
HAL Id: inserm-00704789
https://inserm.hal.science/inserm-00704789v1

Submitted on 6 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evidence for composite cost functions in arm movement
planning: an inverse optimal control approach.
Bastien Berret, Enrico Chiovetto, Francesco Nori, Thierry Pozzo

To cite this version:
Bastien Berret, Enrico Chiovetto, Francesco Nori, Thierry Pozzo. Evidence for composite cost func-
tions in arm movement planning: an inverse optimal control approach.. PLoS Computational Biology,
2011, 7 (10), pp.e1002183. �10.1371/journal.pcbi.1002183�. �inserm-00704789�

https://inserm.hal.science/inserm-00704789v1
https://hal.archives-ouvertes.fr


Evidence for Composite Cost Functions in Arm
Movement Planning: An Inverse Optimal Control
Approach
Bastien Berret1*, Enrico Chiovetto1,2, Francesco Nori1, Thierry Pozzo1,3,4

1 Italian Institute of Technology, Department of Robotics, Brain and Cognitive Sciences, Genoa, Italy, 2 University Clinic Tübingen, Section for Computational
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Abstract

An important issue in motor control is understanding the basic principles underlying the accomplishment of natural
movements. According to optimal control theory, the problem can be stated in these terms: what cost function do we
optimize to coordinate the many more degrees of freedom than necessary to fulfill a specific motor goal? This question has
not received a final answer yet, since what is optimized partly depends on the requirements of the task. Many cost functions
were proposed in the past, and most of them were found to be in agreement with experimental data. Therefore, the actual
principles on which the brain relies to achieve a certain motor behavior are still unclear. Existing results might suggest that
movements are not the results of the minimization of single but rather of composite cost functions. In order to better clarify
this last point, we consider an innovative experimental paradigm characterized by arm reaching with target redundancy.
Within this framework, we make use of an inverse optimal control technique to automatically infer the (combination of)
optimality criteria that best fit the experimental data. Results show that the subjects exhibited a consistent behavior during
each experimental condition, even though the target point was not prescribed in advance. Inverse and direct optimal
control together reveal that the average arm trajectories were best replicated when optimizing the combination of two cost
functions, nominally a mix between the absolute work of torques and the integrated squared joint acceleration. Our results
thus support the cost combination hypothesis and demonstrate that the recorded movements were closely linked to the
combination of two complementary functions related to mechanical energy expenditure and joint-level smoothness.
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Introduction

Numerous experimental studies have demonstrated that bio-

logical motion exhibits invariant features, i.e. parameters that do

not significantly change with movement size, speed, load and

direction [1–4]. A number of these features was described for

point-to-point (e.g. reaching, see [5]) and continuous (e.g. drawing

and handwriting, see [6]) movements of the upper limb.

Therefore, despite the infinite number of motor strategies

compatible with most of these tasks, regularities characterize

human voluntary movements, suggesting that the central nervous

system (CNS) overcomes the redundancy of movement accom-

plishment by following some specific rules or principles. Many

authors investigated these principles in the framework of

deterministic optimal control theory. This theory assumes that

biological movements are optimal in the sense that they minimize

some performance criteria or cost/loss functions. In this regard, a

plethora of optimal control models have been proposed in the

literature [7, 8, for reviews] and most of them were found to fit

well the experimental data. Therefore, the exact relationship

between different mathematical cost functions and the movement

variables actually represented in the brain still remains unclear and

this seems due to multiple reasons.

The first one is methodological: in many cases, models based on

divergent assumptions and minimizing different costs can yield

similar arm trajectories [9,10]. If one considers the range of

human motor variability and the consequences of model

approximations, several cost functions can perform well enough

to be considered valid. For example, the minimum hand jerk [11],

the minimum torque change [12] but also the minimum variance

models [13] make fully acceptable predictions for point-to-point

arm movements performed in the horizontal plane (i.e. quasi-

straight hand paths with bell-shaped time-courses). The second

reason is conceptual: seeking a single and universal cost function

might be useless [10], in particular if the CNS is capable of

optimizing a weighted combination of costs depending on the

features of the task [14–17]. Thus, a part of the present collection

of models may represent constituent pieces of one motor plan. It is

already well-known for instance that the weight given to objective

(e.g. task-related) and subjective (e.g. body-related) cost functions

can be modulated by the CNS. Increasing the accuracy

requirements of a pointing task while keeping the movement time
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constant leads to an increase of muscle co-contraction (and thus of

metabolic energy expenditure, see [18]). Conversely, experimen-

tally induced fatigue leads to a reweighting of accuracy and energy

economy requirements in the sensorimotor control of fast elbow

flexions [19]. Hence, cost functions would result in any case from

the combination of external task demands with internal con-

straints. In contrast to this well-identified objective/subjective costs

trade-off (see also [20]) it has not been established yet whether or

not the CNS actually combines subjective costs (e.g. neural or

mechanical energy expenditures, hand/joint/torque jerk, amount

of torques/forces etc.).

In order to test this cost combination hypothesis, our approach

was two-fold. First, we wanted to stress the differences between

the predictions of different classical models already existing in

literature. To this aim, we designed a pointing task with target

redundancy. Precisely, we reduced the external constraints of the

task by asking subjects to reach to a vertical bar. Thus no

accuracy requirement was present in the vertical axis, which had

the interesting advantage of discriminating better between

different cost functions than during classical point-to-point

experiments (see Figure 1 for a proof-of-concept). Second, we

developed a framework permitting us to examine simultaneously

several existing models/costs, as well as any linear combination

of them, by means of an automated inverse optimal control

method. Inverse optimal control is a mathematical approach in

which inference about the cost function is made automatically

from experimental data, which are assumed to be optimal [21].

Using such a method, we were able to link the recorded data to

an infinite number of potential (composite) cost functions, in

contrast to the a priori choice of one single cost function

characterizing most of the previous investigations. In this way we

could automatically uncover which single cost or mix of costs fit

best with the average behavior of subjects. Direct optimal control

was then used to strengthen the results provided by the inverse

method and to compare directly the recorded and simulated

data.

The experimental results show that participants adopted a

consistent behavior although the final point was not imposed by

the experimenter. Inverse optimal control reveals that their

average behavior mainly relied on a composite cost function,

combining the minimization of mechanical energy expenditure

(here the absolute work of torques) with the maximization of joint

smoothness (here the integrated squared acceleration). Further

analyses demonstrate that this mix-of-cost model replicated the

most important features of arm movements and performed better

than any other single cost function on which our method was

based. Results provided therefore support the cost combination

hypothesis and, in particular for this task, emphasize two

complementary and subjective costs.

Materials and Methods

Experimental task
Participants. Twenty naive subjects (16 males, and, meanstd+:

age 26:9+2:5, range 18{31; mass 69:9+8:4kg; height 1:76+
0:06m) volunteered to participate in the experiment. All of them

were healthy, right-handed and with normal or corrected-to-normal

vision. Written informed consent was obtained from each

participant in the study, which was approved by the local ethical

committee ASL-3 (‘‘Azienda Sanitaria Locale’’, local health unit),

Genoa, and was in agreement with the Helsinki Declaration of

1975, as revised in 1983.

Reaching-to-a-bar task. The motor task that we considered

is illustrated in Figure 2A. From a sitting position, participants were

asked to perform a series of pointing movements toward a vertical

target bar. The bar was a uniform and rigid tube. For the task,

shoulder and elbow rotations were allowed, while the wrist joint was

frozen by means of two light and small sticks attached to the distal

part of the forearm and the proximal part of the hand. The vertical

bar was placed in front of the participants, in the para-sagittal plane

intersecting the shoulder joint. No target point was emphasized on

the bar and its height was 2.50 meters so that subjects could not see

its extremities without moving the head or the trunk. The horizontal

distance of the shoulder from the bar was set to 85% of the subject’s

full arm length (L~l1zl2, where l1 and l2 denote the upper arm

and forearm lengths respectively, see Figure 2A). Five initial arm

postures, denoted by P1 to P5, were defined by means of reference

points located in a vertical plane, placed laterally at approximately

10 cm from the subject’s right shoulder. Precisely, these five starting

postures were defined by imposing the following angular arm

configurations ([elbow;shoulder] in degrees): ½0; 90�, ½{90; 90�,
½{120; 120�, ½{90; 30� and ½{80; 140�, respectively from P1 to P5.

The initial references were positioned using a wooden hollow

frame containing 1.5 cm-spaced thin vertical fishing wires to

which lead weights (small spheres) indicating the requested

fingertip initial position were attached. Differently colored pieces

of scotch-tapes were stuck on the leads to easily identify the

references. This color-code was then used to verbally specify the

initial posture that the subject had to select at the beginning of

each movement. By imposing the initial finger position, a unique

starting posture of the arm was thus defined in the para-sagittal

plane. The positions of the leads were adjusted before the

experiment, based on the subject’s upper arm and forearm lengths

and the vertical distance shoulder-ground.

The experimenter then gave the following instruction to the

participants: look at the bar in front of you, close the eyes and

quickly show the location of the bar by touching it with the

fingertip, performing a one-shot movement. No instruction was

given to the subjects with respect to where and how to reach the

bar. Because of the features of the task itself, participants had to

implicitly control the finger position along the antero-posterior

and lateral directions whereas full freedom was left along the

Author Summary

To reach an object, the brain has to select among a set of
possible arm trajectories that displace the hand from an
initial to a final desired position. Because of the intrinsic
redundancy characterizing the human arm, the number of
admissible joint trajectories toward the goal is generally
infinite. However, many studies have demonstrated that
the range of actual trajectories can be limited to those that
result from the fulfillment of some optimal rules. Various
cost functions were shown to be relevant in the literature.
A peculiar aspect of most of these costs is that each one of
them aims at optimizing one specific feature of the
movement. The necessary motor flexibility of everyday life,
however, might rely on the combination of such cost
functions rather than on a single one. Testing this cost
combination hypothesis has never been attempted. To this
aim we propose a reaching task involving target redun-
dancy to facilitate the comparisons of different candidate
costs and to identify the best-fitting one (possibly
composite). Using a numerical inverse optimal control
method, we show that most participants produced
movements corresponding to a strict combination of two
subjective costs linked to the mechanical energy con-
sumption and the joint-level smoothness.

Composite Cost Functions in Motor Planning
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vertical one. Note that the challenge for the subjects (i.e. the

objective reward of the task) was to be precise enough to actually

touch the bar, since no on-line vision was allowed. Since subjects

were free to moved in 3-D, touching the bar was not so easy

because of the presence lateral and antero-posterior errors and

the absence of on-line visual feedback. Nevertheless, it is worth

noting that reaching any point on the vertical bar allowed the

subject to perform the task successfully. During the protocol, the

five initial postures were tested in a random order. For each

initial posture, twenty trials were recorded, so that a total of 100

movements per subject were monitored. A few trials were

repeated during the experiment (less than 5%), when the subjects

clearly missed the bar or did not perform a one-shot movement.

Every set of 25 movements, subjects were allowed to rest. Data

from a total of 2000 pointing movements were collected for this

reaching-to-a-bar task.

Figure 1. Proof of concept: illustration that the hand jerk and torque change costs are more discernible during reaching to a bar
than to a point. A. Simulated hand paths for point-to-point movements in the horizontal plane. Targets (T1 to T6) were located approximately as in
[11]. B. Simulated hand paths for the point-to-bar case. The starting points are the same as in panel A, but we replaced the target points by target
lines/bars. The shaded areas emphasize the amount of difference between these two cost functions.
doi:10.1371/journal.pcbi.1002183.g001

Figure 2. A. Illustration of the experimental paradigm. The reachable region from the sitting position is emphasized on the bar. The 5 initial
postures under consideration are also shown (P1 to P5). B. Experimental trajectories for a representative subject. Dotted lines depict the initial arm
posture of the subject (upper arm and forearm). The average fingertip path is shown in thick black line for each initial posture, from P1 to P5. The 20
trials are depicted in thin gray lines for every initial postures. C. Experimental angular displacements and finger velocity profiles for the most typical
subject. First column: joint displacements at the shoulder and elbow joints; Second column: Finger velocity profiles with shaded areas indicating the
standard deviation. Time is normalized, not amplitude.
doi:10.1371/journal.pcbi.1002183.g002

Composite Cost Functions in Motor Planning
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Data collection and processing
Materials. Arm and head motion were recorded by means of

a motion capture system (Vicon, Oxford, UK). Ten cameras were

used to capture the movement of six retro reflective markers

(15 mm in diameter), placed at well-defined anatomical locations

on the right arm and head (acromial process, humeral lateral

condyle, ulnar styloid process, apex of the index finger, external

cantus of the eye, and auditory meatus).

Motion analysis. All the analyses were performed with

custom software written in Matlab (Mathworks, Natick, MA) from

the recorded three-dimensional position of the six markers

(sampling frequency, 100 Hz). Recorded signals were low-pass

filtered using a digital fifth-order Butterworth filter at a cutoff

frequency of 10 Hz (Matlab filtfilt function).

The temporal finger movement onset was defined as the instant

at which the linear tangential velocity of the fingertip exceeded 5%

of its peak and the end of movement as the point at which the

same velocity dropped below the 5% threshold. All time series

were normalized to 200 points by using Matlab routines of

interpolation (Matlab spline function). Standard kinematic param-

eters described in previous experimental arm pointing studies were

calculated [3,22]: movement duration (MD), peak velocity (PV), mean

velocity (MV), relative time to peak velocity (TPV) defined as the ratio

between the acceleration duration and MD, index of velocity shape

(Vpeak/Vmean) defined as the ratio between the peak of velocity

and its mean value, and curvilinear distance of the finger (CD) defined

by the integral over time from 0 to MD of the norm of the fingertip

velocity vector. The constant error was computed as the orthogonal

distance between the terminal finger position and the bar. The

variable error was defined as the standard deviation computed on the

distances between the measured endpoints across trials.

For subsequent analyses and comparisons with models, we

projected the 3-D coordinates of the markers onto a vertical plane.

It will be shown thereafter that the movements carried out by the

participants almost lay on a para-sagittal plane. The motion

capture system was calibrated such that the axes X and Y
corresponded to the antero-posterior and vertical axes, respec-

tively. Thus, movements were approximately in the XY plane,

while the Z direction (lateral) was not significantly used.

Angular displacements of the arm segments (upper arm and

forearm) were then evaluated using the inverse kinematic function,

relating the (x,y) position of the finger in plane XY to the arm

configuration h~(h1,h2)> (subscript 1 denoting the shoulder

joint):

h1~ arctan
y

x
{ arccos (

x2zy2zl2
1{l2

2

2l1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2

p );

h2~p{ arccos (
l2
1zl2

2{x2{y2

2l1l2
):

ð1Þ

The shoulder joint was defined as the origin of the frame of

reference (see Figure 3).

Finally, additional task-relevant parameters were computed.

The endpoint position consistency index (CI) was defined as the ratio

between the standard deviation of the fingertip position on the Y -

axis and the length of the reachable region. This set was computed

from the intersection points between the bar and a shoulder-

centred circle of radius L. The CI parameter provides information

concerning the percentage of the bar used by the subjects. The

smaller is this index, the more consistent was the subject’s behavior

for the selection of a terminal point on the bar. The location of the

reached point was calculated with respect to the shoulder position

and normalized by the subject’s arm length L (referred to as RP).

In other words, the location of the endpoint on the bar is RP|L
(in meters). In order to detect whether subjects chose to move

upward or downward, we computed the movement vector angle

(denoted by MV) defined as the counterclockwise-oriented angle

between a horizontal line and the line connecting the initial and

terminal fingertip positions.

Moreover, to assess whether the finger path had a convex or

concave curvature, we computed the signed Index of Path

Curvature (sIPC). This was defined as the averaged ratio between

the maximum path deviation from a segment connecting the

initial-final finger positions and the length of this segment,

attributing a positive sign when the finger position was above

the straight line (for concavity). Thus, this parameter evaluates the

average or global convexity or concavity of a hand path. In

addition, joint coupling was calculated as the determination

coefficients between the shoulder and elbow angular displace-

ments. In order to compare models predictions and measured

data, we computed the area between paths. Given the complexity of

the polygon to be integrated (whose area is denoted by Dpaths), we

used a numerical method based on the evaluation of the integral

with a random sampling of the integration region (the standard

Monte Carlo integration method). Note that, throughout this

paper, we will distinguish the terms path and trajectory in that the

former refers only to the graph of the trajectory (i.e., the trajectory

also includes the time-course).

Statistical analysis
We used quantile-quantile plots to visually check that the data

were normally distributed (qqplot Matlab function). Shapiro-Wilk’s

test was used to quantify these observations for some relevant

parameters. One-way ANOVAs were also performed to analyze

the effects of the initial posture on certain parameters. Post-hoc

Figure 3. Model of the arm and definition of the parameters.
The extrinsic and intrinsic coordinates are denoted by (x,y) and (h1,h2),
respectively. L is the total arm length, while l1 and l2 are the upper arm
and forearm lengths. The subscript 1 denotes the shoulder joint. These
segments have mass mi , inertia Ii and distance to the center of mass lci ,
with i~1,2. The Cartesian bar equation is given by x~0:85L. The solid
and dotted lines are the measured and simulated paths, respectively.
The parameters RP, MV and sIPC are the reached point, movement
vector angle and the signed index of path curvature.
doi:10.1371/journal.pcbi.1002183.g003
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tests were conducted with Scheffé’s test when necessary and

appropriate (the chosen threshold was 0:05).

Modeling
Previous models of optimal control for arm movements were

originally designed by their respective authors on the basis of some

particular assumptions and restrictions. In order to compare

several different costs proposed in the literature and to apply the

inverse optimal control technique described thereafter, we

consider a homogeneous framework, compatible with most

existing models. The next subsections describe the musculoskeletal

model, the inverse and direct optimal control techniques that we

employed. Details are deferred to the supplementary documents

Text S1 and Text S2.

Model of the musculoskeletal system. It will be shown

that the recorded 3-D arm movements approximately lied on

the para-sagittal plane. Thus, a reasonable approximation for

modeling is to consider the arm as a two-joint rigid body moving

in the vertical plane. A classical application of Lagrangian

mechanics allows us to express the arm dynamics using the

general form [23]:

limbdynamics t~M(h)€hhzC(h, _hh) _hhzG(h)zF _hh, ð2Þ

where the variables h~(h1,h2)>,t~(t1,t2)> denote the joint angle

and torque vectors, respectively. A dot above a variable stands for

the time derivative. The quantitiesM,C,G and F are the inertia

matrix, the Coriolis/centripetal terms, the gravitational vector and

the viscosity matrix, respectively. The explicit expressions of the

above quantities and numerical values are provided in the Text S1

(Section 1).

Furthermore, we modeled the fact that the joint torques t are

smoothly generated by muscle contractions, a phenomenon which

is subject to a certain dynamics:

actuatordynamics €tt~m: ð3Þ

The control variable m is the motor command and can be

thought as the neural input to muscles given by motor neurons.

For compatibility between models and simplicity, we thus assume

that the effect of muscle contraction is mechanical and that motor

neurons control directly the acceleration of torques. From now on,

we will denote by (S) the system composed of Equations 2 and 3.

Some constraints on the state and control variables were also taken

into account for biological plausibility (see Text S1).

It is noteworthy that, for considering several costs within the

same framework, we did not model neither agonist and antagonist

muscles, nor the complex mechanism of muscle contraction.

Nevertheless, additional verifications (through direct optimal

control) suggested that the results presented in this study do not

critically depend on this choice (see Text S2, Section 1). For

instance, modeling agonist/antagonist muscles as second order

low-pass filters [24] does not improve drastically the predictions of

the effort model, which is the most sensitive model to the actuator

dynamics. Very small changes in the predicted trajectories were

obtained for the other costs. The main reason is that the optimal

trajectories were found quite robust with respect to changes of the

actuator dynamics (up to some extent of course; for instance, when

the muscle dynamics allowed moving the arm along identical

paths).

Inverse optimal control. The goal of inverse optimal

control is to automatically infer the cost function from observed

trajectories that are assumed to be optimal. Thus, in inverse

optimal control problems (inverse OCPs), the optimal solution is

known and the objective is to recover the performance criterion

which has been optimized. Addressing the motor planning

problem in this way is generally more difficult than using the

more standard direct optimal control approach, which consists of

guessing a plausible cost and comparing its predictions with the

experimental data. However, inverse OCP is better suited to

provide, with less a priori, the cost or mix of costs that must be

optimized to replicate the measured arm trajectories. In this

paragraph, we present a numerical method for solving an inverse

OCP, which was initially described by [25] and successfully

applied to path planning during locomotion in humanoid

robotics.

The method relies on the selection of a set of plausible costs.

For the optimal control of arm movements, several costs were

already proposed in the literature. The models generally fall

into four general classes, each of which making different

assumptions on the relevant variables for the CNS. First, there

are the kinematic models: the minimum hand jerk [11], the

minimum angle jerk [26], or the minimum angle acceleration

with constraints [27]. They suggest a maximum of smoothness

in either the Cartesian or joint spaces. Then inverse kinematics

and/or inverse dynamics are required to obtain the actual

control m. Those models belong to the family of Minimum

Squared Derivatives (MSD) costs. Throughout the paper, we

shall use the generic term smoothness in the broad sense of

‘‘having small high-order derivatives’’ [28]. In particular, the

integrated squared acceleration and integrated squared jerk are

just members of the class of MSD costs, which favor motion

smoothness to different degrees in joint coordinates [29].

Alternatively, dynamic models were proposed to avoid these

inverse dynamics computations, such as the minimum torque

[9] or the minimum torque change models [12,30]. At the

junction of kinematic and dynamic models, the geodesic model

suggests that the brain may select the shortest path in

configuration space with respect to the kinetic energy metric

[31]. This model is called geodesic due to the fact that it seeks

shortest paths in a Riemannian manifold. Energetic models were

also considered in several studies, in particular those involving

the minimization of work of torques (see [32] for the peak of

work, [33] for the positive work, and [34] for the total absolute

work). Here, we will only consider the total absolute work

because this corresponds to the mechanical energy actually

spent to move the arm. Finally neural models, often referred to as

minimum effort models, were designed to optimize the amount

of motor neurons activity during a movement [35,36].

Although other models for movement planning were proposed

in the literature, they could not be integrated to the present

work for one of the following reasons: (1) they fall in the

stochastic context, (2) they require an accurate modeling of

agonist/antagonist muscle mechanisms or (3) they do not

assume optimal control at all. Indeed, a limit of the present

methodology is to be able to describe models within a single

mathematical framework, defined by Equations 2–3 and the

specification of a cost function (see Table 1).

Therefore, we selected the following costs for further investiga-

tion: hand smoothness (Cartesian jerk), joint smoothness (angular

acceleration and angle jerk models), torque change, torque,

geodesic, mechanical energy, and neural effort (each of which

denoted by Ci , i~1::8, see Table 1 for details). From these eight

biologically plausible costs, we could build other costs (called hybrid

or composite and denoted by C), expressed as a weighted linear

combination:

Composite Cost Functions in Motor Planning
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C(a)~
X8

i~1

aiCi: ð4Þ

The parameter a~(ai)1ƒiƒ8 is referred to as the weighting

vector, whose elements are non-negative. A weight of zero means

that the corresponding cost does not contribute to movement

planning.

Thus, the OCP corresponding to the cost C(a) can be stated

as follows: Find a control u?a~m and the corresponding trajectory

q?>a ~(h>, _hh>,t>,_t>) of system (S), connecting a source point qs to a

final point on the target manifold B in time T and yielding a minimal value

of the cost C(a).

Let us denote this problem by Pa. Here, the target is the vertical

bar, given by the equation x{0:85L~l1 cos h1zl2 cos (h1zh2)
{0:85L~0 in Cartesian and joint coordinates, respectively. Since

subjects had to reach the bar with zero velocity and zero

acceleration, the manifold could be written in state-space as

B~fq[R8 such that m(q)~0g, for some vector-valued mapping

m (see Text S1, Section 2.1). The fact that this mapping is

surjective is exactly the reason why the task is redundant, even

though we modeled the arm as a simple two-joint arm moving in a

plane.

Let us now denote by qmeas(t) the measured/experimental

trajectory in state-space. Then, the core of the inverse optimal

method is to formulate the so-called ‘‘bi-level’’ problem [25]:

Outer loop minimizea W(q?a,qmeas),

:;

Inner loop where q?a is the optimal solution of Pa

ð5Þ

The outer loop (also referred to as ‘‘upper level’’ by some

authors) consists in solving an optimization problem for the

unknown a in order to find the best match between the optimal

trajectory q?a and the measured trajectory (qmeas). The inner loop

(‘‘lower level’’) precisely consists in computing the optimal

trajectory q?a corresponding to the current cost combination

C(a) (for this step, see the next subsection). It is often desirable to

generalize the above bi-level problem to the case where several

experimental observations are available (i.e. several qmeas). This

allows better characterizing the cost function: roughly speaking,

the more the observations, the more relevant the fitting. In such a

case, several direct OCPs have to be solved during the inner loop

and the metric used in the outer loop simply rewrites as a sum over

all those observations. In this study, we used the five starting

postures (P1 to P5) as observations to identify a unique cost

reproducing at best the behavior of a subject.

How to define a good ‘‘metric’’ in the space of trajectories is still

an open question in motor control [17]. Depending on what

movement features are considered to be important, various

functions W can be constructed. This choice is however crucial

for the inverse optimal control results since it quantifies how well a

given model replicates the experimental data. In this paper, we

consider two possibilities. The first metric (W1) is based on

measuring the Cartesian and curvature errors of a simulated

trajectory with respect to a reference trajectory (here the average

experimental trajectory). The second metric (W2) relies on a

statistical model of the recorded trajectories (encoded in a

Gaussian Mixture Model, see [37,38]) and likelihood estimations

of an optimal trajectory given that model. The advantage of this

metric is that it takes into account the inter-trial variability of the

human behavior by penalizing model/data mismatches only for

the features that are clearly defined by the experimental

trajectories. In the following, only the results obtained with the

first metric are analyzed in depth, but our conclusions still hold

when using the second metric. All the details can be found in the

Text S2 (Section 4.1).

Solving the bi-level problem is not straightforward for several

reasons. First, the objective function W in the outer loop is quite

long to evaluate because a direct OCP must be solved before (this

can take a few minutes for one evaluation). Moreover, it might be

relatively noisy because only an approximation of the optimal

trajectories can be obtained so that W can be non-differentiable

with respect to a. Consequently, the minimization problem of the

outer loop had to be solved with a robust derivative-free

technique. Here, we used the method developed by [39] which

is an extension of the state-of-art Powell’s method based on local

quadratical approximations of W [40]. This method is called

CONDOR for COnstrained, Non-linear, Direct, parallel optimi-

zation using trust region method for high computing load function.

It was found to be more efficient than standard pattern search and

stochastic-based (e.g., genetic algorithms) methods for the present

purpose. This observation is in agreement with [25] who used

similar numerical techniques for inverse optimal control.

To improve the algorithm efficiency, we found useful to

appropriately scale the step size along each dimension of the

search space. We used a re-scaling vector, r~(1e2,1e1,1e3,1e2,
1e4,1e5,1e4,1), obtained from multiple simulations of point-to-

point movements using single-cost criteria to evaluate the

magnitude of the optimal movement costs. This re-scaling/

normalization is generally meaningful because different costs have

different units. We could have avoided using this re-scaling, but it

turned out to speed up the inverse optimal control procedure and

to yield better local optima. Another method to set this re-scaling

vector is presented in the Text S2 (Section 4.2) and is based on

sensitivity analysis, i.e. on the evaluation of the gradient of the

optimal cost C(a) at a point a. Both methods turn out to yield

Table 1. Classical cost functions already proposed in the
literature.

Criterion Cost function (Ci) References

Hand jerk
C1~

ðT

0

¥
x2z

¥
y

2
dt

[11]

Angle jerk
C2~

ðT

0

¥
h2

1z
¥
h

2

2dt
[26]

Angle acceleration
C3~

ðT

0

€hh
2

1z
€hh

2

2dt
[27]

Torque change
C4~

ðT

0

_tt2
1z _tt2

2dt
[12,30]

Torque
C5~

ðT

0

t2
1zt2

2dt
[9]

Geodesic
C6~

ðT

0

( _hh
TM(h) _hh)1=2dt

[31]

Energy
C7~

ðT

0

j _hh1t1jzj _hh2t2jdt
[33,34]

Effort
C8~

ðT

0

m2
1zm2

2dt:
[35,36]

Classical cost functions already proposed in the literature and that are used in
the present study. Some of them were not originally formulated as OCPs, but
for the purpose of this paper, they were reformulated in this framework.
doi:10.1371/journal.pcbi.1002183.t001
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pretty similar results. It has to be also underlined that among the

eight elements of a, only seven were actually independent. Indeed,

note that the OCPs corresponding to the costs C(a) and C(la)
with lw0 are identical. As in [25], the practical strategy for this

was to fix one component of a equal to one and to adjust the

remaining components. Whenever this choice turned out to be

inappropriate, this was apparent during the optimization process.

In that case, this component should be set to zero and, then,

another one should be set to one. Setting the angular acceleration

coefficient to one resulted to be a good choice in this study. To test

robustness of the procedure, it was initialized with random non-

negative values or directly with the vector r to initially give a

similar weight to all the costs. Moreover it was run for all the

subjects in order to verify the consistency of the findings. The

algorithm always converged in a few hundred of iterations to a

(local) minimum of W and the resulting cost combination vector (a)

was found quite stable with respect to the initial guess. Applying

the inverse optimal control algorithm to all the subjects required

to solve roughly 10 000 direct OCPs (about 100iterations|5
startingpostures|20subjects).

Direct optimal control. As explained above, the inner loop

of the bi-level problem requires solving direct OCPs for a given a.

This is also a computational problem per se, especially when

dealing with complex costs and dynamics. However, in the

deterministic context that we consider here, there exist efficient

numerical techniques to find approximate solutions. A classical

method is to transform the OCP into a nonlinear programming

(NLP) problem with constraints. Here we used an orthogonal

collocation method, precisely the Gauss pseudospectral method.

This method is efficiently implemented in the open-source Matlab

software GPOPS [41–43]. The NLP problem was solved by

means of the well-established numerical software SNOPT [44].

This pseudospectral method relies on time discretization at some

points chosen to be the Legendre-Gauss ones, i.e. the roots of a

certain order Legendre polynomial. Then, the state and control

are approximated using interpolating Lagrange polynomials. This

method was proven to be very efficient for a large class of OCPs.

Our own tests confirmed that the software performed very well for

the costs proposed in the motor control literature and was even

consistent when the optimal solution involved discontinuous

optimal controls. This verification was performed using a second

method for solving an OCP, relying on the direct application of

Pontryagin’s maximum principle (PMP, [45]). The PMP provides

necessary conditions of optimality and can allow obtaining very

precise solutions. After some analytical calculations, the PMP

generally leads to a boundary value problem that can be tackled by

a shooting method. However, in practice, a shooting problem is

also a difficult computational challenge because the radius of

convergence may be quite small and, therefore, a good initial guess

of the optimal solution is usually required to get robust

convergence. Therefore, a standard approach is to initialize the

shooting method by using a guess arising from a numerical optimal

control technique. Interestingly, the PMP can also deal with point-

to-manifold problems by adding transversality conditions on the

terminal costate vector so that its use was purposeful in the present

study. Using this approach, we thus verified that the numerical

method provided good approximations of the optimal trajectories,

which was an important step for the success of inverse optimal

control. Details and instances of resolution using the PMP are

provided in the Text S1 (Section 2.2).

Models versus experimental data comparisons. Apart

from the inverse approach, a verification was also conducted by

directly analyzing the predictions of each single cost model

(defined by Ci). To this aim, we simulated every movement

recorded in the experiment. Precisely, we simulated the original

protocol for the 20 subjects, assuming that they plan their

movements by minimizing one of the costs under investigation.

Therefore, anthropometric parameters were set to realistic values

for each participant (see Table S1 in Text S1). Interestingly, this

also allowed testing the sensitivity of models with respect to

parameters such as inertia, mass and segment lengths. A number

of initial parameters were set from experimental measures, namely

the movement duration T , the initial arm posture

(h1(t~0),h2(t~0)), and the horizontal bar-shoulder distances to

better match the initial experimental conditions. In total, we ran

16 000 simulations (20subjects|5initialpositions|20trials|

8models) and used their predictions for subsequent analyses.

These simulated data were then treated using the methods

described in Materials and Methods (Motion Analysis subsection).

We eventually estimated the sensitivity of the optimal cost with

respect to the endpoint selected on the bar in order to evaluate the

consequence of sub-optimality on the final point. To this aim,

movement costs were evaluated by solving an direct OCP for

every possible final finger point and every model. The reachable

region on the bar was discretized every 3 cm (i.e., this region was

subdivided in 30 segments) and the optimal cost for each point-to-

point movement was computed.

Results

Experimental observations
Task achievement and general movement features. The

behavior of a representative subject is illustrated in Figure 2B.

Participants were generally quite precise in executing the

movement. The horizontal constant error (distance to the bar on

the x{axis) was 2:2+1:4cm on average across subjects and initial

positions, indicating that the subjects controlled their movements

quite accurately in the antero-posterior axis. The variable error (i.e.,

the endpoint dispersion) was 1:4+0:4cm. The lateral error was

disregarded here because participants approximately displaced their

arm in a vertical plane. Indeed, principal component analyses

performed on the 3-D coordinates of the moving markers for each

subject showed that the variance accounted for by the two first

components was more than 98% and that the angle between normal

vectors of this plane and the vertical plane defined by the acquisition

system was about 4
0
: Therefore, movements could be considered as

approximately effected in a vertical plane and subsequent analyses

could be performed on the projected data without a large loss of

information.

Table 2 reports the general motion features. Movement

duration slightly varied across participants and starting positions,

and lasted about 700 ms in general (ANOVA, P1|P2|:::|P5,

F(4,15)~3:04, pv0:05). The distance covered by the hand signifi-

cantly depended on the initial posture (F(4,15)~84:6, pv0:001),

and therefore, the average speed varied accordingly. In particular,

the smaller curvilinear distance was obtained when starting from

P2 (about 30 cm) and the larger one from P4 (about 70 cm).

Inter-trial consistency of the behavior. Subjects could

reach wherever they desired on the bar (i.e. on the vertical axis).

Therefore, it appeared important to verify whether their behavior

was consistent or not. An analysis of the consistency index (CI, a

parameter similar to a normalized variable error along the vertical

axis, but this is not an error in this task!) showed that the subjects

used only 5:3+2:2% of the reachable region on the bar (average

across subjects and conditions). In terms of absolute measure this

corresponded to a standard deviation of 4:5+1:9cm on the

vertical axis. In other words, it was three times larger than the

variability measured on the antero-posterior axis. Thus, rather
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than using all the available freedom across trials, participants

reached toward preferred regions of the bar. These regions are

depicted in Figure 4A. In particular, such a inter-trial consistency

was present whatever the initial posture without significant

differences (ANOVA, F(4,15)~1:12, p~0:35).

It has to be noted that among all the tested subjects, only two

behaved quite atypically. One of them exhibited a highly variable

behavior, exploring the whole bar across trials. The second one

started to increase drastically his trial-to-trial variability during the

second half of the experiment while being invariant in the first

half. This kind of behavior can be considered as quite marginal

since it appeared for only 2 of our 20 participants, and reflected

uncommon motivations/intentions.

Endpoint on the bar. The average behavior is illustrated in

Figure 2B. A qualitative analysis of the RP parameter showed that

the endpoint depends on the initial posture of the arm. A statistical

analysis revealed that this effect was significant (F(4,15)~36:5,
pv0:001). Post-hoc analysis showed that the terminal point when

starting from P1 was significantly different from all the others

(pv0:05). Similarly, the point reached when subjects started from

P5 was significantly different from all the others. Finally, no

significant difference was found within the group P2–P3–P4,

although a trend was apparent and robust across subjects.

Figure 4A summarizes these observations and also depicts the

location of the terminal point for each posture with respect to the

shoulder and eye levels (evaluated through Frankfurt plane).

Finally, we also conducted an analysis on the movement vector

angle (see Figure 4B). An ANOVA revealed a significant effect of

the starting posture on the MV parameter (F(4,15)~242:7,
pv0:001). The MV values were negative for P1 and P5 indicating

that the hand moved downward. The most vertical movements

were obtained when starting from P1 and P4 (average MV equal

to 235 and 50 degrees, respectively). Movements starting from P2,

P3, and P5 were the most horizontal (MV values about 25, 15,

214 degrees, respectively).

Shape of the finger paths. A visual inspection of the shape

of paths showed that they were generally curved in the

XY{plane. It is visible in Figure 2B that the fingertip paths

have typical curvatures and that they strongly differed from

straightness. An analysis of the signed index of path curvature

parameter (sIPC) shows that this result was quite robust across

subjects (see Figure 4C). For most initial postures, paths were

globally concave, except for P4 for which the fingertip path was

clearly convex. An ANOVA confirmed these differences since a

significant effect of the starting posture on the sIPC parameter was

found (F(4,15)~69:9, pv0:001). Post-hoc tests revealed that three

distinct groups could be extracted. The convex group (P4), the

very concave group (P1, P5), and the slightly concave group (P2,

P3). It is noticeable that for the latter group, some subjects indeed

produced quasi-straight paths (5/20 for P2 and 10/20 subjects for

P3). Nevertheless, we never measured significantly convex paths

when starting from P2 and P3. Overall, the index of path

curvature was a quite invariant movement feature.

Time-course of joint and finger trajectories. Angular

displacements were generally monotonic for all subjects and

conditions, except for instance for posture P4 at the elbow joint

(see Figure 2C first column for the typical subject). Through

correlation analyses, we determined that the forearm and upper-

arm segments were globally well coupled. The determination

coefficient between the elbow and shoulder angles was high on

average (r2~0:88+0:09). However, the starting posture had a

significant effect on the joint coupling (F(4,15)~21:6, pv0:001). A

post-hoc analysis showed that P1 and P4 were significantly

different from other initial postures. Movements starting from P4

showed a reduction of joint coupling for 13/20 subjects (r2
v0:8)

and, more generally, the determination coefficient decreased for

all subjects compared to initial postures P2, P3 or P5. The results

were similar for P1, for which the r2 value decreased significantly

for the 20 participants (see Figure 4D). The low joint coupling

measured in conditions P1 and P4 were linked to the non-

monotonic nature of the angular displacements and, likely, to the

relatively small amplitude measured at the shoulder and elbow

joints, respectively (about 200 on average, see Figure 4E). In fact,

an analysis of the angular displacements magnitude showed

(Figure 4E) that movements starting from P1 mainly involved an

elbow rotation with a small rotation at the shoulder joint. Starting

from posture P2 or P3 involved similar angular excursions at both

joints, while from posture P4, subjects tended to mainly rotate the

shoulder joint with a significantly smaller forearm flexion. Finally,

movements from posture P5 implied large rotations of both joints

(but twice larger for the elbow).

The finger velocity profiles were always bell-shaped, meaning

that movements were one-shot without terminal adjustments (that

is they showed unique acceleration and deceleration phases, as

depicted in Figure 2C second column for the typical subject).

Velocity profiles presented some asymmetry: acceleration always

lasted less than deceleration, whatever the starting position.

Table 2 shows that, on average, acceleration represented only

42% of the whole movement time (TPV parameter). The ratio

Vmean/Vpeak ranged between 1.8 and 2.1 (mean 1:97+0:06),

indicating quite narrow velocity profiles in general (for compar-

ison, the value predicted by the minimum hand jerk model is

1.875).

Cost identification
Inverse optimal control results. By means of inverse

optimal control, we could identify the cost or mix of cost that

best accounted for the experimental data. Figure 5 depicts the

Table 2. General movement features.

P1 P2 P3 P4 P5

Movement duration (s) 0:71+0:08 0:71+0:08 0:78+0:08 0:74+0:09 0:70+0:07

Mean velocity (m/s) 0:70+0:15 0:42+0:11 0:58+0:10 0:95+0:16 0:67+0:11

Time to Peak velocity 0:44+0:05 0:40+0:03 0:42+0:03 0:42+0:04 0:44+0:03

Vpeak/Vmean 1:98+0:10 1:97+0:11 1:98+0:09 1:88+0:09 2:05+0:13

Curvilinear distance (m) 0:51+0:09 0:30+0:06 0:47+0:06 0:72+0:07 0:49+0:07

Constant error on X -axis (m) 0:02+0:01 0:03+0:02 0:02+0:01 0:02+0:02 0:02+0:01

Means and standard deviations are reported across subjects and starting postures.
doi:10.1371/journal.pcbi.1002183.t002
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results of the method applied to the most typical subject,

previously presented in Figure 2B. For this subject (referred to as

S1), the algorithm converged to a particular hybrid cost, defined

by the weighting vector shown in Figure 5A (using metric 1). This

vector was composed of energy, geodesic, angle acceleration, hand

jerk and angle jerk (given in decreasing order of weights). Other

variables such as torque, torque change and effort had a weight

exactly equal to zero (the lower bound was thus reached by the

algorithm). However, the weighting vector does not directly reflect

the contribution of each element to the total movement cost. For

instance, for this subject, the total optimal cost was mainly

composed of energy (on average 58% of the total cost) and angle

acceleration (on average 28%), as illustrated in Figure 5B.

Although the geodesic element had a non-negligible weight, its

contribution was less than 1% in general. It is also apparent that

the contribution of each cost depends on the starting position.

Nevertheless, in general, relatively small contributions of angle jerk

and hand jerk were found. The minimization of angle acceleration

and angle jerk both aim at maximizing the joint-level smoothness.

Taking this into account, the joint smoothness contribution to the

total cost can be increased to 35% for this subject. Figure 5C

illustrates the trajectories predicted by this particular combination

of the 8 elementary costs. Despite the task redundancy and the

simplifications made in modeling, this hybrid model captured

quite well the location of the endpoint on the bar and the

convexity/concavity of the finger paths. The maximal distance

between the simulated and actual paths was 6 cm on average

while the maximal difference between the simulated and actual

path curvatures was about 2 cm on average (the average errors are

obviously smaller). Table 3 reports the fitting errors for all subjects,

the typical subject being denoted by S1.

Similar results were obtained for several subjects, despite the

differences in their movement durations and anthropometric

parameters. The best-fitting weighting vectors a constantly showed

the presence of mechanical energy expenditure (absolute work of

torques, C7) and joint smoothness terms (angle acceleration/jerk

energy, C2=3), while other terms appeared more sporadically

(Figure 6A). Nevertheless, due to the different magnitudes of the

cost ingredients, analyzing their relative contribution to the total

cost revealed itself insightful (Figure 6B). Particularly, energy and

joint smoothness turned out to be consistently present in the

optimal composite cost (about 40% and 35%, respectively, on

average). Thus, their cumulative contribution represented the

main part of the total movement cost. Some contributions of the

hand jerk (C1), the geodesic (C6) and the torque (C5) costs were

also found (about 8% on average). Nevertheless, these values were

relatively small and erratically present in the total cost so that they

might be considered marginal. The effort and torque change costs

(C8 and C4) almost did not contribute to the total cost and, thus,

did not seem to be optimized in this task. Although not shown

here, when restricting the inverse optimal method to initial

postures P2 and P3, it was found that the mechanical energy had

to be involved in the cost, otherwise the concave curvature of the

finger paths could not be reproduced. Also, a meticulous

inspection of Figure 6B shows that two subjects did not minimize

the mechanical energy expenditure at all. For them (subjects S12

and S18), the fitting error was significantly larger than for the

other subjects (6.1 and 6.2 cm respectively, see Table 3). It is worth

noting that these two subjects corresponded to the ones who

exhibited an atypical behavior, characterized by a very large

variability during the experiment. This finding is interesting since

moving arbitrarily to different points on the bar is obviously non-

optimal with respect to the energy expenditure. Although we

restricted the inverse control to the average behavior of subjects, it

turned out that the inverse method could nevertheless detect that

these behaviors were not optimizing the same cost. A couple of

subjects also presented slightly different cost contributions, without

excluding nevertheless energy and smoothness terms.

Taken together, the above results provide clues on which costs

must be considered to capture the basic characteristics of human

movements during the reaching-to-a-bar task. The majority of

subjects (15/20) clearly adopted a behavior optimizing a well-

characterized hybrid cost, essentially mixing the absolute work and

the angular acceleration (i.e., the other costs are somehow

residual). Consequently, for the further investigations using direct

optimal control, we included this identified composite cost to

compare it with the basis costs. Since the ratio between the

weighting coefficients of energy and angle acceleration was

roughly 10:1, the hybrid cost was chosen to be C~a3C3za7C7

with a3~0:1 and a7~1, the other coefficients being set to zero.

Figure 4. Quantitative experimental results. A. Reached point
(final finger position) on the bar for each initial posture from P1 to P5
(RP parameter). The unit on the vertical bar is normalized by the arm
length (percentage). The horizontal zero baseline is the level of the
shoulder joint. Each point indicates the average location of the pointing
movement, and error bars indicate the variability (standard deviation)
across subjects. B. Movement vector angle (MV). The graph gives the
angle between the movement vector and the horizontal line. Negative
and positive values correspond to downward and upward movements,
respectively. C. signed Index of Path Curvature: The graph depicts sIPC
values for every initial posture. Positive and negative values correspond
to globally concave and convex paths, respectively. D. Joint coupling. r2

values are reported. Low values indicate low level of correlation
between the shoulder and elbow angular displacements. E. Amplitudes
of angular displacements. The graphs correspond to the shoulder (left)
and elbow (right) joints, respectively. The magnitude of joint
displacements (in degrees) is given for all initial postures.
doi:10.1371/journal.pcbi.1002183.g004
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From now on, this weighting vector will be kept constant for all

conditions and all subjects to avoid overfitting and unfair

comparisons between models.

Direct optimal control verification and comparison. A

preliminary inspection of Figure 7B-I shows that models predicted

highly different trajectories. This was expected because of the large

freedom given by the bar reaching experimental paradigm and the

results introduced in Figure 1. A quick overview on these results

suggests that the hybrid model performed better than all the other

single-cost criteria. Qualitatively some models yielded geometric

paths that were clearly incompatible with the typical experimental

data that we have reported again in Figure 7A to facilitate

comparisons.

To quantify the matching between models and real data an

analysis of the finger path was conducted, including all subjects

and all initial postures. The difference between simulated and

measured paths was first measured through the area Dpaths (see

Figure 8). It is apparent that, on average, the best single models

were the minimum angle jerk/acceleration (C2=3) and minimum

energy (C7) models, while the minimum torque (C5) predicted

non-realistic paths and resulted in very large errors. The minimum

torque change (C4) and minimum effort (C8) models also

performed quite poorly, while the geodesic (C6) and minimum

hand jerk (C1) had a moderate level of fitting. The hybrid model

(C~0:1C3zC7) replicated globally better the experimental data,

in agreement with what was suggested by the inverse optimal

control approach. Note that in this analysis a fixed composite cost

was used even though the inverse results suggest that the actual

weighting may be subject-dependent.

A specific analysis of task-relevant parameters was also

performed (see Figure 9). The most basic task parameter was the

relative reached point on the bar (RP, Figure 9A). The angle jerk/

acceleration models predicted remarkably well where subjects did

Figure 5. Inverse optimal control results: details for the most typical subject. A. Weighting coefficients, i.e., elements of the vector a
(normalized by the maximum value). B. Contribution of each cost ingredient with respect to the total cost, for each simulation. The contribution of
the ith cost is computed as aiCi=C(a). It is visible that mainly the energy and the angle acceleration are involved in general, with low contributions of
the hand and angle jerks and a residual contribution of the geodesic cost. Torque, torque change, and effort costs do not contribute at all. C. Finger
paths obtained from the best cost combination found by the inverse optimal procedure. Errors between the measured paths and the simulated ones
(Ei,Cart and Ei,Curv parameters) are reported, for each initial posture. Note that this is the best criterion, and that any other cost combination would
replicate the data less accurately with respect to metric 1.
doi:10.1371/journal.pcbi.1002183.g005

Table 3. Reconstruction errors after inverse optimal control.

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Mean error
(cm)

4.1 3.9 1.8 6.5 3.3 3.5 4.6 3.9 3.4 2.9

Subject S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

Mean error
(cm)

3.2 6.1 2.5 4.6 2.5 1.7 2.7 6.2 3.6 1.8

Inverse optimal control fitting errors using metric 1. For each subject, the error
value is averaged across all starting postures and, more precisely, it is computed

as
1

5

X5

i~1

1

2
(Ei,CartzEi,Curv) (see Text S2, Section 4).

doi:10.1371/journal.pcbi.1002183.t003
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point on the bar on average, with a mean error of approximately

6% of the arm’s length, i.e., about 5 cm. The second model was

the energy model which predicted the final finger position with

about 11 cm of error on average. The hybrid model performance

was intermediate (about 8 cm), which was still reasonable with

respect to the standard deviation exhibited by subjects in general.

Other models tended to make large errors on the location of the

point reached on the bar (up to 23 cm for the effort model, i.e. a

cumulative error 22 times larger than for the best model). This was

confirmed by an analysis of the movement vector angle, reflecting

the pointing direction (Figure 9B). Only the minimum angle jerk/

acceleration models and the hybrid model replicated well the

sequence downward-upward-upward-upward-downward for ini-

tial postures P1–P2–P3–P4–P5 (r~0:99 with an error of 4
0

on

average for MV). The minimum energy was also relatively efficient

in capturing this sequence (r~0:95 with an error of 130 on average

for MV). Again the most discrepant model was the minimum

effort model with more than 300 of error on average (d~4520)

and a behavior across initial postures poorly reproduced (r~0:33).

Above all, it appeared that where to reach the bar was best

explained by angle jerk/acceleration, energy or a combination of

them (hybrid model).

Concerning the shape of the path (sIPC parameter, Figure 9C),

the sequence concave-concave-concave-convex-concave (following

the five postures) was not well predicted by the angle jerk/

acceleration models (d~0:016, r~0:69). In particular for P2 and

P3, these models predicted strongly convex paths to reach the bar,

while concave paths were observed experimentally. In fact, all

single models almost predicted the same shape, except the torque,

energy and hybrid models which predicted concave paths. Since

the torque model was very discrepant with the data in general and

since the energy model clearly overestimated the concavity of the

paths for P2 and P3, only the hybrid model predicted well the

paths curvature (d~0:001 and r~0:97). Interestingly, this model

relies on two extremes: the angle acceleration predicted very

convex paths while the energy model predicted very concave

paths. Finally, note that the geodesic model was reasonably

accurate to reproduce the quasi-straight paths produced by some

subjects when starting from P2/P3 (d~0:005 and r~0:94) and

the final point on the bar, so that this model performed relatively

well in general. The same cannot be concluded for the effort or

torque change models because these models were particularly

inefficient in predicting the final finger position (Figure 9A and

9C).

The joint coupling analysis (Figure 9D) revealed that almost all

models predicted the experimental observations. The poor joint

co-variation measured for P1 and P4 were accounted for by all

models, except, of course, the angle jerk and acceleration models

for which joint coupling was maximal in all cases (r2~1). Indeed,

for these models, the paths in joint space are straight lines. The

energy model tended to over-evaluate the decrease of joint

coupling for P1 and P4, because, the optimal movements resulted

in only rotating the elbow for P1 and the shoulder for P4, while

keeping the other joint frozen. This strategy was produced by

some subjects in practice. For instance, they did use a single-joint

rotation of the elbow to reach the bar when starting from P1 (8/20

subjects rotated the shoulder less that 10 degrees for P1 and, for

every subject, the elbow rotated four times more that the

shoulder). The hybrid model performed again well in reproducing

the joint coupling across initial postures and subjects. An analysis

of Figure 9D showed that the hand jerk and effort models

predicted better the joint coupling on average, but since the

corresponding finger paths were not realistic, this finding is

considered to be irrelevant.

We also checked that the hybrid model predicted plausible

angular displacements and finger velocity profiles. Figure 10A

shows that the model (dashed lines) and data traces (solid lines)

were globally superimposed, except maybe for posture P4 at the

elbow joint. Concerning the finger velocity profiles, Figure 10B

shows that they were bell-shaped for all conditions. Note, however,

a slight but constant discrepancy between the model predictions

and the recorded data. In fact, the deceleration phase was always

longer in reality compared to the hybrid model predictions.

Nevertheless, even the minimum hand jerk model, which is usually

considered as one of the best model for predicting the time-course

of the end-effector, would also exhibit the same discrepancy.

Finally, the observed movement variability shows that the

behavior of subjects was in fact approximately optimal on a trial-

to-trial basis. Figure 7B-I illustrates that there were regions on the

bar for which the minimal cost did not vary much (black areas

versus white areas). This suggests that, due to the sensorimotor

noise and uncertainty, the subjective motor goal could be to keep

the movement cost below a certain threshold, as proposed in [46].

In Figure 7, this threshold was set to 10% of the optimal cost in the

simulation.

Above all, the modeling analysis showed that the hybrid model,

maximizing joint-level smoothness and minimizing mechanical

energy expenditure, accounted well for many spatial and temporal

Figure 6. Inverse optimal control results for the 20 subjects using metric 1. A. Weighting coefficients, i.e. elements of the vector a
(normalized such that the sum equals 1). Each bar corresponds to one subject. B. Contribution of each cost ingredient to the total cost, for each
subject. The energy and angle acceleration costs, which are predominant in the total movement cost, are highlighted with shaded areas. This result is
not evident when looking only at the weighting vector.
doi:10.1371/journal.pcbi.1002183.g006
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Figure 7. Predictions of the different tested models. A. Typical experimental data in order to facilitate comparisons (already depicted in
Figure 2). B–H. Predicted hand paths for each model. I. Hybrid model, maximizing smoothness and minimizing energy (with a ratio 10:1 for the energy
component). Black and white bars are reported to show the regions on the bar for which the cost is relatively close to the optimal one (here, black
areas correspond to movement costs below the 10% threshold relative to the minimum cost value).
doi:10.1371/journal.pcbi.1002183.g007
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features of the observed behaviors, and much better than single

cost models (and any other linear cost combination from the

inverse optimal control analysis).

Discussion

In this study we investigated the cost combination hypothesis for

the optimal control of arm movements. To this aim we adopted an

inverse optimal control methodology to identify the cost function

that best replicates the participants’ behavior during a task with

target redundancy. Inverse optimal control revealed that the

observed hand paths were close to the solutions of an optimal

control problem relying on a composite cost function mixing

mechanical energy expenditure and joint smoothness. This hybrid

cost was found to fit well the experimental data, not only much

better than any single other cost under comparison, but also better

than any other linear combination of the candidate costs.

On the reaching-to-a-bar paradigm and inverse optimal
control

Reaching to objects involving target redundancy is a very

common task in everyday life. For instance, grasping a small ball

can be achieved through many task-equivalent solutions,

depending on how one chooses to put his fingers on it. In such

a case, like for the bar, target point discriminability is greatly

reduced and, therefore, decision confidence in the brain

decreases [47]. Decision making in such a motor planning

context [48,49] can be essentially driven by optimal control [8].

Indeed, resolving the indeterminacy of action selection through

optimal control implies that a specific cost function must be

selected. Whereas inverse optimal control was considered as a

promising tool to characterize automatically the cost function in

motor control [21], very little has been done in the context of

goal-directed arm movements. Successful applications of inverse

methods have been reported in sensorimotor learning [50,51],

human prehension [52], pointing movements [34]. To test the

cost combination hypothesis for arm movement planning we

decided to use a more generic method [25]. The extrinsic

redundancy of the task reduced the risk that several classical cost

functions (and thus, several combinations of them) might replicate

well the recorded data, which may occur if divergent models

could not be sufficiently disambiguated. Indeed, being able to

discriminate between different cost functions was precisely a pre-

requisite to test whether the CNS combines several cost functions.

Figure 1 illustrates that the bar reaching paradigm possesses this

property. Inverse optimal control gave us the possibility to

drastically enlarge the number of a priori functions that are

hypothetically minimized by the CNS, which is usually restricted

to few candidate functions in classical studies relying on direct

optimal control. In a direct approach, a small number of costs is

generally compared and the best one is assumed to be actually

optimized by the brain. The weakness is the lack of evidence that

another cost, with a different biological meaning, could not

perform as well or even better. Although our method did not

consider every possible cost function, it improved direct

approaches by drastically expanding the search space.

Certain limitations however remain such as the uniqueness of

the solution and the problem of local minima, which are hardly

avoidable in the context of complex non-linear optimal control.

Uniqueness of the solution has been addressed recently in static

inverse optimization [52,53], in the context of additive cost

functions and linear constraints. Previous theoretical work on

inverse methods was developed in other contexts such as (linear)

control theory [54] and reinforcement learning [55,56]. Here, the

present problem was so complex that we tackled it empirically by

testing multiple restarts of the algorithm and check a posteriori the

effectiveness of the solution compared to basis cost functions. The

specific set of eight candidate cost functions has been chosen

among a set of costs which could be physiologically interpreted. In

this sense, other cost functions such as polynomials could have

been included to fit the experimental data but understanding the

meaning of such abstract costs would have resulted impossible.

Instead we exploited the fact that many costs were already

proposed in the literature of arm movement planning. The

presence of noise and variability in the observed data is an

additional source of difficulty for identifying a unique cost using

inverse optimization and only ‘‘best fitting’’ approximations can be

found in practice. Here we tested two different metrics in the space

of trajectories, based on the Cartesian position of markers (a

particularly reliable measure in motion capture systems). Actually,

which metric to use to compare human and simulated trajectories

remains unresolved [17]. Here, the two metrics we chose allowed

to greatly minimize the consequence of noise measurement and

inter-trial variability, in contrast to other metrics that may try to fit

directly the state vector (including more noisy derived signals, e.g.

velocities, torques or accelerations). While these quantities are of

course crucial to fully specify a motor plan, attempting to replicate

those features and introducing additional uncertainty in the data

set may not improve the efficiency of the inverse method. Finally,

differences across subjects are rarely addressed in optimal control

studies because a single cost, valid for all subjects is generally

sought. Inverse optimal control can theoretically reveal if the same

Figure 8. Areas between simulated and recorded finger paths.
This parameter qualifies as a general error measure. Values were first
averaged across initial postures for each participant, and then, the
mean and standard deviation were finally reported across participants.
It is apparent that the energy and angle jerk/acceleration models
performed quite well (with a lower standard deviation for the energy
model), while the geodesic and hand jerk models performed
moderately. The worst models were the torque change, effort and
torque models, given in decreasing order of performance. The best
model was the hybrid model, in agreement with the results provided by
the inverse optimal control approach.
doi:10.1371/journal.pcbi.1002183.g008
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Figure 9. Comparisons between models and real data, for relevant parameters. A and B depict the reached point (RP) and movement
vector (MV) parameters, which are the relevant parameters for the finger path. An analysis confirms that energy and angle jerk models, as well as the
hybrid model, are quite efficient in predicting the terminal point on the bar and the movement direction (upward or downward). C and D depict the
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costs but weighted differently are actually optimized by different

subjects or if the cost ingredients are simply not the same.

On the identification of the composite cost function
Inverse optimal control results showed that most subjects (15/

20) adopted a behavior which essentially corresponded to a strict

mixture of two subjective costs (absolute work of torques and

angular acceleration energy). More precisely, mixing these two

costs was found to fit better the observed hand paths than other

linear combinations of the eight candidate costs we considered.

Each subject could use a different weighting of those two costs but

on average their contribution to the total movement cost was

roughly the same (about 40% of the total movement cost). These

findings were quite robust as confirmed by the results when using

an alternative metric (Text S2, Section 4).

Further evidence for mixing energy and smoothness optimality

criteria was provided by the direct optimal control analysis. The

bar reaching experiment revealed that several previously

proposed costs did not generalize well to the present task. In

general, it was relatively easy to discriminate between different

models. Clearly, the most discrepant model was the minimum

torque model, which assumes that the total amount of (squared)

torques needed to drive the movement has to reach a minimum.

This model was mainly influenced by the maximum exploitation

of gravity to reach the bar. The minimum torque change model,

which maximizes smoothness in the dynamic space, also

predicted non-biological paths since even the movement direction

was poorly predicted in most cases. Similarly, the minimum effort

model, optimizing the amount of neural input to control the

movement, was unable to predict some basic features of the

recorded arm trajectories. Other simulations showed that neither

modeling agonist/antagonist muscles as low-pass filters nor

separating the control of static (gravitational) and dynamic forces

(speed-related) could improve drastically the model predictions

for this task (large errors on the movement directions were still

clear, see Text S2, Section 1). To remove the problem of gravity

integration, we also considered the same task but performed in

the horizontal plane (Text S2, Section 2). We tested the behavior

of 2 subjects when reaching to an horizontal target bar and the

results suggest that those models were still less accurate than the

energy, hybrid or geodesic models.

Maximizing smoothness at the level of the hand was also found

to be generally irrelevant with respect to the geometry of the paths.

The minimum hand jerk model predicted to follow the shortest

Euclidean path to reach the bar. It is worth mentioning that this

model had been validated originally for horizontal movements

performed with a robotic device [11], which could have induced

this specific motor strategy [57]. We found differently that the

geodesic model, which predicts the shortest paths in joint space

using the kinetic energy metric, generalized quite well to the

current task. This model is elegant and parameter-free and,

therefore, it may be considered to be simpler than the composite

cost model that we have identified. One can wonder whether the

gain of performance using the hybrid cost is worth its complexity.

Whatever the answer, it seems that the cost combination

hypothesis would still be supported. Indeed, Biess and collabora-

tors demonstrated recently that ‘‘geodesic paths in the Rieman-

nian configuration manifold have been identified as least-effort

paths [where effort is defined as the amount of torques that are

acting on the arm] as well as the optimal solution of the one-

parameter family of MSD [Minimum Squared Derivatives] costs

in Riemannian space. Hence, these costs do not only maximize

smoothness, but simultaneously minimize movement effort and,

thus, encode two performance indices [...]’’ [58].

signed index of path curvature (sIPC) and joint coupling (r2), and are reported for the sake of completeness. However, they are not relevant when the
final point is poorly predicted by a model. It is apparent that only the hybrid model is able to predict successfully these additional parameters (sIPC
and joint coupling r2). Parameters reported on the graphics: parameter d is the cumulative error across all starting positions Pi :

d~
X

Pi
(psimu{pmeas)2 , with p being one of the following parameters: RP, MV, sIPC, or joint coupling; parameter r is the correlation coefficient

between the simulated and measured data.
doi:10.1371/journal.pcbi.1002183.g009

Figure 10. Simulated angular displacements and finger velocity profiles. A. Angular displacements at the shoulder and elbow joints. B.
Finger velocity profiles. In both graphs, solid lines correspond to the experimental data, which are recalled from Figure 10 to facilitate comparisons.
Dashed lines correspond to the simulated data (averaged across subjects), for the hybrid model, mixing the minimization of the mechanical energy
expenditure and the angle acceleration energy. Shaded areas indicate the standard deviation. Time is normalized, but not amplitude.
doi:10.1371/journal.pcbi.1002183.g010
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It is interesting to note that the geodesic model had been

initially validated for unconstrained 3D point-to-point movements

[31]. These movements involved redundancy but the specification

of the exact target to reach in space combined with the

musculoskeletal architecture limiting the joint mobility, signifi-

cantly reduced the space of admissible behaviors. Consequently,

only small differences were observed in many cases between the

geodesic model and a model simply predicting straight paths in

angle space. The task we presented in this study enlarged the

differences between these models (as illustrated in Figure 1). While

the geodesic model was quite efficient in predicting path curvature,

the minimum angle jerk/acceleration models (predicting straight

lines in angle space) captured very precisely the final point on the

bar. When reaching to a bar, the actual final postures thus

corresponded quite accurately to the final point given by the

shortest path in intrinsic space equipped with the Euclidean

metric. Other movement features however implied that joint co-

variation was not the general rule for motor planning. In

particular, for certain starting postures, the only means to replicate

the shape of finger paths was to include the minimization of the

absolute work of torques into the cost. Interestingly, minimizing

this mechanical energy expenditure also resulted in final hand

positions that were comparable to the real ones. In agreement with

the inverse optimal control results, relevant features of the bar

reaching task were better reproduced by a composite cost

involving two complementary functions. This complementarity

revealed itself quite clear with respect to parameters such as hand

path curvature and joint coupling. The matching between the

hybrid cost model and the real data was however not perfect,

notably with respect to the endpoint location. This discrepancy

could be due to the role of vision, which may partly influence the

endpoint selection process, but this remains to be investigated. We

nevertheless checked the predictions of the models with known

endpoints in the Text S2 (Section 3) and showed that the hybrid

model accurately predicts the trajectories in the case of point-to-

point reachings. Another explanation could be related to the fact

that the vector a is actually not fixed across conditions but varies

depending on the initial posture. This possibility may be suggested

by Figure 5B where different cost contributions are obtained for

different experimental conditions. The brain may nevertheless

prefer to keep constant the respective contributions of comple-

mentary costs because of their physical meaning (rather than

preserving the way they are combined). This would require

adjusting the weighting vector a during the planning process to

ensure that the resulting movement equally takes into account the

different performance criteria, which is a testable hypothesis.

On the cost combination hypothesis and the
optimization of smoothness/energy

It is undeniable that a theory of motor planning assuming that

the CNS is able to combine different objectives depending on the

task would be very powerful for explaining almost every

experimental fact and could be unfalsifiable [10]. Without any

prior expectation on the costs that the CNS may combine, it is

likely that such a theory would be inappropriate to identify the

variables represented by the brain. However, to reduce such a

drawback, we propose a more structured view. It is worth noting

that the combination of energy and smoothness costs was revealed

by a task with reduced external constraints on the target. By

extension, we suggest that these costs emerged more clearly

because we focused on natural/unconstrained movements. The

present results, however, raise a fundamental question: why a

combination of energy and smoothness? First, since every

movement consumes energy, minimizing its expenditure seems

to be an appropriate strategy to keep the musculoskeletal system

close to its nominal state. For instance, muscle fatigue alters the

execution of actions which might be decisive for species survival.

Accordingly, such an optimal behavior may have arisen from

natural selection [59,60]. Second, self-injuring the musculoskeletal

system can have dramatic consequences so that pulling a muscle or

slipping a joint could have undesirable consequences. Maximizing

smoothness therefore contributes also to keep the system close to

its operational state. The functional meaning of such costs thus

appears related to homeostasis, that is to the process that

maintains the internal state of biological systems within bounds

[61,62]. Accordingly, the relevance of such subjective costs had

been previously reported for different species and motion, but

most of the times these studies focused either on energy or on

smoothness. Emphasizing on the mechanical energy, [63] reported

evidence that energy was a primary constraint for legged insect

locomotion. In a previous study [34], we showed that particular

temporal and electromyographic features of vertical pointing

movements reflected mechanical energy minimization (i.e. abso-

lute work of torques). Focusing on joint smoothness, [27] showed

that a cost function based on the angular acceleration fit well with

point-to-point movements in the horizontal plane. Part of the few

studies considering composite costs (but using direct optimal

control), [64] reported strong evidence for simultaneous multiple

performance objectives including the angular acceleration and the

mechanical energy expenditure during human locomotion.

The fact that, in this study, energy and smoothness were jointly

optimized in roughly similar proportions further supports the

relevance of combining subjective costs: minimizing only energy

may be detrimental to smoothness and vice-versa. The comple-

mentarity of cost functions has been rarely discussed in the motor

control literature, even though it constitutes the main motivation

for mixing different goals in the same motor plan. For energy and

smoothness, the complementarity is evident. However, other costs

turn out to be more correlated, in the sense that minimizing the

one can imply a decrease of the other. For example, minimizing

the amount of motor command (effort cost) may result in a ‘‘not so

large’’ torque change cost. Due to nonlinearities, it is nevertheless

difficult to establish general rules. In the same vein, the similarity

of joint acceleration and jerk costs is the reason why, in this study,

we only conclude about the optimization of a quite generic ‘‘joint

smoothness’’ term. In general, objective costs are also optimized

for the task achievement per se and are thus complementary to

subjective costs. Consider for instance the task of drawing a

straight line on a sheet on paper. In this case, optimizing the jerk at

hand would be the best solution to produce such a path. Energy

and joint smoothness costs could however be integrated in the

motor plan to determine the remaining degrees of freedom (i.e.

joint angles, muscles activities...). Conversely, when trying to jump

at a maximal height, it is likely that the weight given to the energy

cost is decreased. Joint smoothness should instead remain still

present to avoid injuries and fulfill goal achievement. We propose

therefore that planning is a dynamic process weighting flexible

objective costs (e.g. pointing accuracy, path tracking, via-point

etc.) with more deeply anchored subjective costs. This combina-

tion of cost would crucially yield the necessary flexibility for the

sensorimotor system to achieve a variety of tasks, which agrees

with other recent results obtained in the stochastic optimal control

context [20].

We still remain ignorant about the detailed neural mechanisms

underlying such flexible combinations of cost functions. We may

suggest however that subjective cost functions are encoded at a low

level of the CNS, while objective cost functions are determined at

a higher level. Autonomic motor system that control basic
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involuntary function through the sympathic system dealing with

body’s resources might regulate the selection and combination of

costs. In other words, we speculate that hypothalamus, reticular

formation and spinal cord, which ensure the regulation of internal

body states contributing to overall physiological balance, would

control the optimization process, however remaining under the

influence of descending pathways. Such a hierarchical view of

motor planning and control is reminiscent of the theory proposed

in [65] where it was suggested that the role of the low-level

controller is to compute energy-efficient motor commands that

conform to the higher-level variables encoding the constraints of

the task itself. Most of the time, external constraints are task-

dependent (hand accuracy, speed, center of mass position etc.),

while internal constraints may be embodied in the nervous system

as subjective constraints resulting from evolutionary, hereditary

and learning processes. This proposal needs however to be

investigated more deeply. Testing whether the complementary

costs we have found are still present when external constraints and

explicit rewards strongly shape the motor output could contribute

to answer this unresolved question.
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