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Abstract

Protein-protein interactions (PPIs) may represent one of the next major classes of therapeutic targets. So far, only a minute
fraction of the estimated 650,000 PPIs that comprise the human interactome are known with a tiny number of complexes
being drugged. Such intricate biological systems cannot be cost-efficiently tackled using conventional high-throughput
screening methods. Rather, time has come for designing new strategies that will maximize the chance for hit identification
through a rationalization of the PPI inhibitor chemical space and the design of PPI-focused compound libraries (global or
target-specific). Here, we train machine-learning-based models, mainly decision trees, using a dataset of known PPI inhibitors
and of regular drugs in order to determine a global physico-chemical profile for putative PPI inhibitors. This statistical analysis
unravels two important molecular descriptors for PPI inhibitors characterizing specific molecular shapes and the presence of a
privileged number of aromatic bonds. The best model has been transposed into a computer program, PPI-HitProfiler, that can
output from any drug-like compound collection a focused chemical library enriched in putative PPI inhibitors. Our PPI inhibitor
profiler is challenged on the experimental screening results of 11 different PPIs among which the p53/MDM2 interaction
screened within our own CDithem platform, that in addition to the validation of our concept led to the identification of 4 novel
p53/MDM2 inhibitors. Collectively, our tool shows a robust behavior on the 11 experimental datasets by correctly profiling
70% of the experimentally identified hits while removing 52% of the inactive compounds from the initial compound
collections. We strongly believe that this new tool can be used as a global PPI inhibitor profiler prior to screening assays to
reduce the size of the compound collections to be experimentally screened while keeping most of the true PPI inhibitors. PPI-
HitProfiler is freely available on request from our CDithem platform website, www.CDithem.com.
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Introduction

Protein-protein interactions regulate most aspects of Life and

mapping these networks is nowadays one of the most difficult

challenges in molecular medicine and biology. Aberrant PPIs

contribute to most disease states and therefore represents a highly

populated class of essentially untouched targets for drug discovery.

While all PPIs may not be modulated by small drug-like

compounds, among the about 650,000 interactions that regulate

human life [1], a sizable number should be druggable [2–7], as

suggested by the growing number of PPI systems successfully

targeted by drug-like compounds, and the recent progress of two

PPI drugs to clinical testing in humans[8]. Although a vast array of

high-throughput, fragment-based and in vitro/in silico screening

technologies have been developed over the last 15 years [9], the

time and cost to chart PPI networks using these approaches

frighten any corporate decision board or government funding

body. Identification of PPI modulators is definitively challenging

[3,5–6,10–11] due to the plasticity of some interfaces but most

importantly to the unbalance between today’s screening libraries

and PPI inhibitors’ chemical spaces [4,12–18]. Hence, a possible

avenue to minimize the biomolecular or in silico screening burden

that is required to successfully target PPIs, is to design focused

libraries enriched in PPI inhibitors to realign the chemical space

window of compound collections with the chemical requirements

of PPI inhibitors. This approach should not only reduce wastes by

eliminating a priori compounds that are unlikely to impede/

modulate protein-protein complex formations but also lead to

enhanced potency or specificity of the binders. The focused library

concept [19] used on regular targets (e.g enzymes, GPCRs) has

however to be tailored to the singularity of PPIs. We advocate that

a possible solution to this conundrum is to mine relevant drug-like

PPI inhibitors and define a dedicated profile through the use

of appropriate chemoinformatics and machine learning tools.

Indeed, previous reports [3,20–23] have highlighted certain

‘‘universal’’ physico-chemical features of PPI inhibitors, i.e., our
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present understanding is that the molecules tend to be larger

than regular catalytic site inhibitors, they tend to be relatively

hydrophobic and rigid while often containing aromatic groups

[3,21–24], suggesting that it should be possible to apply machine-

learning and chemoinformatics methodologies on these molecules

together with key molecular descriptors to design a PPI inhibitor

profile and some PPI-inhibitor focused libraries [25–27]. Never-

theless, there is still some debate about whether such profile could or

should be global (i.e PPI-independent) or target-specific (like for

GPCRs or kinases). While it is clear that a global filter can not

reduce the size of the initial collection as much as a target-specific

filter, it has important advantages in the early discovery stages on

this difficult target class (i.e., for many PPIs there are neither known

small molecule inhibitors nor 3D structures to focus the collection in

a conventional target-specific manner).

In the present study, we selected appropriate Dragon’s molecular

descriptors[28] on a learning data set composed of true PPI

inhibitors and non-PPI inhibitors. We then ventured to build

machine learning-based computer models able to predict a global

and target-independent PPI inhibitor profile and transposed it into a

computer program, PPI-HitProfiler. We applied our tool to focus

several commercial compound collections to probe the concept and

assess the level of size reduction of those databases. Most

importantly, our program was further challenged on the experi-

mental screening results of 10 PPIs downloaded from the PubChem

Bioassay server. In addition, we carried out the in vitro screening of

two chemical library subsets on the p53/MDM2 interaction within

our CDithem drug discovery platform. Collectively, these experi-

mental results confirm the robustness of our tool, which managed to

discard more than half of the non-PPI inhibitors while identifying

70% of the true PPI inhibitors on those systems.

Results/Discussion

Construction of a machine-learning model to profile PPI
inhibitors

We used a chemical fingerprint-based clustering approach to

construct a chemically diversified learning data set ultimately

composed of 66 validated drug-like PPI inhibitors (Figure S1)

selected from the literature and of 557 non-PPI inhibitors obtained

from the ‘‘small molecule’’ subset of the DrugBank [29]. This

latter subset was chosen because historically it contains very few (if

any) PPI inhibitors, and therefore represents a valuable pool of

non-PPI inhibitors. Indeed, only 7 compounds on the whole

DrugBank small subset (4857 compounds) had a Tanimoto index

above 0.8 with one of the 66 PPI inhibitors. Further, to evaluate

the level of physico-chemical overlap between PPI and non-PPI

inhibitors, we ran a Principal Component Analysis (PCA) using

key descriptors (referred to as physico-chemical PCA), namely

molecular weight, octanol/water partition coefficient, topological

polar surface area, number of Hydrogen-bond donors and

acceptors, number of rotatable bonds and number of rigid bonds

(Figure 1). The subspace spanned by the first two principal

components (which account for more than 60% of the total

variance of the global physico-chemical space) are comparable for

PPI and non-PPI inhibitors on the learning data set (comparable

range and variability). The coverage of the protein space

corresponding to the 66 PPI inhibitors was also evaluated by

considering the SCOP fold classes of the associated PPIs. The 66

PPI inhibitors span over 27 different PPIs and 21 different SCOP

fold classes including various topological properties: mainly helix-

based domain; mainly beta-strand domain; mix folding (helix +
beta strand); and loop-binding groove domains (Figure S2).

On this learning data set, we initially computed the 1,666

Dragon molecular descriptors of E-Dragon (Dragon web version,

http://www.vcclab.org/lab/edragon/), but eventually kept only

the 357 most informative descriptors, were tested to construct

several machine-learning methods, such as, Decision Trees (DT)

and Support Vector Machines (SVM). The parameters of the

learning models were optimized using a cross validation protocol

such as to provide the best balance between enrichment (EF),

sensitivity (Se) and specificity (Sp) on the learning data set. We

then assessed these models on an independent validation data

set (Figure S3), composed of 26 other PPI inhibitors (that were

not present in the learning data set of 66 PPI inhibitors) and

2,000 decoys taken from the ChemBridge diversity set (www.

chembridge.com). The 26 PPI inhibitors span over 5 different PPI

and 5 different SCOP fold classes (Figure S4). Similarly to the

analysis performed on the learning data set, the physico-chemical

PCA ran on the PPI- and non-PPI inhibitors showed a fair overlap

of the physico-chemical subspaces associated to the two first

principal components (Figure 1).

From a methodological standpoint, we first observed that the

selected machine learning techniques could be successfully applied

to define/confirm a PPI inhibitor profile on the learning data set

(Table 1). Clearly, all SVM kernels were very efficient at

predicting the PPI inhibitor profile on the learning data set, with

a sensitivity of 92% and a specificity of 100% in the case of the

optimized sigmoid kernel. The two best DTs (1 and 2) also

performed well on the learning data set with sensitivities of 85 and

76% and specificities of 70 and 77%, respectively.

Nonetheless, we have mostly considered the performances of the

models on the validation data set (26 PPI inhibitors +2000 decoys),

which conceptually represents a real-life assessment of the models.

As seen on Table 1, the quality of the SVM-model predictions

could not be maintained neither during the 10-fold cross

validation (10-FCV) on the learning data set nor with the

validation data set as shown by the obtained sensitivity, specificity

and enrichment values. This clearly demonstrates an over training

of the SVM models on the learning data set, regardless of the

kernel used, and despite the cross validation-based optimization of

the SVM parameters. On the contrary, D.T.1 and D.T.2 display

Author Summary

Protein-protein interactions (PPIs) are essential to life and
various diseases states are associated with aberrant PPIs.
Therefore significant efforts are dedicated to this new class
of therapeutic targets. Even though it might not be
possible to modulate the estimated 650,000 PPIs that
regulate human life with drug-like compounds, a sizeable
number of PPI should be druggable. Only 10-15% of the
human genome is thought to be druggable with around
1000-3000 druggable protein targets. A hypothetical
similar ratio for PPIs would bring the number of druggable
PPIs to about 65,000, although no data can yet support
such a hypothesis. PPI have been historically intricate to
tackle with standard experimental and virtual screening
techniques, possibly because of the shift in the chemical
space between today’s chemical libraries and PPI physico-
chemical requirements. Therefore, one possible avenue to
circumvent this conundrum is to design focused libraries
enriched in putative PPI inhibitors. Here, we show how
chemoinformatics can assist library design by learning
physico-chemical rules from a data set of known PPI
inhibitors and their comparison with regular drugs. Our
study shows the importance of specific molecular shapes
and a privileged number of aromatic bonds.

Understanding Chemical Space of PPI Inhibitors
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more robust performances on the validation data set, with D.T.1

showing a sensitivity of 81% and a specificity of 70%, and D.T.

Nu2 showing a lower Se (70%) but a higher Sp (80.1%). These

results show that in this application decision trees outperform

support vector machines in predicting a PPI inhibitor profile on

our independent validation data set. This behavior also brings

the net advantage to provide the medicinal chemists with a

comprehensive description of the relevant physico-chemical

features required in the design or selection of PPI inhibitors.

Indeed, decision trees can offer a significant advantage over SVM

models, which result from the combination and transformation of

all the descriptors and usually lack interpretability. In the present

case, two decision trees were constructed in order to propose two

ways of balancing specificity and sensitivity. The two best DTs

were constructed with the two same Dragon descriptors,

RDF070m and UI, though with different thresholds for Ui

($3.95 and $4.13) (Figure 2). We observed a poor correlation

between RDF070m and Ui (r2
RDF070m:UI = 0.34), which confirms

that they provide low redundancy and good complementarities in

discriminating PPI- from non-PPI inhibitors (Figure 3). RDF070m

is a Radial Distribution Function (RDF(r)) descriptor weighted by

the atomic masses using a sphere radius r of 7 Å as the associated

probability distribution function, and Ui is the unsaturation index,

directly correlated to the number of multiple bonds (double, triple

and aromatic bonds).

RDF(r) descriptors are known as shape descriptors. They

represent a radial distribution function of an ensemble of N atoms

and can be interpreted as the probability distribution to find an

atom in a spherical volume radius r:

RDF (r)~f
XN{1

i

XN

jwi

AiAje
{B(r{rij )2

where f is a scaling factor, N is the total number of atoms, Ai and Aj

are atomic properties associated with the atom i and j whose

distance is defined by rij. B is a smoothing factor. f and B were set

to 0.007 and 100 Å22 respectively. Ai and Aj, are in the case of

RDF070m, the atomic weight of atom i and j, respectively. This

family of descriptors is usually used as a multiple-value code

calculated at different discrete distances (here we just use r = 7 Å)

and can be weighted by various atomic properties, here the atomic

Figure 1. Principal Component Analysis (PCA) on the learning and validation data sets. The calculations were run using 7 physico-
chemical, molecular weight, octanol/water partition coefficient, topological polar surface area, number of Hydrogen bond donors and acceptors, the
number of rotatable bonds and the number of rigid bonds. PPI inhibitors are represented as red disks, and non-PPI inhibitors are represented as black
circles.
doi:10.1371/journal.pcbi.1000695.g001

Table 1. Prediction results of the five best machine-learning
models.

Parameters Data set Se (%) Sp (%) EF

D.T.1 Learning 85 70 2.38

D.T.1 Validation 81 66 2.53

D.T.2 Learning 76 77 2.61

D.T.2 Validation 70 80 3.39

SVM Gaussian Kernel Learning 89 100 9.44

SVM Gaussian Kernel 10-FCV 39 97 5.71

SVM Gaussian Kernel Validation 33 85 2.23

SVM Sigmoid Kernel Learning 92 100 9.29

SVM Sigmoid Kernel 10-FCV 42 93 3.83

SVM Sigmoid Kernel Validation 33 81 1.77

SVM Polynomial Kernel Learning 89 100 9.44

SVM Polynomial Kernel 10-FCV 33 98 5.77

SVM Polynomial Kernel Validation 27 84 1.67

Representation of the different optimized machine learning models, two
decision trees, and three SVM models. Se (sensitivity), Sp (specificity) and EF
(Enrichment) values are given for both, the learning data set (66 PPI inhibitors
+557 non-PPI inhibitors) and the validation data set (26 PPI inhibitors +2,000
non-PPI inhibitors). (10-FCV = 10-Fold Cross Validation).
doi:10.1371/journal.pcbi.1000695.t001

Understanding Chemical Space of PPI Inhibitors
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weight, but it can be partial charges, polarizability, etc. These

descriptors were successfully used to study active compounds on

Vitamin D receptor [30], flavonoid compounds as inhibitors of

aldose reductase [31] but more interestingly to predict 3D structures

from their infra red spectra in which specific substructures are by

definition associated to a specific signal, like the presence or absence

of multiple bonds in a given region of the compounds [32–33].

To illustrate the connection between the RDF070m descriptor

and the molecular shape, we calculated the RDF070m values for 4

co-crystallized synthetic inhibitors taken from 4 different PPI

complexes (1 protein of the PPI+1 synthetic inhibitor), namely

ICAM1/LFA, IL-2/IL-2Ra, p53/MDM2, and Xiap-BIR3/smac

complexes. We further calculated the values of RDF070m on 4

experimentally identified PPI inhibitors and 4 inactive com-

pounds, all 8 taken from the screening of the PPI CBFb/CBFa

interaction (PubChem Bioassay AID1434) (Figure 4). It is clear on

Figure 4 that RDF070m tends to have higher values when the

molecules have more ramifications and/or are star-, L-, or T-

shaped. Conversely, I-shaped molecules have lower values. To

further stress the prevalence of specific shapes observed within PPI

inhibitors structures, we noticed that several of the p53/MDM2

inhibitors satisfying the ‘‘thumb-index-middle’’ finger-pharmaco-

phore[34] that were present in our validation data set (26 PPI

inhibitors) have also high values for RDF070m. It must be noted

that even though RDF070m correlated partially with the

molecular weight (MW), it is only true at lower MW (MW,400)

(Figure 5). But, the combined descriptor obtained by dividing

RDF070m by MW is still capable of significantly discriminating

PPI inhibitors (p-valueRDF070m/MW = 5.74e-08). This is particular-

ly important because RDF070m stands at the top of the DTs and

therefore operates on the full data set. This demonstrates the

information added by RDF070m to significantly separate the two

populations (PPI inhibitors and non-PPI inhibitors) even at

equivalent MW. Indeed, it can be seen on Figure 4 that even

smaller compounds can have relatively high RDF070m values.

The second yet unraveled descriptor, UI, depends exclusively

on the number of multiple bonds:

UI~log2 1zbð Þ

where, b~
P

bonds

p�ij{B is the multiple bond count, and pij
* is the

conventional bond order of the bond between atom i and atom j

(pij
* = 1 for single bonds, pij

* = 2 for double and aromatic bonds,

Figure 2. Representation of the two decision trees D.T.1 (panel a) and D.T.2 (panel b) on the learning data set (66 PPI inhibitors +
557 non-PPI inhibitors). The two decision trees share the same two descriptors RDF070m and UI. The two thresholds for RDF070m are identical
($13.31) for D.T.1 and D.T.2 while the UI thresholds are different, $3.95 and $4.13 respectively for D.T.1 and D.T.2. The values for the corresponding
sensitivity (Se) and specificity (Sp) are indicated for each DT.
doi:10.1371/journal.pcbi.1000695.g002

Figure 3. Correlation Plot between RDF070m and UI descrip-
tors. Plot calculated on the 623 molecules of the learning data set: 66
PPI-inhibitors (dark filled triangles) +557 non-PPI inhibitors (dark circles).
The two thresholds of the decision tree Nu1 are RDF070m.13.31 and
UI.3.95. This plot first highlights the poor correlation between
RDF070m and UI (r2 = 0.34). Secondly, this shows that most of the
PPI-inhibitors are either above the RDF070m threshold (13.31) or above
the UI threshold (3.95).
doi:10.1371/journal.pcbi.1000695.g003

Understanding Chemical Space of PPI Inhibitors
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pij
* = 3 for triple bonds), the summation being run over all B

bonds. One can see that for single bonds, the pij
* contribution

cancels out with the term B, therefore making Ui relying

exclusively on the pij
* contribution of the multiple bonds. An

example of the Ui calculation is given on Figure 6 with Aspirin.

With such definition, one notices that the two above optimized

thresholds associated with the two DTs (D.T.1UI-threshold$3.95,

D.T.2UI-threshold$4.13), although being float values, can be traced

back to a discrete number of privileged multiple bonds. Indeed, if

one considers the number of triple bonds as negligible, which is the

case with 0.1-0.6% of triple bonds on average on any given

database, the two Ui thresholds correspond to a number of 15 and

17 multiple bonds (double or aromatic) respectively. This can be

confirmed by the strong correlation observed between Ui and

more explicit descriptors such as the number of multiple bonds

(r2
UI:nBM = 0.95), the number of aromatic bonds (r2

UI:nAB = 0.92)

Figure 4. Effect of molecular shape on descriptor RDF070m. The RDF070m values have been calculated on 4 cocrystallized PPI inhibitors of
the following PPIs: ICAM1/LFA, IL-2/IL-2Ra, p53/MDM2, and BIR3-Xiap/Smac. All 4 values are above the DTs threshold 13.31. The UI values are also
indicated, as well as the planarity of the binding pocket (calculated from the PROTORP server, http://www.bioinformatics.sussex.ac.uk/protorp/). Also,
on the panel below the calculated RDF070m values for 4 experimentally identified inhibitors (cyan) and 4 inactive compounds (green) of the CBFb/
CBFa interaction taken from PubChemBioassay AID1434.
doi:10.1371/journal.pcbi.1000695.g004

Understanding Chemical Space of PPI Inhibitors
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and to a minor extent to the number of benzene-like ring

(r2
UI:nBnz = 0.75), highlighting the importance of double and

aromatic bonds. This is also coherent with previous observa-

tions[3,6,24,34] about the more pronounced aromatic, hydropho-

bic and rigid character of PPI inhibitors.

By analyzing these results, we suggest that the two models

(D.T.1 and D.T.2) we built bring complementary performances in

terms of sensitivity and specificity. D.T.1 has a stronger ability to

identify true PPI inhibitors (SeD.T.1 = 81%, SeD.T.2 = 70%) while

D.T.2 has a higher level of discrimination towards non-PPI

inhibitors (SpD.T.1 = 66%, SpD.T.2 = 80.1%). Therefore, the first

tree would be more suited to operate on relatively small libraries

(1,000 – 50,000 compounds) to maximize the chance of keeping a

higher number of true PPI inhibitors, while the second tree will be

useful to shrink large compound collections (over 50,000

compounds) with a higher efficacy, while keeping up to 70% of

true PPI inhibitors.

Lastly, during the 20-fold cross validation (20-FCV) procedure

used to choose the best descriptors involved in the DTs, other

descriptors emerged, although much less frequenty than

RDF070m and Ui. The first descriptor, ATS8m, could be used

instead of RDF070m at the top of the tree (EF = 2.65, Se = 72.7%,

Sp = 77.9%) in a very small minority of the 20-FCV configurations

(2 times over 20). This descriptor is a Broto-Moreau’s autocorre-

lation coefficient weighted by the molecular weight like

RDF070m. It is based on a Dirac delta function center at an

inter-atomic distance of 8 Å as opposed to RDF070m that is

constructed in reference to an inter-atomic distance of 7 Å.

Interestingly, RDF080m was found interesting for one case in the

20-FCV configurations (EF = 2.53, Se = 78.8%, Sp = 74.5%),

highlighting also an inter-atomic distance of 8 Å. Concerning

the second node of the tree, the descriptor PCR, could be used

instead of Ui only on a minority of the 20-FCV configurations (2

over of 20)(EF = 2.33, Se = 77.3%, Sp = 72.0%), and correlated

with Ui (r2 = 0.802). This descriptor is a walk and path count

descriptor and more specifically the ratio of multiple path count

over path count descriptor. This descriptor is, as Ui, linked to the

ratio of multiple bonds with respect to the total number of bonds,

but was found poorly efficient to discriminate true PPI inhibitors

as compared to Ui.

Those results highlight the relevance and robustness of the

chosen descriptors, RDF070m and Ui. Indeed, even when these

descriptors were not retained as the very best ones (due to the

unavoidably subsampling bias of the 20-FCV procedure), the

alternative descriptors chosen brought a similar rather than

orthogonal description.

Implementation of the DTs into a computer program:
PPI-HitProfiler

We then developed a computer program, named PPI-

HitProfiler, to transpose our best DTs into a user-friendly

command line package that takes as input any drug-like chemical

library, calculates for each compound the two aforementioned

descriptors, determines whether the compound satisfies the

corresponding thresholds and generates a focused chemical

library enriched in putative PPI inhibitors. As seen above,

RDF070m and Ui are relatively simple descriptors to implement.

This has been done using the Python-Pybel package[35] which is

an object-oriented programming package allowing an easy

manipulation of small compounds and of their main atomic

properties.

Assessment of PPI-HitProfiler on size reduction with
commercial compound collections

To illustrate the benefit of using PPI-HitProfiler in terms of

reducing the chemical collection size, we applied it on a drug-like

version of the MayBridge Screening Collection (www.maybridge.

com) filtered with our ADMET tool FAF-Drugs2[36]. From the

57,200 molecules initially present in this library, 31,107 molecules

passed the soft ADMET filtering protocol. Subsequently, 17,162

molecules passed PPI-HitProfiler when using model D.T.1 and

13,799 for the model D.T.2 (Table 2). A similar evaluation carried

out on the diversity set of the ChemBridge database that initially

contained 50,000 compounds led to an intermediate library of

39,623 satisfying the ADMET filters and ultimately 12,866

compounds with PPI-HitProfiler-D.T.1 and 9,622 compounds

with PPI-HitProfiler-D.T.2 (Table 2). In this latter case, the use of

D.T.2 represents a size reduction of 76% from the ADMET

version of the ChemBridge diversity set, and of 81% from the

initial ChemBridge diversity set.

Figure 5. Correlation plot between RDF070m and MW on the
learning data set (66 PPI inhibitors (Red disks) +557 non-PPI
inhibitors (black circles)). This figure shows that correlations
between RDF070m and MW are significant only for compounds below
400. At higher MW, RDF070m performs better than MW.
doi:10.1371/journal.pcbi.1000695.g005

Figure 6. Calculation of UI on Aspirin. UiAspirin = 3.17: aspirin has a
total of 21 bonds, such that B = 21, 13 single bonds that have a con-
tribution of 1 to b, and 8 double and aromatic bonds that have a
contribution of 2 to b, such that the multiple bond count b is equal to
b = 13x1+8x2 - 21 = 8. Thus Ui = log2(1+b) = log2(1+8) = 3.17.
doi:10.1371/journal.pcbi.1000695.g006

Understanding Chemical Space of PPI Inhibitors
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Assessment of PPI-HitProfiler using HTS results from
PubChem BioAssay

We then evaluated the performance of our PPI-HitProfiler on

the HTS results of 10 different PPIs taken from the PubChem

BioAssay server: BFL-1/Bid (AID432), CBFb/CBFa (AID1434),

EphA4/ephrin-A (AID689), Xiap/Bir1-2 (AID1018), MCL-1/

NOXA (AID1417) CD11b-CD18/Fibrinogen (AID1499), Hsp90/

TPR2A (AID595), BRCT/Phosphoprotein (AID875), TLR4/

MyD88 (AID811), Multiplex Bcl-2 family/Bim (AID1330). The

results show a robust behavior of our tool with an average of 81%

and 70% of correctly predicted PPI inhibitors and 42% and 52%

of the inactive compounds removed from the initial collections

when using PPI-HitProfiler-D.T.1 and –D.T.2, respectively. One

can see that the D.T.2 version of PPI-HitProfiler which has a

higher specificity and is therefore more appropriate for larger

chemical collection shows a robust behavior for the 3 PubChem

BioAssays having more than 50,000 compounds (AID1434,

AID1018, and AID1499) by predicting correctly from 70 to

84% of the true PPI inhibitors while steadily removing more than

half of the inactive compounds. On the other hand, for the

screening assays where the total number of compounds screened is

significantly below 50,000 i.e AID689, AID1417, AID811,

AID1330 and for the p53/MDM2 CDithem screening (see

below), one can see that the sensitivity is on average about 87%

even though the average specificity on these results (38.2%) is

slightly below the global average (42%). Interestingly, we noticed

that true PPI inhibitors being correctly selected were flagged by

the two descriptors RDF070m and UI in a 20:80 ratio highlighting

the importance of multiple bonds and especially aromatic bonds in

the specificity of PPI inhibitors. This further illustrates that PPI

inhibitors must have a specific molecular shape, or that they tend

to have a higher number of multiple bonds to compensate.

Similarly to what was done for the learning and validation data

set, the physico-chemical PCA that was carried out on each of the

AID data sets using the same 7 descriptors (Figure 7 and 8), shows

that the physico-chemical subspaces spanned by the first two

principal components (which account for about 60% of the

variance of the global physico-chemical space) are equivalent for

PPI and non-PPI inhibitors. This also means, mainly for the AIDs

having a large number of active compounds (AID1434, AID689,

AID1417, and AID595) for which it is easier to evaluate the level

of physico-chemical space overlap (Figure 7 and 8), that classical

descriptors (e.g higher MW and higher hydrophobicity, higher

rigidity) may be not be always sufficient to distinguish them from

inactive compounds. Rather, another way to embrace their key

properties without counteracting known facts may be the further

consideration of their molecular shape and aromaticity.

Finally, we also evaluated the coverage of protein space

corresponding to the validation data set and the various screening

results (AIDs). All combined, the validation of our tool spanned

over 15 different PPIs, 5 for the validation data set and 10 for the

different AID screening results. These correspond to 13 different

SCOP fold classes. As it can be seen on Table 3 those classes

include various types of folding including: mainly helix-based

folding; mainly-beta sheet-based folding; mix-folding (helix+beta

strand); and loop-binding groove systems.

Assessment of PPI-HitProfiler through the in vitro
screening of p53/MDM2

We then challenged our PPI-HitProfiler through the in vitro

screening of the p53/MDM2 complex. The p53 tumor suppressor

is vital in cell cycle regulation DNA repair, and apoptosis[37–38].

Its implication has been observed in all human cancers either with

mutations or through a pure inhibition due to an overexpression of

its native partner, murine double minute 2 oncoprotein (MDM2).

This PPI has therefore been the subject of numerous experimental

screening studies yielding to the development of several synthetic

PPI inhibitors [39–43]. Using a fluorescence polarization assay

within our CDithem platform to monitor the p53/MDM2

interaction, we screened a total of 4,705 drug-like compounds

filtered from Asinex (3,400 cpmds) (www.asinex.com) and

ChemDiv (2,400 cpmds) (www.chemdiv.com) subsets using FAF-

Drugs2. The experimental screening led to the identification of 4

new inhibitors of the p53/MDM2 interaction with pIC50 ranging

from 4.6 to 5.5 (Figure 9). Interestingly, 3 out of those 4 new

inhibitors (Se = 75%) passed our two filters (PPI-HitProfiler-D.T.1

and PPI-HitProfiler-D.T.2). Compound BDM_4605 (pIC50 = 4.6)

was missed by both our filters because it has a low RDF070m

value (3.11) far from the threshold (set at 13.31) at the top of the

trees, and a low Ui value as well (3.907) when a minimal of 3.95 is

required to pass at least the threshold of D.T.1. Interestingly, this

represents only 14 multiple bonds (double and aromatic) when 15

are required for D.T.1. Among the three correctly detected

compounds all passed by the most stringent threshold for Ui (4.13),

which represents the presence of at least 17 multiple bonds.

Compound BDM_26 also passed the RDF070m threshold with a

value of 20.31. In this case again, one can see the star-like structure

of the compound, which contributes to most of the high value of

RDF070m in a similar manner to the well known structure of the

Nutlin compounds (e.g compound 2 in Figure S1) that are also

active on p53/MDM2. Conversely, from the 4,705 compounds

tested, PPI-HitProfiler-D.T.1 managed to remove 32% of the

inactive compounds (Sp = 32%) on this PPI system whereas PPI-

HitProfiler-D.T.2 removed 43% (Sp = 43%) of the initial screened

collection (Table 3). These results showed that used prior to

experimental screening PPI-HitProfiler-D.T.2 would manage to

identify 75% of the true PPI inhibitors on p53/MDM2 while

nearly dividing in half the initial compound collection. As for the

learning data set, the results of a physico-chemical PCA carried

out on these screening results using the 7 descriptors cited above

Table 2. Effect of PPI-HitProfiler on the size of two commercial collections.

MayBridge Screening Collection 57,200 Compounds ChemBridge Diversity Set 50,000 Compounds

ADMET filter 31,107 Compounds ADMET filter 39,623 Compounds

PPI-HitProfiler-D.T.1
17,162 Compounds

PPI-HitProfiler-D.T.2
13,799 Compounds

PPI-HitProfiler-D.T.1
12,866 Compounds

PPI-HitProfiler-D.T.2
9,622 Compounds

45% 56% 68% 76%

The two collections were filtered with FAFDrugs2 for ADMET properties, and the resulting drug-like databases were profiled using PPI-HitProfiler (D.T.1 and D.T.2
versions) to estimate the size reduction. The percentage of reduction within the table is calculated with respect to the drug-like version of the collections.
doi:10.1371/journal.pcbi.1000695.t002
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Figure 7. Principal Component Analysis (PCA) on the various screening results (AID1434, AID689, AID1018, AID1417, AID432). The
calculations were run using 7 physico-chemical, molecular weight, octanol/water partition coefficient, topological polar surface area, number of
Hydrogen bond donors and acceptors, the number of rotatable bonds and the number of rigid bonds. PPI inhibitors are represented as red disks, and
non-PPI inhibitors are represented as black circles.
doi:10.1371/journal.pcbi.1000695.g007
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Figure 8. Principal Component Analysis (PCA) on the various screening results (AID1499, AID595, AID875, AID811, AID1330,
CDithem). The calculations were run using 7 physico-chemical, molecular weight, octanol/water partition coefficient, topological polar surface area,
number of Hydrogen bond donors and acceptors, the number of rotatable bonds and the number of rigid bonds. PPI inhibitors are represented as
red disks, and non-PPI inhibitors are represented as black circles.
doi:10.1371/journal.pcbi.1000695.g008
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Table 3. PPI-HitProfiler evaluation on HTS results.

Experiments Scop fold
Nb of inatives
TN + FP

Total Nb Hits
TP + FN

PPI-
HitProfiler TN TP

Sp
(%)

Se
(%) EF

AID432 BFL-1/Bid Toxins’ membrane
translocation domains.
Multi-helical domains

46 466 10 D.T 1 20045 8 43 80 1.41

AID432 BFL-1/Bid Toxins’ membrane
translocation domains.
Multi-helical domains

46 466 10 D.T 2 25073 7 54 70 1.52

AID1434 CBFb/CBFa Core binding factor beta.
Barrel; capped at both
ends by alpha-helices

117 533 894 D.T 1 48620 722 41 81 1.39

AID1434 CBFb/CBFa Core binding factor beta.
Barrel; capped at both
ends by alpha-helices

117 533 894 D.T 2 61889 621 53 70 1.48

AID689 EphA4/ephrin-A N/A Loop-binding groove 37 114 38 D.T 1 14684 33 40 87 1.44

AID689 EphA4/ephrin-A N/A Loop-binding groove 37 114 38 D.T 2 18481 27 50 71 1.42

AID1018 Xiap/Bir1-2 Inhibitor of apoptosis (IAP) repeat.
Metal(zinc)-bound alpha+beta fold

112 346 6 D.T 1 47084 5 42 84 1.43

AID1018 Xiap/Bir1-2 Inhibitor of apoptosis (IAP) repeat.
Metal(zinc)-bound alpha+beta fold

112 346 6 D.T 2 58187 5 52 84 1.73

AID1417 MCL-1/NOXA Toxins’ membrane
translocation domains.
Multi-helical domains

134 347 D.T 1 58 296 43 85 5.40

AID1417 MCL-1/NOXA Toxins’ membrane
translocation domains.
Multi-helical domains

134 347 D.T 2 71 243 53 70 5.35

AID1499 CD11b-CD18/
Fibrinogen

vWA-like.
Mixed beta-sheet of 6 strands

58 790 34 D.T 1 23924 28 41 82 1.39

AID1499 CD11b-CD18/
Fibrinogen

vWA-like.
Mixed beta-sheet of 6 strands

58 790 34 D.T 2 29694 28 51 82 1.66

AID595 Hsp90/TPR2A alpha-alpha superhelix.
Right-handed superhelix

46 519 174 D.T 1 19309 124 42 71 1.22

AID595 Hsp90/TPR2A alpha-alpha superhelix.
Right-handed superhelix

46 519 174 D.T 2 23613 112 51 64 1.31

AID875 BRCT/
Phosphoprotein

BRCT domain. Parallel.
beta-sheet of 4 strands

48 183 17 D.T 1 20259 15 42 88 1.52

AID875 BRCT/
Phosphoprotein

BRCT domain. Parallel.
beta-sheet of 4 strands

48 183 17 D.T 2 24709 11 51 65 1.33

AID811 TLR4/MyD88 Flavodoxin-like. parallel
beta-sheet of 5 strand

7 116 3 D.T 1 3502 3 49 100 1.97

AID811 TLR4/MyD88 Flavodoxin-like. parallel
beta-sheet of 5 strand

7 116 3 D.T 2 4295 3 60 100 2.52

AID1330 Multiplex
Bcl-2 family/Bim

Toxins’ membrane
translocation domains.
Multi-helical domains

461 14 D.T 1 125 13 27 92 1.31

AID1330 Multiplex
Bcl-2 family/Bim

Toxins’ membrane
translocation domains.
Multi-helical domains

461 14 D.T 2 181 11 39 79 1.33

CDithem Screening
p53/MDM2

SWIB/MDM2 domain.
4 helices; capped by two
small 3-stranded beta-sheets

4 705 4 D.T 1 1508 3 32 75 1.10

CDithem Screening
p53/MDM2

SWIB/MDM2 domain.
4 helices; capped by two
small 3-stranded beta-sheets

4 705 4 D.T 2 2003 3 43 75 1.31

All HTS cumulated D.T 1 199118 1 250 42 81 1.39

All HTS cumulated D.T 2 248196 1 071 52 70 1.45

Results of the application of PPI-HitProfiler on topologically diverse PubChem BioAssay results and on the CDithem screening of the p53/MDM2 interaction. All data sets
were previously filtered with FAF-Drugs2 using the same parameters as for the learning data set. The total number of inactive compounds (TN + FP). active compounds
(TP + FN). remaining inactives (TN). and remaining actives (TP). are used to calculate the sensitivity and specificity of PPI-HitProfiler on each data set.
TP: number of PPI inhibitors correctly classified.
FP: number of non-PPI inhibitors classified as PPI-inhibitors.
TN: number of non-PPI inhibitors correctly classified.
FN: number of PPI inhibitors classified as non-PPI inhibitors.
Sensitivity = TP/(TP + FN).
Specificity = TN/(TN + FP).
doi:10.1371/journal.pcbi.1000695.t003
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showed a fair overlap of the physico-chemical subspaces of the two

subpopulations (actives and inactives). We then used the p53/

MDM2 data set to assess the applicability domain of PPI-

HitProfiler. We ran another principal component analysis (PCA)

on the 623 molecules of the learning data set and the 357 E-

Dragon descriptors that remained for the construction and

optimization of the decision trees. The 3 first axis of the PCA

were used to plot the molecules of the two subsets screened (Asinex

+ ChemDiv) in the flurorescence polarization assay (Figure 10).

Even though the 3 first axis of the PCA represent only 40% of the

global variance, these results tend to show that the screened

collection stood within the domain of applicability of PPI-

HitProfiler.

Conclusion
In summary, we suggest that it may be possible to determine a

global PPI inhibitor profile having appropriate ADMET proper-

ties using machine-learning techniques. Descriptor-based decision

trees managed to positively discriminate PPI inhibitors combining

only two molecular descriptors, RDF070m and Ui, which

respectively describe specific ramified molecular shape and the

presence of 15–17 multiple bonds in the compound. The

development of a new computer package named PPI-HitProfiler

allows the design of focused libraries enriched in PPI inhibitors

starting from any drug-like compound collection. Its applications

on two commercial compound collections, and its assessment on

the experimental screening results of 11 different PPI systems

shows a robust behavior in identifying true PPI inhibitors, from 70

to 81%, and its capacity to discard putative non-PPI inhibitors,

from 42 to 52%, depending on the version of PPI-HitProfiler used.

Although, removing 52% of inactive compounds from a chemical

collection might seem rather low when designing focused chemical

libraries, it has to be kept in mind that PPIs are a large and very

diverse family. Futhermore, lead discovery in the pharmaceutical

environment is at an industrial scale in which it is typical to screen

1–5 million compounds in few weeks using HTS. Yet the financial

cost of an HTS campaign of 1 million compounds is anywhere

between $500 000 to $1000 000[13]. This means in this case a cost

saving from $260 000 to $2 600 000 pet target. Clearly, some

potentially interesting compounds could be lost after any type of

filtering but the next blockbuster can also be missed by any kind of

experimental high-throughput methods. Moreover, at present no

one can foresee to what extent one can reduce the initial size of

screening collections using a global and target-independent PPI

Figure 9. 2D sketch of the 4 new inhibitors of the p53/MDM2 interaction identified by our CDithem fluorescence polarization assay
along with their potency (pIC50) and their RDF070m and UI values.
doi:10.1371/journal.pcbi.1000695.g009

Understanding Chemical Space of PPI Inhibitors

PLoS Computational Biology | www.ploscompbiol.org 11 March 2010 | Volume 6 | Issue 3 | e1000695



inhibitor profiler like the one presented herein. This really depends

on the quality of the initial collection as suggests the difference in

specificity between PubChem BioAssay databases, and the

ChemBridge and MayBridge collections.

One avenue to circumvent this problem should be to design PPI-

specific profiler that would take into account topology and types of

interactions, e.g a-helix bound to a groove (p53/MDM2), or inter-

protein beta-sheet (Xiap-BIR3/Smac), etc. This way, more speci-

ficity could be brought to the statistical models. One can imagine to

design focused libraries by applying successive filters from the most

global, like PPI-HitProfiler, to the more specific that could represent

only a precise type of protein-protein interaction.

At this stage of development and present knowledge, we

strongly believe that ‘‘target-independent’’ PPI inhibitor profiler

can be successfully applied prior to in silico or in vitro screening

experiments not only for drug discovery projects to avoid a full-

scale screening but also for chemical biology projects. Because it is

known that target selection is a major bottleneck in today’s drug

discovery endeavors and that targets are nowadays less validated

than in the nineties [44], time and cost-effective in silico

technologies could here assist achieving systematic success in spite

of the present global economic downturn.

Methods

Data set preparation: learning and validation data sets
145 PPI inhibitors identified by both in vitro and in vivo

experiments were taken from the literature and ADMET filtered

with our program FAF-Drugs2[36] using very soft parameters for

both physico-chemical properties and presence of toxic/reactive

groups.

(100,MW,900; 0,HBD,8; 0,HBA = 12; -5,XLogP,6;

0,nROT,20; 0,TPSA,160; +one allowed Lipinski’s rule

violation). The remaining 81 PPI inhibitors were clustered with

the program LigandInfo[45] using a hierarchical normal ascending

classification with a diversity criterion of 0.8. From this classification

Figure 10. Applicability domain of PPI-HitProfiler. The application domain of PPI-HitProfiler has been evaluated using a Principal Component
Analysis (PCA) on the 623 molecules of the learning data (red) set and the 357 initial E-Dragon descriptors that were used to construct the decision
trees. The graph represents the 3 first axis of the PCA (40% of the variance) which have been used to calculate the coordinates of the 1,645 molecules
of the ChemDiv subset (green) and the 3,060 molecules of the Asinex Subset (blue). A good overlap between the three subsets (Red, Green, and Blue)
can be observed which indicates that the molecules from the Asinex and ChemDiv subsets stand within the applicability domain of PPI-HitProfiler
and that the focused library resulting from the two subsets is meaningful.
doi:10.1371/journal.pcbi.1000695.g010
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one representative molecule from each cluster was taken such as

having ultimately 66 structurally diverse PPI inhibitors (Figure S1).

These compounds were used as the positive learning data set. A

similar protocol was applied to define a negative learning data set.

To do so, the 4,857 molecules from the ‘‘small molecules’’ subset of

the DrugBank database were used. The small subset of the

DrugBank contained for example 5% of compounds with a MW

higher than 900. Moreover, not all the drugs from this subset have

an orally bioavailable profile. All those molecules were therefore

filtered using the same ADMET parameters. For historical reasons

the small subset of the Drugbank contains very few PPI inhibitors.

There are only 7 compounds from the whole ‘‘small subset’’ of the

Drugbank that have a Tanimoto index above 0.8 with one of the 66

PPI inhibitors.

The ADME/tox filtering step selected 942 molecules that were

clustered as above leading to a diversity set of 557 drug-like

molecules. Ultimately, the learning data set contained 66 true PPI

inhibitors, 557 non-PPI inhibitors and 623 molecules in total. An

independent validation set was constructed to assess the robustness of

the model. It contained 26 different PPI inhibitors (Figure S2) and

2,000 molecules from the ChemBridge diversity set filtered as above.

More specifically, only two compounds from the 26 PPI inhibitors of

the validation dataset had a Tanimoto indice with one of the 66

(learning dataset) PPI inhibitors comprised between 0.8 and 0.9. Very

few of them came from the initial pool of 145 PPI inhibitors (3 of

them). Two compounds had a Tanimoto index between 0.8 and 1.0

with of the 145 PPI inhibitors but the vast majority were some

different extra compounds.

Data set preparation: remaining data sets
The ADMET parameters used above for the filtering of the

learning and validating data sets have also been used on the

MayBridge and ChemBridge screening collections, as well as on

the collections that were experimentally screened in the 10 PubChem

BioAssays and in our fluorescence polarization assay on the p53/

MDM2 interaction.

Definition of enrichment, sensitivity and specificity
TP: number of PPI inhibitors correctly classified

FP: number of non-PPI inhibitors uncorrectly classified as

PPI-inhibitors

TN: number of non-PPI inhibitors correctly classified

FN: number of PPI inhibitors uncorrectly classified as non-PPI

inhibitors

EF: Enrichment factor

EF~
TP

TPzFPð Þ �
TPzFPzTNzFNð Þ

TPzFNð Þ

Se~Sensitivity~TP= TPzFNð Þ

Sp~Specificity~TN TNzFPð Þ

Statistical analysis: molecular descriptor calculation and
preprocessing

Descriptors were calculated by the program E-DRAGON, a

web-server based version of DRAGON[28] (version 5.4) contain-

ing 1,666 descriptors.

The protocol described herein was used to eliminate non-

relevant descriptors on the learning data set. Descriptors whose

variance was zero (discard 108 descriptors), gathered descriptors

according to correlation coefficient above 0.9 (discard 936

descriptors), descriptors whose Student T-test p-value was above

0.2 between the positive and negative learning data sets (discard

265 descriptors), such that 357 descriptors were initially retained to

perform our computations.

Learning methods
Support vector machines. Support vector machines belong

to the class of machine learning algorithms that has recently

become prominent in both computational biology and chemistry.

This method implicitly embeds the data of interest in a high-

dimensional feature space where classification or regression can be

more easily performed with linear rules than in the original

descriptor space. In SVM, a hyperplane maximizing its distance to

the nearest observations (in the new space) is chosen. The

optimization of parameters was processed by 10-fold cross

validation (10-FCV) and factorial design. Three well-established

and diverse kernels were tested: gaussian, sigmoid and polynomial.

The best combination of parameters was chosen by monitoring

enrichment, sensitivity and specificity from 10-FCV results

(Table 4).

Decision trees. Decision trees were constructed by analyzing

a set of training samples for which the class labels were known. At

each node, they recursively binary partition the data according to

a threshold applied on one descriptor value. If trained on high-

quality data, decision trees can make very accurate predictions. In

this study, the decision tree was optimized with a cross validation

protocol and manually edited. Instead of the classical indexes

usually used for evaluating the quality of decision trees (such as

entropy or Gini index), the trees were optimized such as providing

the best global enrichment, which in this specific case provides a

more suitable evaluation. The decision tree was built as follow. At

each node, the descriptor whose best threshold value led to the

best enrichment was chosen to become the local node. The

construction was stopped when less than five observations were

found in a leaf. Twenty trees were constructed by 20-fold cross

validation. The choice of the final trees was motivated by only

keeping nodes using the same descriptor for most of the trees. The

final corresponding threshold was assigned to the modal value.

p53/MDM2 interaction: Fluorescence Polarization Assay
(FPA)

We chose a 9-mer peptide from p53, a fragment known to be

sufficient to assess the p53/MDM2 interaction. The 9-mer p53

sequence-derived 5-carboxyfluorescein-labeled peptide (5FAM-

RFMDYWEGL, Parks et al., 2005) was synthesized by AnaSpec

(San Jose, CA, USA).

Full length MDM2 was subcloned into the expression plasmid

pET28a (Novagen, Darmstadt, Germany) using standard methods.

Table 4. SVM optimized parameters.

Kernel C
Kernel
Scale

Kernel
offset

Kernel
degree

Gaussian 10 1023

Sigmoid 103 1024 1023

Polynomial 10 1023 1 2

doi:10.1371/journal.pcbi.1000695.t004
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Following protein expression in Escherichia coli BL21 (DE3)

(Invitrogen, Carlsbad, CA, USA), bacterial cells were harvested

by centrifugation followed by resuspension in 50 mM Tris-HCl

(pH 8.0), 200 mM NaCl, 5 mM Imidazole, 0.1% triton X-100,

protease inhibitor mixture EDTA-free (Roche Applied Science,

Rotkreuz, Switzerland) at 4uC, and lysed by sonication. After

centrifugation at 13000 rpm 10 min at 4uC, soluble His-tagged

proteins were purified using Ni-NTA agarose beads according to

the manufacturer procedures (Qiagen, Valencia, CA).

Fractions containing MDM2 proteins were pooled, dialysed into

20 mM Tris-HCl (pH 8.0), 100 mM KCl, 1 mM DTT, 0.2 mM

EDTA, 0.05% triton X-100, 20% glycerol, frozen in liquid

nitrogen, and kept at -80uC for further experiments.

FP assays were performed in black low-binding surface 96-well

plates (Corning, NY), in a total volume of 75 mL PBS, containing

10 nM of the 5FAM-labeled peptide, 18 nM of purified MDM2,

30 mM of compound to be tested, and 3% DMSO. MDM2 was

allowed to incubate with the compounds 10 min prior to adding

the 5FAM-labeled peptide. After 5 minutes, FP measurements

were performed on a Victor 3V plate reader (Wallac, Turku,

Finland) using a 485 nm excitation filter, a 535 nm emission filter,

and a 0.2 s per well reading time.

Supporting Information

Figure S1 Chemical structures of the 66 selected PPI inhibitors

used as the positive learning data set.

Found at: doi:10.1371/journal.pcbi.1000695.s001 (1.86 MB TIF)

Figure S2 Description of the protein space coverage of the 66

PPI inhibitors of the learning data set in term SCOP fold classes.

The validation data set covers 27 different PPI and 21 pairs of

SCOP fold classes.

Found at: doi:10.1371/journal.pcbi.1000695.s002 (0.04 MB PDF)

Figure S3 Chemical structures of the 26 selected PPI inhibitors

used as the positive validation data set.

Found at: doi:10.1371/journal.pcbi.1000695.s003 (0.21 MB TIF)

Figure S4 Description of the protein space coverage of the 26 PPI

inhibitors of the learning data set in term SCOP fold classes. The

validation data set covers 5 different PPI and 5 pairs of SCOP fold

classes.

Found at: doi:10.1371/journal.pcbi.1000695.s004 (0.02 MB PDF)
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