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Abstract: Background & Aims: The development of vaccines and other strategies to prevent
hepatitis C virus (HCV) infection is limited by rapid viral evasion. HCV entry is the first
step of infection; this process involves several viral and host factors and is targeted by
host neutralizing responses. Although the roles of host factors in HCV entry have been
well characterized, their involvement in evasion of immune responses is poorly
understood. We used acute infection of liver graft as a model to investigate the
molecular mechanisms of viral evasion.
Methods: We studied factors that contribute to evasion of host immune responses
using patient-derived antibodies, HCV pseudoparticles, and cell culture-derived HCV
that express viral envelopes from patients who have undergone liver transplantation.
These viruses were used to infect hepatoma cell lines that express different levels of
HCV entry factors.
Results: Using reverse genetic analyses, we identified altered use of host-cell entry
factors as a mechanism by which HCV evades host immune responses. Mutations that
alter use of the CD81 receptor also allowed the virus to escape neutralizing antibodies.
Kinetic studies demonstrated that these mutations affect virus-antibody interactions
during post-binding steps of the HCV entry process. Functional studies with a large
panel of patient-derived antibodies showed that this mechanism mediates viral escape,
leading to persistent infection in general.
Conclusion: We identified a mechanism by which HCV evades host immune
responses, in which use of cell entry factors evolves with escape from neutralizing
antibodies. These findings advance our understanding of the pathogenesis of HCV
infection and might be used to develop antiviral strategies and vaccines.
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ABSTRACT 1 

Background & Aims: The development of vaccines and other strategies to prevent 2 

hepatitis C virus (HCV) infection is limited by rapid viral evasion. HCV entry is the first 3 

step of infection; this process involves several viral and host factors and is targeted 4 

by host neutralizing responses. Although the roles of host factors in HCV entry have 5 

been well characterized, their involvement in evasion of immune responses is poorly 6 

understood. We used acute infection of liver graft as a model to investigate the 7 

molecular mechanisms of viral evasion.  8 

Methods: We studied factors that contribute to evasion of host immune responses 9 

using patient-derived antibodies, HCV pseudoparticles, and cell culture-derived HCV 10 

that express viral envelopes from patients who have undergone liver transplantation. 11 

These viruses were used to infect hepatoma cell lines that express different levels of 12 

HCV entry factors. 13 

Results: Using reverse genetic analyses, we identified altered use of host-cell entry 14 

factors as a mechanism by which HCV evades host immune responses. Mutations 15 

that alter use of the CD81 receptor also allowed the virus to escape neutralizing 16 

antibodies. Kinetic studies demonstrated that these mutations affect virus–antibody 17 

interactions during post-binding steps of the HCV entry process. Functional studies 18 

with a large panel of patient-derived antibodies showed that this mechanism 19 

mediates viral escape, leading to persistent infection in general. 20 

Conclusion: We identified a mechanism by which HCV evades host immune 21 

responses, in which use of cell entry factors evolves with escape from neutralizing 22 

antibodies. These findings advance our understanding of the pathogenesis of HCV 23 

infection and might be used to develop antiviral strategies and vaccines. 24 

 25 

Keywords: virology; liver disease; tissue culture model; immunity 26 

27 
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INTRODUCTION 1 

Hepatitis C virus (HCV) infection is a major cause of liver disease.1 A vaccine is not 2 

available and antiviral treatment is limited by resistance and adverse effects.2 HCV-3 

induced liver disease is a leading indication for liver transplantation (LT).3 A major 4 

limitation of LT is the universal re-infection of the liver graft with accelerated 5 

recurrence of liver disease. A strategy to prevent re-infection is lacking.3 Thus, there 6 

is an urgent unmet medical need for the development of efficient and safe antivirals 7 

and vaccines.  8 

HCV entry is required for initiation, maintenance and dissemination of 9 

infection. Viral entry is a key target for adaptive host responses and antiviral 10 

strategies.4, 5 Functional studies in clinical cohorts highlight that viral entry and 11 

escape from antibody-mediated neutralization play an important role in viral 12 

persistence and liver disease.6-12 HCV entry is a highly orchestrated process 13 

mediated by viral envelope glycoproteins E1 and E2 and several host factors 14 

including heparan sulfate, CD81, scavenger receptor BI (SR-BI), claudin-1 (CLDN1), 15 

occludin (OCLN) (reviewed in 5) and kinases.13 While the role of E1E2 in antibody-16 

mediated neutralization has intensively been studied,4, 5, 14 the role of host factors for 17 

viral evasion in vivo is only poorly understood.   18 

Acute graft infection is an established in vivo model to study viral evasion 19 

since viral infection and host neutralizing responses can be precisely monitored.8 20 

Viral entry and escape from host neutralizing responses are important determinants 21 

allowing the virus to rapidly infect the liver during transplantation.8 However, the 22 

molecular mechanisms by which the virus evades host immunity to persistently re-23 

infect the liver graft are unknown.  24 

To uncover viral and host factors mediating enhanced viral entry and escape, 25 

we functionally analyzed genetically closely related prototype variants derived from a 26 
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well-characterized patient undergoing LT.8 One variant P01VL re-infecting the liver 1 

graft was characterized by high infectivity and escape from neutralizing antibodies 2 

present in autologous pre-transplant serum.8 The other closely related variants, 3 

P01VA and VC, were not selected during LT and characterized by lower infectivity 4 

and high sensitivity to neutralization by autologous pre-transplant serum.8 Previous 5 

studies had indicated that an E2 region comprising amino acids 425-483 most likely 6 

contained mutations responsible for the phenotype of enhanced entry and viral 7 

evasion of variants re-infecting the liver graft.8  8 

 9 

10 
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MATERIALS AND METHODS 1 

Patients. Evolution and functional analysis of viral variants of patient P01 have been 2 

described.8 Anti-HCV-positive serum samples from patients undergoing 3 

transplantation and chronic HCV infection were obtained with approval from the 4 

Strasbourg University Hospital IRB (ClinicalTrial.gov Identifiers NCT00638144 and 5 

NCT00213707).  6 

 7 

Plasmids. Plasmids for HCVpp production of variants VL, VA and VC have been 8 

described.8 E1E2-encoding sequences were used as templates for individual and 9 

combinations of mutations using the QuikChange II XL site-directed mutagenesis kit 10 

(Stratagene). Mutations were confirmed by DNA sequence analysis (GATC Biotech) 11 

for the desired mutation and for exclusion of unexpected residue changes in the full-12 

length E1E2 encoding sequences. Mutated constructs were designated X#Y, where 13 

# is the residue location in H77c,15 X is the mutated and Y the original amino acid. 14 

 15 

Antibodies. Monoclonal anti-E1 (11B7) and anti-E2 (AP33, IGH461, 16A6), human 16 

anti-HCV IgG,10, 16 HMAbs CBH-2, CBH-5, CBH-23 and HC-1 have been described.9, 
17 

17 Anti-CD81 (JS-81) was from BD Biosciences, AP33 from Genentech, 11B7, 18 

IGH461 and 16A6 from Innogenetics. 19 

 20 

Cell lines. HEK 293T and Huh7.5.1 cells were cultured as described.10, 13, 16 21 

Huh7.5.1 cells overexpressing HCV entry factors were created by stable lentiviral 22 

gene transfer of CLDN1, OCLN, SR-BI or CD81.18 Huh7.5 stably transduced with 23 

retroviral vectors encoding for CD81 and CD13-specific shRNAs have been 24 

described.19 Receptor expression was assessed by flow cytometry .13 25 
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HCVpp and HCVcc production, infection and neutralization. Lentiviral HCVpp 1 

bearing patient-derived envelope glycoproteins were produced as described.8, 10, 20 2 

The amount of HCVpp was normalized following quantification of HIV p24 antigen 3 

expression (Innotest HIV Antigen mAb Kit, Innogenetics) and HCVpp entry was 4 

performed as described. 8, 10, 11, 16 Chimeric HCVcc expressing patient-derived 5 

structural proteins were constructed and produced as described in Supplementary 6 

Materials and Methods.  HCVcc infectivity was determined by determining the 7 

TCID50
21 or intracellular HCV RNA levels as described.13, 21, 22 HCVpp and HCVcc 8 

neutralization were performed as described.8, 10, 11, 16 9 

  10 

Kinetic assays. HCVpp kinetic assays were performed in Huh7.5.1 cells using anti-11 

CD81 (JS-81) and anti-E2 (CBH-23) mAbs as described.16, 23 12 

 13 

Statistical analysis. Statistical analysis (Repeated Measures ANOVA) was  14 

performed using the SPSS 16.0 software for Windows (SPSS Inc., Chicago, IL). 15 

 16 

17 
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RESULTS 1 

HCV E2 residues at positions 447, 458 and 478 confer enhanced viral entry of a 2 

high-infectivity variant re-infecting the liver graft. To investigate the molecular 3 

mechanism of enhanced entry of the variant VL re-infecting the liver graft, we first 4 

introduced individual mutations of region E2425-483
8 of the low-entry and 5 

neutralization-sensitive mutant VC into HCV pseudoparticles (HCVpp) expressing 6 

envelope glycoproteins of the highly infectious escape variant VL (Fig. 1A). Previous 7 

studies had indicated that this region most likely contains the mutations responsible 8 

for the high-infectivity phenotype of VL.8 Following normalization of HCVpp levels by 9 

p24 antigen expression, viral entry was quantified relative to the escape variant VL. 10 

The entry level of the nonselected variant VC was 5% compared to the escape 11 

variant VL (Fig. 1B). By introducing the mutations S458G and R478C into VC, 12 

chimeric HCVpp showed similar viral entry level as the paternal variant VL whereas 13 

introduction of individual or combination of other mutations only had a partial effect 14 

(Fig. 1B, Fig. S1). To explore the impact of other positions on viral entry we 15 

introduced  mutations from another nonselected variant termed VA into VL (Fig. 1A) 16 

and  identified position F447 as an additional residue relevant for enhanced entry of 17 

the escape variant VL (Fig. 1C). These results demonstrate that residues F447L, 18 

S458G and R478C are largely responsible for the high-infectivity of the escape 19 

variant VL.  20 

 21 

Enhanced viral entry by mutations F447L, S458G and R478C of the escape 22 

variant is the result of altered use of CD81. To address whether the mutations 23 

affect viral entry by different usage of cell entry factors SR-BI, CD81, CLDN1 and 24 

OCLN, we studied viral entry of HCVpp derived from parental and chimeric variants 25 

in Huh7.5.1 cells stably overexpressing individually the four main entry factors (Fig. 26 
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2A). Overexpression of either SR-BI, CD81, CLDN1 or OCLN, did not affect the 1 

stability or proportion of other cell surface HCV receptors (Fig. 2B and data not 2 

shown).  3 

 Overexpression of CD81 significantly enhanced viral entry of VL (3.2fold) and 4 

VC (2fold) compared to parental cells (P < .001) (Fig. 2C). The fold change in HCVpp 5 

entry was significantly higher for VL than for VC (P < .001). Exchanging the two 6 

residues at position 458 and 478 similarly increased viral entry. This suggests that 7 

combination of the two individual mutations modulates viral entry by altering CD81-8 

dependency. Overexpression of SR-BI also increased viral entry of VL and VC, but 9 

no specific increase was observed for the chimeric strains containing substitutions at 10 

positions 458 and 478 (Fig. 2C). These data confirm an important role for SR-BI as 11 

an entry factor for patient-derived variants, but also demonstrate that positions 458 12 

and 478 do not significantly alter SR-BI-dependency. Thus, increased entry efficiency 13 

of VL in SR-BI-overexpressing cells is most likely due to other mutations, e. g. in 14 

HVR1. Viral entry enhancement was less pronounced in cells overexpressing CLDN1 15 

or OCLN than CD81 and SR-BI (Fig. 2C) and no specific modulation of viral entry 16 

was associated with the two variants or chimeric strains.  17 

 The CD81 usage of viral variants VL, VC and VA was further investigated 18 

using Huh7.5 cells with silenced CD81 expression (Fig. 3A).19 The escape variant VL 19 

showed the highest decrease (5.4fold) of viral entry in shCD81-Huh7.5 cells 20 

compared to the decrease of variants VC (4.3fold, P < .001) and VA (2.9fold, P < 21 

.001) (Fig. 3B-C). Exchange of the mapped residues into chimeric expression 22 

plasmids conferred the phenotype of decreased entry of VL (Fig. 3B-C) confirming 23 

that identified residues modulate viral entry by different CD81 usage. Moreover, 24 

using a relevant model system for HCV-CD81 interactions occurring in vivo 25 

consisting of cell surface-expressed CD81, we demonstrate that E1E2 complexes of 26 
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the escape variant VL bound less efficiently to shCD81-Huh7.5 cells than 1 

glycoproteins of variants VC and VA (Fig. S2A). Exchange of the mapped residues 2 

conferred similar phenotypes as the parental glycoproteins (Fig. S2B) suggesting that 3 

the residues at positions 447, 458 and 478 alter E1E2 interactions with cell surface 4 

CD81. 5 

Taken together, these data demonstrate that (i) the escape variant is 6 

characterized by markedly altered CD81 usage and (ii) altered CD81 usage of the 7 

variant is mediated by residues at positions 447, 458 and 478.  8 

Since the levels of E1E2 incorporation into HCVpp and lentiviral p24 antigen 9 

expression were similar for all strains (Fig. S3A-D), it is unlikely that the differences in 10 

viral entry are the result of impaired HCVpp assembly or release. 11 

Next, to assess whether enhanced entry is due to more rapid internalization of 12 

viral particles we investigated internalization kinetics of the parental and chimeric 13 

variants in the presence of anti-CD81 antibody.16, 21, 23, 24 Since entry kinetics of 14 

parental and chimeric variants were similar (Fig. 3D), it is unlikely that the mutant-15 

induced modulation of CD81-dependency alters the velocity of viral entry. 16 

 17 

Positions 447, 458 and 478 mediate escape from autologous transplant serum 18 

during graft re-infection. To assess whether the residues in region E2425-483 19 

influencing viral entry (Fig. 1) were also responsible for escape from antibody-20 

mediated neutralization, we studied the impact of each single and combined 21 

substitutions of the nonselected variant VC on neutralization by autologous pre-22 

transplant serum. Autologous pre-transplant serum only poorly neutralized the 23 

selected variant VL as well as the variants substituted at position 434, 444, and 445 24 

while individual substitution at positions 458 and 478 significantly (P < .001, P ≤ .05) 25 

increased the sensitivity of VLVC458 and VLVC478 to autologous neutralizing 26 
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antibodies (1:400 and 1:200) (Fig. 4A). Noteworthy, only the variant VLVC458+478 1 

showed a similar neutralization titer as the nonselected variant VC (1:6,400, P < 2 

.001). To confirm that these mutations were indeed responsible for the phenotype of 3 

the parental variant VL, we investigated neutralization of VCVL458+478 by autologous 4 

serum. The variant VCVL458+478 escaped autologous neutralization similarly to the 5 

escape variant VL (Fig. 4A). A similar phenotype was observed when mutation 447 of 6 

VA was introduced into the VL cDNA (Fig. 4B). In contrast, the introduction of other 7 

residues into VL only had a minor effect on neutralization (Fig. 4B). Taken together, 8 

these findings suggest that the residues at positions 447, 458 and 478 are 9 

simultaneously responsible for both enhanced viral entry and evasion from antibody-10 

mediated neutralization. 11 

 12 

Positions 447, 458 and 478 define a conformational epitope involved in evasion 13 

from host neutralizing responses. To further elucidate the mechanism of viral 14 

evasion of the escape variant VL from patient-derived neutralizing antibodies, we 15 

investigated whether the identified mutations F447L, S458G and R478C confer 16 

resistance or sensitivity to a panel of mAbs directed against conformational9, 17 and 17 

linear E2 epitopes.16 The conformational HMAbs (CBH-2, CBH-5, CBH-23, HC-1) 18 

have been shown to exhibit a broad cross-neutralizing activity by interfering with E2-19 

CD81 interaction9, 17 and their epitopes are only partially defined (Table S1). AP33 is 20 

directed against a conserved epitope comprising aa 412-423.25 While the escape 21 

variant VL was poorly neutralized by several HMAbs directed against conformational 22 

epitopes, VC and VA were efficiently neutralized by all HMAbs (Fig. 5A-B). Moreover, 23 

by substituting the residues at positions 458 and 478 or 447, the well neutralized 24 

nonselected variants VC (VCVL458+478) and VA (VAVL447) became neutralization-25 

resistant as the escape variant VL. Introducing the residues of VC or VA into VL 26 



MS# GASTRO-D-11-01111.R2 

 13 

(VLVC458+478 and VLVA447) restored neutralization by HMAbs, suggesting that these 1 

residues are part of the HMAbs epitopes. In contrast, anti-E2 antibodies (AP33, 2 

16A6, IGH461) targeting linear epitopes similarly neutralized parental and chimeric 3 

variants (Fig. 5A-B and Table S1). 4 

Antibody-mediated neutralization occurs at binding and post-binding steps 5 

during viral entry.16 To map the entry step involved in viral evasion from neutralizing 6 

antibodies by VL, we investigated the neutralization kinetics of parental and chimeric 7 

variants.16, 21, 23 The anti-E2 HMAb CBH-23 inhibited viral entry of VC and 8 

VLVC458+478 at post-binding steps during time points closely related to HCV-CD81 9 

interaction (Fig. 5C). Partial inhibition at post-binding steps by CBH-23 was also 10 

observed for VA and VLVA447 (Fig. 5D). The VL variant escaped antibody-mediated 11 

neutralization at the same steps. 12 

Interestingly, purified HCVpp expressing envelope glycoproteins of the escape 13 

variant bound similarly to neutralizing anti-E2 antibody CBH-23 as the envelope 14 

glycoproteins of non selected variants or variants containing mutations of the 15 

identified escape residue (Fig. S4). Thus, it is likely that viral evasion is not due to 16 

decreased antibody-binding to circulating virions but rather occurs during post-17 

binding steps of viral entry where E2-host entry factor interactions result in 18 

conformational changes of the envelope and failure of antibodies to inhibit entry. 19 

Taken together, these data indicate that positions 447, 458 and 478 mediate viral 20 

evasion from neutralizing antibodies at post-binding steps and time points closely 21 

related to HCV-CD81 interaction. 22 

 23 

Positions 447, 458 and 478 mediate escape from antiviral antibodies in non-24 

related patients with chronic HCV infection. To investigate whether these 25 

mutations not only result in escape from antibodies from the same patient but also 26 
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confer resistance to antiviral antibodies of non-related HCV infected patients, we 1 

studied the neutralization of the parental variants by a large panel of sera randomly 2 

selected from chronically infected patients (n = 102). While VL was not neutralized by 3 

53 out of 102 patient sera (mean neutralizing titer, 1:144) VC was significantly 4 

neutralized by 90 out of 102 patient sera (mean neutralizing titer, 1:1,088, P < .001) 5 

(Fig. 6 and Table S2). Similar results were obtained for VA (neutralization by 80 out 6 

of 102 patient sera, mean neutralizing titer of 1:322, P = .01). Functional analysis of 7 

HCVpp expressing chimeric envelope glycoproteins demonstrated that neutralization 8 

of VC and VA was predominantly mediated by the identified mutations in residues 9 

447, 458 and 478 (Fig. 6). 10 

 11 

Confirmation of differential cell entry factor usage and viral evasion using 12 

chimeric HCVcc. Finally, we confirmed the functional impact of the three residues 13 

on virus-host interactions using the HCVcc system. To address this issue we 14 

constructed chimeric JFH-1 based HCVcc expressing the VL wild-type envelope or 15 

VL containing VC and VA-specific functional residues. Viruses containing patient-16 

derived envelopes showed similar levels of replication and envelope production (data 17 

not shown). Phenotypic analyses of infection and neutralization of chimeric HCVcc 18 

confirmed the relevance of the identified residues for enhanced entry, differential 19 

CD81 usage and viral evasion (Fig. 7A-D). While the escape variant VL was poorly 20 

neutralized, the identified mutations at positions 447, 458 and 478 restored its 21 

sensitivity to conformational HMAb CBH-23 (Fig. 7C) as well as to heterologous sera 22 

from chronically infected patients (Fig. 7D). These data confirm the functional 23 

relevance of the obtained results in the HCVcc system expressing authentic patient-24 

derived envelopes. 25 

26 
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DISCUSSION 1 

Using acute infection of the liver graft as an in vivo model, we identified a novel, 2 

clinically and therapeutically important mechanism of viral evasion, where co-3 

evolution simultaneously occurs between cellular entry factor usage and escape from 4 

neutralization. 5 

Several host selection forces operate concomitantly during HCV infection. 6 

These include pro-viral host factors resulting in selection of most infectious viruses 7 

best adapted to host factors and anti-viral host immune responses leading to escape 8 

from immune responses. Antibody-mediated selective pressure is thought to be an 9 

important driver of viral evolution.8, 11 The immune response may fail to resolve HCV 10 

infection because neutralizing antibody-mediated response lags behind the rapidly 11 

and continuously evolving HCV glycoprotein sequences.11 However, continuous 12 

generation of escape mutations during chronic HCV infection may also compromise 13 

virus infectivity: indeed, it has been reported that structural changes in E2 leading to 14 

complete escape from neutralizing antibodies simultaneously compromised viral 15 

fitness by reducing CD81-binding.9 Moreover, escape from T cell responses has 16 

been associated with impaired viral replication.26, 27 We show for the first time that 17 

clinically occurring mutations simultaneously lead to enhanced viral infectivity by 18 

optimizing host factor usage and escape from host immune responses. Since this 19 

mechanism was uncovered in patient strains isolated during acute liver graft infection 20 

it is likely that the novel and unique mechanism of co-evolution between host factor 21 

usage and viral evasion ensures optimal initiation, dissemination and maintenance of 22 

viral infection in the early phase of liver graft infection. In addition, since the VL strain 23 

escapes autologous antibodies from the transplant patient (Fig. 4) and resists to 24 

monoclonal and polyclonal antibodies of heterologous patients (Figs. 5, 6, 7 and 25 

Tables S1, S2), and given the high prevalence of the identified mutations in a large 26 
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genomic database of viral isolates (Fig. S5 and Supplementary Results), the co-1 

evolution of receptor usage and escape from neutralizing antibodies may also play 2 

an important role for viral evasion in chronic HCV infection in general.  3 

Our mechanistic studies demonstrate that the identified viral evasion factors 4 

are part of a conformational neutralizing epitope modulating E2-CD81 interactions at 5 

post-binding entry steps.28, 29 Noteworthy, the same mutations were also responsible 6 

for immune escape of VL. Neutralization studies using HMAbs directed against 7 

discontinuous envelope glycoprotein regions termed domain B and C30, 31 8 

demonstrate that the three positions are part of an epitope which plays a key role for 9 

neutralization and viral evasion. Since the mutations are outside the known contact 10 

residues within the epitopes of the HMAbs CBH-2, CBH-5, CBH-23 and HC-19, 17 11 

(Table S1) and complementary to previously identified regions associated with 12 

escape from neutralizing monoclonal antibodies,25 positions 447, 458 and 478 either 13 

modulate the interaction of the majority of antibodies directed against domain B and 14 

C epitopes or are part of a novel E2 epitope mediating evasion from host neutralizing 15 

antibodies.  16 

Based on previous functional observations and structural predictions, Krey and 17 

colleagues proposed a model for a potential tertiary organisation of E2. In this model, 18 

E2 comprises three subdomains with the CD81 binding regions located within 19 

domain I (W420, A440LFY, Y527, W529, G530 and D535) and potential CD81 20 

binding sites overlapping with domain III (Y613RLWHY).28, 29, 32, 33 In this model, 21 

positions 447, 458 and 478 are located outside but in close proximity of the 22 

previously suggested CD81 binding domains. Moreover, position 447 is located 23 

immediately downstream a conserved motif between HVR1 and HVR2 which has 24 

been shown to play an important role in CD81 recognition as well as pre- or post-25 
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CD81 dependent stages of viral entry.32 Position 478 is located within HVR2 which 1 

modulates, by a complex interplay with HVR1, binding of E2 glycoprotein to CD81.34 2 

Since mutations F447L, S458G and R478C (i) modulate CD81-dependency of 3 

HCV entry (Fig. 2 and 3), (ii) alter the interaction with cell surface CD81 (Fig. S2), (iii) 4 

mediate viral evasion from antibodies at post-binding steps closely related to HCV-5 

CD81 interactions (Fig. 5) and (iv) are located within E2 loops of the predicted E2 6 

secondary structure and tertiary organization29 positions 447, 458 and 478 may be 7 

part of two loops belonging to a larger cluster of closely related surface-exposed E2 8 

loops. These loops are most likely involved in E2-CD81 binding either directly or 9 

indirectly as a key point for structural rearrangement during viral entry. 34, 35  10 

The polar S and R residues present in the escape variant can form non-11 

bonded interactions with other residues by hydrogen bonds and salt bridge, 12 

respectively. These interactions could increase the stability of the interacting E2-13 

CD81 interface allowing efficient entry of the VL escape variant through E2-CD81-14 

CLDN1 co-receptor complexes which are key determinants for viral entry.13, 23, 36 15 

Furthermore, the E2 cluster of loops containing the mutations bears linear epitopes 16 

but also defines at least one conformational epitope that is a target of neutralizing 17 

antibodies. According to residue physical-chemical properties, the VL variant S458 18 

and R478 residues enhance the hydrophilicity of the loops they belong to and may 19 

promote the surface exposure of the loops. This change could further modulate E2-20 

CD81 interactions and impair the binding of neutralizing antibodies by blocking 21 

access to their target epitopes. The F to L substitution present in the VA strain most 22 

likely does not profoundly alter the tertiary or quaternary structure of E2. This is 23 

suggested by the fact that this position is located in a loop as predicted by the 24 

proposed E2 model.29 Thus, it is conceivable that this mutation which increases E2 25 

hydrophobicity may reduce accessibility of the loop and its interactions with CD81 or 26 
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CD81-CLDN1 co-receptor complexes. Alternatively, allosteric mechanisms may play 1 

a role in the observed virus-antibody-host interactions. 2 

Taken together, our data identified key determinants of immune evasion in 3 

vivo. Mutations conferring neutralization escape altered CD81 receptor usage and 4 

enhanced cell entry. Moreover, our data suggest that mutations in HVR1 which may 5 

modulate entry and neutralization by altering SR-BI-dependency (Fig. 1, 2, 4 and 6 

data not shown) may contribute to the high-entry and escape phenotype of the 7 

escape variant. Furthermore, interfering non-neutralizing antibodies may constitute 8 

another mechanism of escape (data not shown). 9 

Although proof-of-concept studies in animal models have demonstrated a 10 

potential role for HMAbs in prevention of HCV infection,37, 38 the partial or complete 11 

escape of the VL variant from autologous and heterologous serum-derived antibodies 12 

as well as many broadly cross-neutralizing HMAbs (Fig. 5; Table S1) demonstrates 13 

the ability of the virus to evade cross-neutralizing anti-envelope mAbs. By identifying 14 

viral and host factors mediating immune evasion in the HCV-infected patient, our 15 

results may open new perspectives for the development of broadly cross-neutralizing 16 

anti-envelope or anti-receptor antibodies overcoming viral escape.  17 
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FIGURE LEGENDS 1 

Figure 1. Positions 447, 458 and 478 confer enhanced viral entry of a high-2 

infectivity variant re-infecting the liver graft. (A) Genomic organisation and 3 

mutations of envelope glycoproteins of escape variant VL and nonselected variants 4 

VC and VA. HVR1 and HVR2 are depicted in green; E2 domains in red (DI), yellow 5 

(DII) and blue (DIII); and CD81 binding domains in dark blue. 29, 33, 39 Positions 447, 6 

458 and 478 are highlighted in black vertical lines. Differences between VL, VC and 7 

VA in region E1E2384-483 are displayed. (B-C) Viral entry in Huh7.5.1 cells of the 8 

escape variant VL, the nonselected variants VC and VA as well as chimeric variants 9 

containing defined mutations of VC and VA in VL or vice-versa (see Fig. S1). HCVpp 10 

infection was analyzed by luciferase reporter gene expression. Results are 11 

expressed as percentage of viral entry compared to VL. Means±SD from at least four 12 

independent experiments performed in triplicate are shown. Significant differences in 13 

HCVpp entry between variants are indicated (*, P ≤ .05; **, P < .001). Abbreviations: 14 

aa - amino acid; BD - binding domain; n.s. - not significant 15 

 16 

Figure 2. Altered usage of CD81 is responsible for enhanced viral entry of the 17 

escape variant. (A) Entry factor expression in clones of SR-BI-, CD81-, CLDN1- or 18 

OCLN-transduced Huh7.5.1 cells. The relative overexpression of each entry factors 19 

was determined by flow cytometry and is indicated as fold expression compared to 20 

parental Huh7.5.1 cells. (B) Entry factor expression in pools of CD81-overexpressing 21 

Huh7.5.1 cells (grey bars). The relative entry factor expression was determined as 22 

described in (A). (C) Receptor-dependency of patient-derived HCVpp entry. Parental 23 

and transduced Huh7.5.1 cells were incubated with parental or chimeric HCVpp and 24 

viral entry was determined as described in Fig. 1. Viral entry is expressed as fold 25 

change of viral entry compared to parental cells. MeansSD from three independent 26 
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experiments performed in triplicate are shown. Significant differences in HCVpp entry 1 

between variants are indicated (**, P < .001). 2 

 3 

Figure 3. Different CD81 usage of viral variants in Huh7.5 cells with silenced 4 

CD81 expression. (A) Entry factor expression in Huh7.5 cells with silenced CD81 5 

(grey bars) or CD13 (black bars) expression. CD81 expression was determined by 6 

flow cytometry and is indicated as fold expression compared to control shCD13-7 

Huh7.5 cells. (B-C) Entry of patient-derived HCVpp VL, VC (B) and VA (C). Huh7.5 8 

cells with silenced CD81 or CD13 expression were incubated with parental or 9 

chimeric HCVpp and viral entry was determined as described in Fig. 1. Viral entry is 10 

expressed as fold change of viral entry compared to shCD13-Huh7.5 control cells. 11 

MeansSD from three independent experiments performed in triplicate are shown. 12 

Significant differences in HCVpp entry between wildtype and chimeric variants are 13 

indicated (**, P < .001). (D) Entry kinetics of patient-derived variants. Kinetics of 14 

HCVpp entry was performed using anti-CD81 or isotype control antibody (5 µg/ml). 15 

HCV entry was determined as described in Fig.1. A representative experiment out of 16 

four is shown. 17 

 18 

Figure 4. Positions 447, 458 and 478 mediate viral escape from neutralization 19 

by autologous transplant serum. Neutralization of the escape variant VL, variants 20 

VC and VA and the chimeric strains. HCVpp were incubated with autologous anti-21 

HCV positive or control serum in serial dilutions for 1 h at 37°C before incubation with 22 

Huh7.5.1 cells. Neutralization titers obtained by endpoint dilution are indicated. 23 

Dotted line indicates the threshold for a positive neutralization titer (1/40). Means±SD 24 

from at least four experiments performed in triplicate are shown. (A) Neutralization of 25 

variants VL, VL containing individual or combined mutations of VC and VC with 26 
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double substitutions of VL by autologous anti-HCV positive pre-transplant serum. (B) 1 

Neutralization of variants VL, VL containing individual mutations of VA and VA with 2 

single substitution of VL by autologous anti-HCV positive pre-transplant serum. 3 

Significant differences in neutralization between variants are indicated (*, P ≤ .05; **, 4 

P < .001). 5 

 6 

Figure 5. Mechanisms of viral evasion from neutralizing antibodies. (A-B) 7 

Escape from neutralization by HMAbs directed against conformational and linear 8 

epitopes. HCVpp produced from isolates shown in Fig. 1 were incubated with HMAbs 9 

(Table S1) or control Ab (10 µg/ml) for 1 h at 37°C prior to incubation with Huh7.5.1 10 

cells. Results are expressed as percentage of viral entry relative to HCVpp incubated 11 

with control mAb. Means±SD from at least four experiments performed in triplicate 12 

are shown. Significant differences in HCVpp entry between variants are indicated (**, 13 

P < .001). (C-D) Escape from neutralization of anti-E2 antibody CBH-23 in kinetic 14 

assays. Kinetics were performed as described in Fig. 3 (HMAb 10 µg/ml; JS-81: 5 15 

µg/ml). A representative experiment out of four is shown.  16 

 17 

Figure 6. HCV VL strain is poorly neutralized by antibodies present in sera from 18 

a large panel of non-related patients with chronic HCV infection. Parental 19 

HCVpp (VL, VC and VA) and chimeric HCVpp (VLVC458+478 and VLVA447) strains, 20 

adjusted for p24 antigen expression, were preincubated for 1 h with serial dilutions of 21 

anti-HCV positive sera from randomly selected patients with chronic hepatitis C prior 22 

to incubation with Huh7.5.1 target cells. Patient number, gender, HCV genotype and 23 

viral load are indicated in Table S2. Neutralization was determined as in Fig. 4. Mean 24 

neutralization titers are marked by lines. Means from at least three independent 25 
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experiments performed in triplicate are shown. Significant differences in 1 

neutralization are indicated. 2 

 3 

Figure 7. Entry viral and escape from neutralization of chimeric HCVcc 4 

expressing patient-derived viral envelopes. (A) Infectivity of HCVcc expressing 5 

envelopes of variant VL and functional residues of VA and VC is indicated by TCID50. 6 

MeansSD from one representative experiment are shown. (B) Relative infectivity of 7 

chimeric HCVcc expressing patient-derived viral envelopes in Huh7.5 cells with 8 

silenced CD81 or CD13 expression. MeansSD from three independent experiments 9 

performed in triplicate are shown. (C) Escape from neutralization by HMAb CBH-23. 10 

Neutralization was performed as described in Fig. 5. Results are expressed as 11 

percentage of viral infectivity relative to HCVcc incubated with control mAb. 12 

Means±SD from at least three experiments performed in triplicate are shown. (D) 13 

Inhibition of HCVcc infection by anti-HCV positive sera described in Table S2B. 14 

Neutralization was performed as described in Fig. 6. Means from one representative 15 

experiment performed in triplicate are shown. Significant differences in HCVcc 16 

infection between wildtype and chimeric variants are indicated (*, P ≤ .05; **, P < 17 

.001) 18 

 19 

 20 
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SUPPLEMENTARY DATA 1 

 2 

SUPPLEMENTARY MATERIALS AND METHODS 3 

Analysis of HCVpp envelope glycoprotein expression. Expression of HCV 4 

glycoproteins was characterized in HEK 293T producer cells and HCVpp purified 5 

through a 20% sucrose cushion ultracentrifugation as described.1 Immunoblots of 6 

HCV glycoproteins were performed using anti-E1 11B7 and anti-E2 AP33 mAbs as 7 

described.2  8 

 9 

Cellular binding of envelope glycoproteins. Envelope glycoprotein-expressing 10 

HEK 293T cells were lysed in PBS by four freezing and thawing cycles. Cell debris 11 

and nuclei were removed by low-speed centrifugation and supernatants containing 12 

native intracellular E1E2 complexes were used for binding studies. shCD81- or 13 

shCD13-Huh7.5 cells (2 x 105 cells per well) were seeded in 96 well plates. Following 14 

incubation with lysates containing patient-derived E1E2 proteins, Huh7.5.1 target 15 

cells were first incubated with mAb AP33 (10 µg/ml) and then with phycoerythrin-16 

conjugated anti-mouse Ab (5 µg/ml, BD). Bound E2 was analyzed by flow cytometry 17 

as described.3 18 

 19 

Construction of plasmids for production of chimeric HCVcc expressing patient-20 

derived envelopes. Genotype 1 JFH-based HCVcc chimeras expressing the 21 

structural proteins of patient-derived viruses were produced as previously described 22 

for Con1/C3-JFH1-V2440L.4, 5  Briefly, the cDNA region encoding for the HCV core to 23 

first transmembrane domain of NS2 (C3 junction site) from variant VL was inserted 24 

into pFK-Con1/C3-JFH1-V2440L using fusion polymerase chain reaction (PCR) with 25 

Pfu DNA polymerase (Stratagene) and standard cloning procedures using 26 

Supplementary data
Click here to download Supporting Document: GASTRO D-11-01111.R2 Supplementary data_140312.doc 

http://www.editorialmanager.com/gastro/download.aspx?id=663136&guid=590752cc-cda6-42b8-b65b-bad23bf284f5&scheme=1
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appropriate restriction sites including BsmI and AvrII. The obtained construct was 1 

designated VL/JFH1. VL/JFH1 encoding sequence was used as template to insert 2 

individual and combined mutations using the QuikChange II XL site-directed as 3 

described previously. 1 4 

 5 

GNA Capture ELISA. Binding of HMAb CBH-23 to viral envelopes was analyzed 6 

using an ELISA with HCVpp as a capture antigen as described.6 HCVpp expressing 7 

the E1E2 glycoproteins of HCV variants or control (Ctrl) pseudoparticles with absent 8 

HCV envelope glycoprotein expression were partially purified and enriched through 9 

ultracentrifugation as described.1 Purified particles were quantified as described 10 

before.1 Partially purified HCVpp or control pseudoparticles were captured onto GNA-11 

coated microtiter plates as described.6 Soluble E2 (sE2, derived from strain HCV-H77 12 

and expressed in 293T cells as described previously3) was used as a positive control 13 

for antibody binding. Neutralizing human anti-E2 antibody CBH-23 (25 µg/ml diluted 14 

in PBS) was then added to captured HCVpp or sE2 (1 h at RT). Following washing 15 

and removal of nonbound antibody, mAb binding to HCV envelopes was detected 16 

using horseradish peroxidase anti-human IgG (GEhealthcare) at a concentration of 17 

1/3000 for 1 h at RT, followed by incubation with 1-stepTM Turbo TMB-ELISA 18 

(Thermo Scientific) for color development. Absorbance was measured at 450 nm 19 

using a microplate reader (Molecular Devices) and the Softmax program.   20 

 21 

Bioinformatics. Multiple sequence alignment of complete E2 proteins was 22 

performed using the European HCV databases (http://euhcvdb.ibcp.fr).7 Two amino-23 

acid repertoires were computed with all E2 sequences of provisional/confirmed 24 

genotype 1b using the ComputeRepertoire tool as part of the euHCVdb Extract tool. 25 

 26 
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SUPPLEMENTARY RESULTS 1 

Prevalence of the identified mutations in a large genomic database of viral 2 

isolates. Bioinformatic sequence analysis of a large panel of 2,074 HCV strains 3 

within the European HCV database further supports the potential relevance of the 4 

identified positions for pathogenesis of HCV infection in general.7 Residues F, S and 5 

R are much more frequently observed at positions 447, 458 and 478 than L, G and 6 

C. F and S are the most predominant residues at positions 447 and 458 in the large 7 

majority of 1b strains, respectively (F447 all: 98.4%, 1b: 96.2%; S458 all: 94% for 1b: 8 

90.3%; Fig. S5). The position 478 is variable but R (all: 2.4% for 1b: 10.8%) is more 9 

frequent than C (all: 0.2%, 1b: 0.9%) (Fig. S5). The high prevalence of identified 10 

residues supports their functional relevance for virus survival and selection as more 11 

structurally and functionally relevant residues will be more frequently observed. 12 

These data suggest that the epitope containing the identified residues at positions 13 

447, 458 and 478 is not only responsible for viral evasion from autologous antiviral 14 

antibodies during LT but may also contribute to viral evasion in chronic HCV infection 15 

in general. 16 

 17 

 18 

 19 

20 
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SUPPLEMENTARY  TABLE LEGENDS AND TABLES 1 

Table S1. Neutralization of patient-derived and chimeric HCVpp by monoclonal 2 

anti-envelope antibodies. HCVpp produced from isolates shown in Figure 1 were 3 

incubated with mAbs (10 µg/ml) for 1 h at 37°C. HCVpp-antibody complexes were 4 

then added to Huh7.5.1 cells. Viral epitopes targeted by the respective antibody, 5 

percentage of HCV entry in the presence of antibody (strains VL, VC, VCVL458+478, 6 

VLVC458+478, VA, VAVL447 and VLVA447) and source or reference of antibody are 7 

shown. Means±SD from at least three experiments each performed in triplicate are 8 

shown. Abbreviations: V - viral variant; aa - amino acid.  9 

 10 

 11 

Antibody 
Source or 
reference 

 
Epitope 

(aa) 
 

HCVpp entry (%) 

V
L

 

V
C

 

V
C

V
L

4
5
8
+

4
7
8
 

 

V
L

V
C

4
5
8
+

4
7
8
 

V
A

 

V
A

V
L

4
4
7
 

V
L

V
A

4
4
7
 

AP33 
8 412-423 6 ± 3 12 ± 1 3 ± 1 11 ± 5 2 ± 1 5 ± 1 3 ± 1 

IGH461 
9 436-448 58 ± 4 56 ± 8 51 ± 7 53 ± 3 55 ± 2 56 ± 6 52 ± 7 

16A6 
9 523-530 76 ± 10 74 ± 8 83 ± 9 82 ± 2 73 ± 9 74 ± 4 81 ± 9 

CBH-2 
10 

Domain B, 

conformational            

431, 523-540 

60 ± 5 8 ± 5 65 ± 6 9 ± 5 39 ±8 61 ± 4 39 ± 10 

CBH-5 
10 

Domain B,  

conformational           

523-540 

71 ± 2 10 ± 4 73 ± 7 8 ± 1 36 ± 5 59 ± 7 47 ± 8 

CBH-23 

Keck and 

Foung, 

unpublished 

Domain C,             

conformational 
97 ± 9 21 ± 6 98 ± 13 14 ± 3 32 ± 7 53 ± 12 44 ± 3 

HC-1 
11 

Domain B,    

conformational         

523-540 

73 ± 5 31 ± 9 81 ± 10 27 ± 9 2 ± 1 2 ± 1 77 ± 1 

 12 
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Table S2. Characteristics of patients and viruses used for neutralization 1 

studies. (A) HCVpp were incubated with anti-HCV positive sera from 102 patients 2 

with chronic HCV infection (ClinicalTrial.gov Identifier NCT00638144). Patient 3 

number, age, gender, viral genotype and load in serum are indicated. HCVpp- 4 

antibody complexes were added to Huh7.5.1 cells and infection was analyzed as 5 

described in Fig. 4. Calculation of neutralization and determination of background 6 

and thresholds for neutralization were performed as described in Fig. 6. 7 

Neutralization titers obtained by endpoint dilution are indicated for each variant. (B) 8 

Results were confirmed using chimeric HCVcc expressing the HCV envelope 9 

glycoproteins depicted in Fig. 7 and using 12 representative sera from patients. 10 

Neutralization assays were performed using a similar protocol as described in (A). 11 

Means from at least three independent experiments each performed in triplicate are 12 

shown. Abbreviations: V - viral variant ; M - male ; F - female. 13 

A. 14 

Patient 
number 

Age Gender  Genotype 
Viral Load 

(IU/mL) 
HCVpp neutralization titer (1/dilution) 

     VL VC VA 

1 65 M 1b 2.29 x 10
5
 100 100 100 

2 27 F 1b 9.7 x 10
4
 100 3200 200 

3 31 F 1b 1.53 x 10
5
 400 3200 400 

4 47 M 3a 1.02 x 10
6
 20 20 100 

5 58 M 1b 1.15 x 10
6
 100 3200 200 

6 72 M 1b 1.50 x 10
6
 20 200 100 

7 51 M 4 4.38 x 10
6
 20 20 20 

8 69 F 1b 9.7 x 10
5
 20 400 100 

9 36 F 1 1.29 x 10
5
 800 1600 100 

10 46 M 1a 1.05 x 10
6
 100 800 100 

11 55 M 1a 1.54 x 10
6
 400 3200 200 

12 56 M 4c/4d 2.41 x 10
4
 20 800 200 

13 56 F 4a 1.09 x 10
6
 100 400 400 

14 59 F 1b 3.54 x 10
5
 200 800 200 

15 62 M 1a 3.37 x 10
6
 20 20 20 

16 50 M 4a 1.48 x 10
6
 20 200 20 
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17 46 M 4a 4 x 10
5
 20 200 100 

18 70 F 1b 1.3 x 10
6
 100 800 20 

19 77 F 1b 6.2 x 10
4
 20 100 100 

20 61 F 1b 2.58 x 10
4
 200 800 200 

21 46 F 1b 2.11 x 10
5
 100 400 800 

22  36 M 1a 2.04 x 10
6
 20 200 400 

23  52 F 4a 9.12 x 10
5
 20 3200 400 

24  54 M 1a 9.77 x 10
5 

100 800 200 

25  54 M 1b 1.12 x 10
6 

20 100 200 

26  54 F 1a 3.38 x 10
6
 20 400 20 

27  47 M 3a 6.16 x 10
5
 100 3200 3200 

28 43 M 1a 5.75 x 10
6
 20 800 200 

29  51 M 4a 1.44 x 10
6
 100 400 400 

30  54 M 2c 4.67 x 10
5
 100 100 3200 

31  51 M 1a 6.16 x 10
6
 100 400 100 

32  39 M 4a 1.12 x 10
6
 20 200 800 

33  62 F 4f 2.88 x 10
6
 20 800 20 

34  46 M 4k 3.54 x 10
5
 20 20 100 

35 42 M 1a 9.54 x 10
5
 400 800 400 

36  54 M 2c 4.67 x 10
5
 200 3200 100 

37  34 M 3a 3.23 x 10
6
 20 20 100 

38  47 M 3a 7.94 x 10
4 

20 400 20 

39  30 F 1b 1.00 x 10
6
 20 200 400 

40  47 F 1b 2.29 x 10
6
 100 400 200 

41  52 M 1a 1.73 x 10
6
 200 3200 400 

42  34 M 1b 1.45 x 10
6
 3200 3200 200 

43  46 M 1a 4.34 x 10
6
 200 800 400 

44  66 F 1b 3.89 x 10
5
 200 1600 200 

45  29 F 1a 1.08 x 10
5
 400 400 200 

46   45 M 3a 2.78 x 10
5
 20 200 200 

47   65 F 4f 1.46 x 10
6
 20 3200 20 

48  55 M 1a 8.81 x 10
6
 20 800 100 

49   53 M 1a 1.15 x 10
6
 100 100 100 

50  40 M 3a 2.46 x 10
6
 100 3200 200 

51   48 F 1a 1.00 x 10
5
 20 800 20 

52   37 M 1a 5.08 x 10
6
 20 400 200 

53   47 M 3a 6.8 x 10
6
 100 1600 400 

54   37 M 1a 1.84 x 10
6
 800 800 200 

55   65 F 1b 2.18 x 10
6
 100 100 800 

56   45 F 1a 3.93 x 10
6
 1600 1600 400 

57   49 M 4a 2.06 x 10
6
 800 3200 200 
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58   30 M 1b 7.21 x 10
5
 100 800 200 

59   31 M 3a 6.66 x 10
6
 100 200 200 

60   37 M 1a 6.70 x 10
6
 20 100 100 

61   49 M 1a 3.16 x 10
5
 20 800 20 

62  43 M 1 6.83 x 10
5
 20 20 20 

63 69 M 1b 4.7 x 10
5
 20 20 200 

64 48 M 1a 3.28 x 10
6
 20 3200 100 

65 46 M 3a 8.55 x 10
5
 20 800 100 

66  51 M 1b 1.07 x 10
6
 20 200 1600 

67 43 M 1b 4.27 x 10
5
 20 100 800 

68  36 M 3a 1.14 x 10
6
 20 800 20 

69  53 F 1b 3.06 x 10
5
 20 400 20 

70  24 F 3a 1.29 x 10
6
 20 20 20 

71 63 M 1b 3.01 x 10
6
 100 200 100 

72  44 M 1 1.10 x 10
5
 20 3200 200 

73  28 M 3a 1.85 x 10
6
 20 3200 20 

74  54 M 1b 1.29 x 10
5
 20 3200 20 

75  17 F 1b 2.41 x 10
5
 20 20 200 

76 40 M 3a 1.26 x 10
6
 20 20 100 

77 35 M 1b 8.89 x 10
5
 20 20 800 

78 36 F 6a 1.4 x 10
7
 20 100 400 

79 70 F 1b 1.13 x 10
5
 100 100 400 

80 62 M 1a 2.68 x 10
6
 100 200 20 

81 70 M 1b 2.85 x 10
5
 20 200 3200 

82 63 M 1b 1.95 x 10
5
 200 400 400 

83 33 M 1a 1.76 x 10
6
 100 200 800 

84 35 M 1a 2.78 x 10
6
 20 20 200 

85 60 F 1 6.39 x 10
5
 20 200 100 

86 57 M 3a 1.22 x 10
6
 200 3200 400 

87 60 M 1 3.6 x 10
6
 100 3200 20 

88 49 M 4 2.24 x 10
6
 20 1600 20 

89 37 M 4 9.35 x 10
5
 100 800 100 

90 55 M 1a 3.77 x 10
6
 20 3200 100 

91 47 M 1a 2.36 x 10
6
 20 1600 20 

92 72 M 3a 3.83 x 10
5
 20 400 20 

93 79 M 1b 2.81 x 10
5
 100 1600 100 

94 58 F 1b 6.58 x 10
5
 100 3200 200 

95 50 M 3a 6.07 x 10
5
 20 3200 100 

96 67 F 1b 4.13 x 10
5
 100 800 20 

97 49 M 3a 5.22 x 10
5
 200 400 200 

98  53 F 1b 2.31 x 10
6
 20 400 1600 
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99 37 M 1a 1.87 x 10
5
 100 3200 200 

100 54 F 4a 9.23 x 10
5
 20 200 100 

101  39 M 1a 1.76 x 10
5
 100 800 200 

102 51 F 2b 1.10 x 10
6
 100 3200 800 

 1 

B. 2 

Patient 
number 

HCVcc neutralization titer (1/dilution) 

 VL VLVC458+478 VLVA447 

11 400 1600 800 

28 20 1600 800 

33 20 400 400 

35 400 1600 1600 

36 200 1600 3200 

45 800 1600 800 

65 20 1600 1600 

66 20 3200 800 

68 20 1600 1600 

94 100 3200 800 

98 100 800 3200 

99 100 3200 1600 

 3 

 4 

5 
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SUPPLEMENTARY FIGURE LEGENDS 1 

Figure S1. Actual viral infectivity of HCVpp derived from variants VL, VC and 2 

VA shown as relative light units of luciferase reporter gene expression. (A-B) 3 

Comparative analysis of viral entry of HCVpp shown in Fig. 1. Results are expressed 4 

in relative light units (RLU) plotted in a logarithmic scale. The threshold for a 5 

detectable infection in this system is indicated by dashed lines. The detection limit for 6 

positive luciferase reporter protein expression was 3 × 103 RLU/assay, corresponding 7 

to the mean±3 SD of background levels, i.e., luciferase activity of naive noninfected 8 

cells or cells infected with pseudotypes without HCV envelopes.1, 12, 13 Background 9 

levels of the assay were determined in each experiment. Means±SD from at least 10 

four independent experiments performed in triplicate are shown. Significant 11 

differences in HCVpp entry VC, VA and VL wildtype and mutant variants are 12 

indicated by stars (*, P ≤ .05; **, P < .001). Abbreviations: Ctrl - control; HVR - 13 

hypervariable region; n.s. - not significant; V - viral variant. 14 

 15 

Figure S2. Positions 447, 458 and 478 modulate binding of envelope 16 

glycoproteins to CD81 expressed at the cell surface. Binding of native E1E2 17 

complexes expressed from patient-derived cDNAs to Huh7.5 cells with silenced 18 

CD81 expression (described in Fig. 3) was detected by flow cytometry. Results are 19 

expressed as percentage of E1E2 binding compared to shCD13-Huh7.5 control cells. 20 

MeansSD from three independent experiments performed in triplicate are shown. 21 

Significant differences in binding between variants are indicated by stars (**, P < 22 

.001).  23 

 24 
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Figure S3. Differences in viral entry are not due to impaired HCVpp production. 1 

(A) Analysis of envelope glycoprotein expression. Protein expression was analyzed 2 

by immunoblotting as described in Materials and Methods. Molecular markers (kDa) 3 

are indicated on the right. (B) Transfection efficiency during HCVpp production. 4 

Transfection effciency was analyzed for each variant and quantified by determining 5 

luciferase expression in HEK 293T producer cells expressed as normalized 6 

percentage compared to control transfected cells. (C) Envelope glycoprotein 7 

expression in HCVpp. HCVpp were purified as described previously1, 2 and subjected 8 

to immunoblot as described in panel (A). (D) Lentiviral p24 antigen expression was 9 

analyzed by ELISA and is indicated as optical density (O.D.) values at 450 nm. 10 

Abbreviations: Da - Dalton; MW - molecular weight; n.s. - not significant.  11 

 12 

Figure S4. Binding of neutralizing anti-E2 HMAb CBH-23 to patient derived-13 

envelope glycoproteins expressed on HCVpp as capture antigens in an ELISA.  14 

HCVpp expressing envelope glycoproteins of variants VL, VA, VC, VLVA447 and 15 

VLVC458+478 were used as capture antigens on GNA-coated ELISA plates. Control 16 

(Ctrl) pseudoparticles with absent HCV envelope glycoprotein expression and 17 

recombinant soluble E2 (sE2 derived from strain H77)14 served as negative and 18 

positive controls, respectively. Anti-E2 CBH-23 reactivity was detected as described 19 

in supplementary Materials and Methods and is indicated as optical density (O.D.) 20 

values at 450 nm. MeansSD from one representative experiment are shown. 21 

 22 

Figure S5. Distribution of residues at positions 447, 458 and 478 of HCV E2 23 

sequences in the European HCV databases. Distribution of residues at positions 24 

447, 458 and 478 for HCV complete E2 sequences from all subtypes (black) and 25 

from subtype 1b only (white) within the European Hepatitis C Virus databases 7, 26 
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(http://euhcvdb.ibcp.fr). F and S are the predominant residue at positions 447 and 1 

458 (F447: 98.4%, 1b: 96.2%; S458 all: 94%, 1b: 90.3%). The position 478 is 2 

variable (it belongs to HVR2) but R (all: 2.4% for, 1b: 10.8%) is more frequent than C 3 

(all: 0.2%, 1b: 0.9%).  4 

http://euhcvdb.ibcp.fr/
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