The well-conserved

pocket is shown in (A) and the protein interaction site is mostly

characterized by specific physical-chemical properties as shown in

(B). The conserved ligand site is very large and the strong

conservation signal prevents JET from detecting the much weaker

signal associated with the protein interface. The coupling of

conserved residues and residues displaying specific physical-

chemical properties is thus crucial for detection of the interface

in 1leh (Text S3).

Two other examples involve the GTP-binding chain 1grn:A

(Figure 9 C) and the D-amino acid aminotransferase 1daa which

also contain a ligand-binding site and an interaction site. In these

two cases, protein and ligand sites overlap to some extent. Thus,

the ligand site of 1daa lies in a pocket partially included in the

interaction site with the protein partner. Residues 50, 145, 204,

205 and 241 form the ligand interaction site and they are all

correctly predicted. The interaction site is also successfully

detected (ScPPV~3:13) as described in Text S2. In 1grn, the

ligand and protein interaction sites are located side-by-side. JET

correctly predicts residues 13, 15, 16, 17, 18, 159 and 160 that

form the ligand site and only misses residue 118. The protein

interface is also well detected (ScPPV~2:9). See Text S3.

Multiple protein-protein binding sites in the same

protein. The nucleotidyltransferase 2pol is characterized by

four distinct interfaces (see Figure 5), two interacting with its

homodimeric partner and two with chains 1jql:B and 1unn:CD.

The conservation signal is very strong for the 1jql:B interface and

for one of the homodimeric interfaces. They are both found by

iJET with a consensus of 7 runs over 10 (see Figure 13C, right

column). The interface with 1unn:CD is partially found with i~7
and improved with i~3.

For multiple sites, the fraction of interface residues compared to

the surface size might be larger than the one estimated by the

curve in Figure 4, used by our clustering method. This amounts to

an under-estimation of the coverage threshold used in the

algorithm and to a loss of weak conservation signals (see Text

S2). This happens for one of the homodimeric interfaces that is not

found even though its conservation is visible in Figure 5B.

Receptor/inhibitor pockets. Three receptor/inhibitor

complexes have been analyzed: 1ugh, 2ptc and 1k9o. For all

three, the receptor site forms a conserved pocket and is very well

predicted by JET, while the inhibitor interface is not. The three

proteins display catalytic activity within the conserved pockets and

this is consistent with the presence of the strong signals of

conservation that we generally observe for ligand binding sites.

The inhibitors 1ugh:I (82aa) and 2ptc:I (58aa) are short peptide

chains while 1k9o:I (376aa) is a long chain. This suggests that a

small length should not be considered as the reason for the failure.

Multiple interactions of the inhibitor with several proteins might

rather explain the lack of strong conservation, while the

discrimination of interacting partners might rely more on the

geometrical shape of the inhibitor.

Results are given in Text S2 and Text S3. (Scores of 2ptc:I:

Sens~30:8, PPV~26:7, Spec~71:8, Acc~61:5)

Proteins binding to DNA and RNA. As for ligand

interactions, interaction sites of a protein with DNA or RNA

appear to be rather conserved as illustrated in the structures of the

fragment of DNA polymerase I 2ktq (Figure 9F) and of an RNA-

binding protein 2cjk (Figure 13B). Most conserved residues are

those interacting with nucleic acids.

For 2cjk, there are three regions that enter in contact with RNA

for the recognition of the specific termination signal AUAUAU.

Two of them lie on the conserved site detected by iJET with i~7
(see Figure 13B, right column) and the third one (colored pink) is

detected with i~2 (middle column).

For 2ktq, the strong conservation signal corresponds to a ligand

site (the five residues interacting with the ligand are all found) and

to roughly half of the residues interacting with DNA. In contrast,

the nucleotidyltransferase 2pol does not show any conservation of

the residues in contact with the DNA. In fact, for this protein there

is no need for specific recognition, its function depending on

residue charges which bind DNA, but allow it to slide (see Figure 5

and Figure 13C).

Large-Scale Comparison of iJET Behavior on Different
Functional Classes of Interfaces

Even though JET detects several interaction sites and any

evaluation is difficult, we compared it with the performance of ET

on the Kanamori dataset of proteins organized in functional

classes, where specific pairwise interactions were targeted. The

overall evaluation scores attaint by iJET cannot be very good due

a potentially erroneous increase of false positives coming from JET

detection of multiple interaction sites, but an honest comparison of

iJET to ET can be drawn on functional classes following [22].

Namely, we considered 265 protein interfaces belonging to

different functional classes: signal transduction proteins, enzymes,

inhibitors, antibodies, antigens and others [22], and considered as

positives, the residues in the two interacting chains that belong to

the interface. We found that iJET performs well in signal

transduction proteins, enzymes and inhibitors, while a poor

behavior is recorded on antigen and antibody interface predictions

(see Table 4, Figure 18, and Text S5). We observe an

improvement with iJET compared to ET [22]. The striking

difference between our analysis and [22] is that for us inhibitors

work essentially as well as enzymes. The MCC computed by [22]

on the inhibitors class is 20.01 (with a standard deviation of 0.14)

while we obtain a MCC of 0.26 (with a standard deviation of 0.11)

which is comparable to the MCC of 0.28 (and standard deviation
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of 0.13) obtained for enzymes. Similar prediction quality for

enzymes and inhibitors is not explainable by similar evolutionary

pressure of enzyme-inhibitor partners since the two protein classes

display asymmetric residue conservation [22,32]. (See remarks

above on receptor/inhibitor pockets.) iJET good performance on

the inhibitors class might be due to the fact that iJET takes into

account also physical-chemical properties for residue evaluation,

and that it detects interaction sites accordingly to the biological

hypothesis that clusters are formed by a conserved internal core

surrounded by successively less conserved layers of residues. A

careful analysis of the distribution of conserved residues on the

inhibitor interaction sites should be able to clear out this point, but

this will be done somewhere else. In conclusion, our finding

support the crossed usage of iJET predictions with docking

algorithms, leading to a reduction of the docking search space for

signal transduction proteins, enzymes and inhibitors.

Discussion

Conserved Patches
Conserved patches of residues on a protein surface can help to

suggest the location of an interaction site. We have tested the

evolutionary hypothesis that interaction sites are constituted by a

conserved internal core, surrounded by successively less conserved

layers of residues. Based on this hypothesis we were able to

develop a new criterion for extending conserved patches (that is

‘‘cluster seeds’’), improving predictions of realistic interface

clusters. The impact of this extension step in the algorithm is

nicely illustrated in Figure 15 where a residue belonging to the

linker loop interface of SH2 is detected by the extension and

remains non predicted by other systems.

By making multiple iterations, iJET predicts 40% of the

interfaces for proteins within the Huang dataset (with PPV~60,

Spe~87 and Acc~73), and more than 50% of the interfaces for

proteins in Text S3 (with PPV~51, Spe~87 and Acc~80). For

more than a quarter of the proteins in Huang dataset, more than

50% of their sites are correctly predicted, and for 6 out of the 12

proteins in Text S3, 60% of the true site is identified by iJET.

Physical-Chemical Composition of Protein-Protein
Interaction Sites

We tested the evolutionary hypothesis that specific physical-

chemical properties of residues forming interaction sites should co-

exist with signals of residue conservation. We were able to show

that a combination of conservation signals (even if low) and

physico-chemical interface propensity values indeed leads to

successful predictions. Future developments of JET will include

an intelligent detection of patches satisfying specific physical-

chemical properties based on propensity values differentiating

multiple types of interaction [6].

Appropriate Hits for Different Questions
JET and iJET can be used for large-scale analysis or as

platforms to make in silico experiments on protein interfaces. These

latter are possible due to the flexible parameterization provided by

the system. Each step of JET can be monitored and improved by

an accurate ad hoc understanding of the protein under study (this

might end up into an explicit consideration of protein length,

availability of homologous sequences, distribution of homologous

sequences in sequence identity classes, expected conservation,

etc.). The first hand information coming from a run of JET are the

clusters that it provides. Notice that for large-scale comparison of

JET and ET, we considered a hit to be the set of clusters issued by

a single run of JET. For comparison with iJET, we considered a hit

to be the set of clustered residues issued by iJET, with i~7
(pertinency of i~7 is discussed above). In single protein analysis,

we might want to look for functionally specific residues, and it

might be more appropriate to adopt very selective conditions, for

instance by asking for a residue to appear in 10/10 clusters. If the

aim is to discriminate between residue importance, it might be

useful to use the maximal mixed trace for residues issued over 10

runs of JET, or as before, to select as important those residues

appearing in 10/10 clusters. These measures are easily accessible

to the user in the output files. Examples of the application of these

criteria to single proteins are discussed in Results.

Difficulties in the Evaluation of JET
Multiple interaction sites often occur on a protein surface and

this makes evaluating JET difficult since only some of these sites

may be experimentally characterized. JET is nevertheless capable

of detecting all residues patches which are susceptible to be

involved in interactions with other ligands or macromolecules. An

example illustrating this point is leucine dehydrogenase 1leh (see

Figure 11) Which has both a protein-protein interface and a

ligand-binding pocket. The absence of information on the

Table 4. iJET and ET evaluation on the Kanamori dataset.

Category iJET ET Kanamori

MCC SD MCC SD

Enzymes 0.28 0.13 0.24 0.14

Inhibitors 0.26 0.11 20.01 0.14

Signal
transduction

0.17 0.17 0.14 0.22

Antigen 20.04 0.12 0.02 0.13

Antibody 20.07 0.08 20.05 0.09

Others 0.06 0.16 0.02 0.19

The Matthews correlation coefficients (MCC) computed for iJET (with i = 9) on all
protein complexes of the Kanamori dataset (with no redundancies). The
standard deviation (SD) of the distribution is also indicated. MCC and SD
computed on ET in [22] are reported for comparison.
doi:10.1371/journal.pcbi.1000267.t004

Figure 18. Matthews’ Correlation Coefficients of iJET on
Kanamori dataset. iJET evaluation based on MCC (y-axis) on different
functional classes of proteins of Kanamori dataset, with i~1 . . . 10 (x-
axis).
doi:10.1371/journal.pcbi.1000267.g018
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conserved pocket in the corresponding PDB file leads to apparent

false positives when JET is used automatically (see Text S3), but

such information can be valuable and can be used by the biologist

in formulating new hypotheses.

Applying JET
Lastly, it is remarked that JET can be applied to protein

sequences for which the structure is unknown, if the structure of a

homologous protein is available. This approach can again be

valuable to the biologist, notably in guiding site-specific mutagen-

esis experiments [33].

Supporting Information

Text S1 Propensity values

Found at: doi:10.1371/journal.pcbi.1000267.s001 (0.05 MB PDF)

Text S2 ET, JET and iJET performance on the Huang dataset

Found at: doi:10.1371/journal.pcbi.1000267.s002 (0.16 MB PDF)

Text S3 JET and iJET performance on a pool of selected

proteins discussed in the article

Found at: doi:10.1371/journal.pcbi.1000267.s003 (0.08 MB PDF)

Text S4 JET program information

Found at: doi:10.1371/journal.pcbi.1000267.s004 (0.09 MB PDF)

Text S5 iJET performance on the Kanamori dataset

Found at: doi:10.1371/journal.pcbi.1000267.s005 (0.10 MB PDF)
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