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A B S T R A C T

Background

Buruli ulcer is a severe human skin disease caused by Mycobacterium ulcerans. This disease is
primarily diagnosed in West Africa with increasing incidence. Antimycobacterial drug therapy is
relatively effective during the preulcerative stage of the disease, but surgical excision of lesions
with skin grafting is often the ultimate treatment. The mode of transmission of this
Mycobacterium species remains a matter of debate, and relevant interventions to prevent this
disease lack (i) the proper understanding of the M. ulcerans life history traits in its natural
aquatic ecosystem and (ii) immune signatures that could be correlates of protection. We
previously set up a laboratory ecosystem with predatory aquatic insects of the family
Naucoridae and laboratory mice and showed that (i) M. ulcerans-carrying aquatic insects can
transmit the mycobacterium through bites and (ii) that their salivary glands are the only tissues
hosting replicative M. ulcerans. Further investigation in natural settings revealed that 5%–10%
of these aquatic insects captured in endemic areas have M. ulcerans–loaded salivary glands. In
search of novel epidemiological features we noticed that individuals working close to aquatic
environments inhabited by insect predators were less prone to developing Buruli ulcers than
their relatives. Thus we set out to investigate whether those individuals might display any
immune signatures of exposure to M. ulcerans-free insect predator bites, and whether those
could correlate with protection.

Methods and Findings

We took a two-pronged approach in this study, first investigating whether the insect bites
are protective in a mouse model, and subsequently looking for possibly protective immune
signatures in humans. We found that, in contrast to control BALB/c mice, BALB/c mice exposed
to Naucoris aquatic insect bites or sensitized to Naucoris salivary gland homogenates (SGHs)
displayed no lesion at the site of inoculation of M. ulcerans coated with Naucoris SGH
components. Then using human serum samples collected in a Buruli ulcer–endemic area (in the
Republic of Benin, West Africa), we assayed sera collected from either ulcer-free individuals or
patients with Buruli ulcers for the titre of IgGs that bind to insect predator SGH, focusing on
those molecules otherwise shown to be retained by M. ulcerans colonies. IgG titres were lower
in the Buruli ulcer patient group than in the ulcer-free group.

Conclusions

These data will help structure future investigations in Buruli ulcer–endemic areas, providing a
rationale for research into human immune signatures of exposure to predatory aquatic insects,
with special attention to those insect saliva molecules that bind to M. ulcerans.

The Editors’ Summary of this article follows the references.
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Introduction

Buruli ulcer disease is now the third most common
mycobacterial disease in the world, behind tuberculosis and
leprosy, and its incidence in Western African countries is
among the highest in the world [1,2]. This debilitating and
progressive disease, characterized by skin lesions and some-
times localization in limb bones, is caused by Mycobacterium

ulcerans, which produces a dermonecrotic toxin, a polyketide-
derived macrolide called mycolactone [3,4]. Understanding
the life history traits of M. ulcerans within its natural aquatic
ecosystems, and the preventive and therapeutic tools for
reducing the incidence of the disease are still very limited [5–
7]. Currently, there is no vaccine available against Buruli
ulcer. Bacillus Calmette-Guérin (BCG) vaccination provides
some protection against the most severe forms of Buruli
ulcer, such as osteomyelitis [8], but does not prevent most of
the skin-ulcerative disease cases [9]. Initial, limited clinical
evidence suggests that a rifampicin-streptomycin combina-
tion may have some beneficial effects on preulcerative lesions
[10]. However, late diagnosis often results in the need for
surgery [6].

The mode of M. ulcerans transmission is still unclear, with
various mechanisms being suggested during the last few
decades. Current evidence seems clear, however, on several
points. First, with the exception of a few reports [11,12], there
is no evidence of human-to-human transmission [1,2]. No
disease has been observed either among health care workers
in close contact with Buruli ulcer patients or among children
breast-fed by mothers with Buruli ulcer lesions. Second,
Buruli ulcers were shown to be significantly more prevalent
in families using water from rivers than in families with access
to clean water (53% and 6% respectively) or among
individuals exposed to stagnant waters near the edge of
hydrotelluric environments such as that along the Nile
[13,14]. Third, during the late 1990s, the possibility of
detecting unique genomic IS2404 insertion sequences in M.

ulcerans [15,16] allowed the extent of M. ulcerans niches in
aquatic environments to be much better understood and led
to a reappraisal of the most frequent and plausible mode of
delivery of M. ulcerans to humans. The possible role of plants,
such as the sharp-edged Echinocloa pyramidalis aquatic plant,
was thus considered in Uganda [17]. In Australia, the PCR-
based detection of M. ulcerans sequences showed M. ulcerans in
the irrigation system of a golf course as the environmental
origin of Buruli ulcer in several players or individuals living
near the golf course. However, the hypothesis thatM. ulcerans-
loaded aerosols may have entered through barrier-disrupted
skin [18] was gradually discarded.

The putative role of predatory aquatic insects as M. ulcerans

vectors for humans was initially considered in 1999 [19,20]
and so far, aquatic insects from the Naucoridae and
Belostomatidae families have been reported as being able to
be colonized by M. ulcerans and to transmit it to laboratory
mice in experimental settings [21–24]. In areas endemic for
Buruli ulcers, insectivorous fish were found to display M.

ulcerans DNA by PCR [25]. We do not exclude other modes of
transmission ofM. ulcerans, but are unaware of any others that
have been formally demonstrated, at least experimentally.

Field observations have shown that humans with regular
activities near rivers inhabited by such aquatic insects are less
prone to Buruli ulcers than are their relatives who have less

exposure to this environment. Buruli ulcer epidemics in 1970
were primarily affecting displaced Rwandan refugees, with

very few cases being reported in the autochthonous pop-

ulations living in these environments [17]. More recently, in

similar, swamp-rich environments, two of us (SE and AC)
extended these observations—we found many individuals

who remained Buruli ulcer–free while being regularly bitten

by insects belonging to the genera Naucoris and Belostoma.

Many blood-feeding arthropods are hosts and vectors of

bona fide parasitic microorganisms, including viruses, and
data are accumulating that show how host and parasite

interact in stable ecosystems in which the balanced fitness of

each organism is reached. Ribeiro and colleagues investigated

the slow- and fast-feeding behaviour of blood-feeding
arthropods and compared the sialomes of the arthropods

for both parasitism and adaptation to blood-feeding behav-

iours [26]. Much data from experimental and epidemiological

studies focused on sand flies (which transmit the organisms,
Leishmania spp., that cause different forms of leishmaniasis)

[27,28], shows that the time taken by Phlebotomus papatasi to

obtain their blood from mice is faster if the mice have been

sensitized to P. papatasi saliva [29]. In addition, in mice that
displayed delayed type hypersensitivity to P. papatasi saliva, no

lesion developed at the site of coinoculation of Leishmania

major and P. papatasi saliva [30]. The data generated within the

context of these models prompted us to address the following
questions: (i) In mice, could prior exposure to repeated bites

from M. ulcerans-free aquatic insect predators confer some

protection against M. ulcerans-driven pathogenic processes ?

(ii) In endemic area of Buruli ulcers are any immune
signatures of exposure to aquatic insect bites detectable that

could distinguish Buruli ulcer-free individuals from those

displaying these skin lesions?

Methods

Aquatic Insect Predators and Salivary Gland Homogenate
Naucoris cimicoides were collected from swamps in Western

France, and Belostoma cordofana and N. flavicollis (Macrocoris)

were from the Ouémé river in the Republic of Benin, West

Africa. Insects were supplied with prey loaded withM. ulcerans

(strain 01G897), as previously described [22]. For all experi-

ments, this stably virulent strain was grown in 7H9 broth
medium (Difco) supplemented with 10% Middlebrook OADC

(oleic acid, dextrose, catalase; Becton-Dickinson, http://www.

bd.com) and 0.05% Tween 80 (Sigma, http://www.

sigmaaldrich.com) at 30 8C to the midexponential phase.
The inoculum was prepared under the same conditions as

previously described [21].

Accessory salivary glands were extracted from the insects

with 20 mM Tris-HCl (pH 7.5) containing protease inhibitors
(Complete, EDTA free; Roche Diagnostics, http://www.

roche-diagnostics.com) as previously described [21]. Tissues

were then homogenized by shaking with 106 lm of acid-

washed glass beads (Sigma) for 5 min in a TissueLyser (Retsch,
http://www.retsch.com) at 4 8C at a maximum speed. The

salivary gland homogenate (SGH) consisted of the super-

natant fraction recovered after debris were removed by

centrifugation at 8,000 g for 10 min. Protein concentration of
SGH was adjusted to 7 mg/ml using a method based on the

Bradford dye-binding procedure (Bio-Rad, http://www.
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bio-rad.com) before being stored at �80 8C, or in 100%

ammonium sulphate for the samples collected in Benin.

Experimental Model 1: Prior Exposure of Mice to M.

ulcerans-Free N. cimicoides Bites Followed by Challenge
with Bites from M. ulcerans-Harbouring N. cimicoides

Six-week-old female BALB/c mice (Charles River France,

http://www.criver.com/ico) were maintained under standard

conditions during the experiment. The mice were first

anaesthetized by intramuscular injection of ketamine (88

mg/kg) before their tails were immersed, once a week, in a

Naucoris–containing aquarium four times for 10 s each time,

to be bitten. Sera from these mice were collected at week 5

and the level of serum IgGs were monitored for binding to N.

cimicoides SGH using Western blotting. Two weeks after the

final exposure, mice were bitten by M. ulcerans–harbouring N.

cimicoides and the presence of M. ulcerans in the salivary glands

of insects was determined histologically as reported pre-

viously [22]. Fourteen weeks after this challenge, once

inflammatory signs were observed, the mice were killed and

lesion-positive tails as well as lesion-free tails were further

processed to detect M. ulcerans. A schematic outline of the

experimental setup is given in Figure 1.

Experimental Model 2: Mouse Sensitisation with N.

cimicoides SGH Followed by Subcutaneous Challenge of
SGH-Treated M. ulcerans

Six-week-old female BALB/c mice were inoculated sub-

cutaneously with 50 lg of SGH from N. cimicoides in 50 ll of

PBS with fine G-26 needles once a week for four weeks. Two

weeks after the last injection, the serum of each mouse was

collected and the presence of N. cimicoides SGH-reactive IgGs

was determined by Western blotting. At this time point, the

mice were also inoculated with either M. ulcerans alone or M.

ulcerans incubated with SGH. Briefly, M. ulcerans suspensions

(106 bacteria in 1 ml of PBS) were incubated with 1 mg of

SGH, or with PBS alone as control, for 2 h at 28 8C. The

bacteria were then washed three times in PBS with 0.05%

Tween 80. The bacteria were then diluted in PBS to final

concentrations of 102 and 103 bacteria/ml. One of these M.

ulcerans suspensions (100 ll) was inoculated intradermally in

the tail of a mouse. Three months later, all mice were killed

and the number of colony-forming units (CFU) present in

their tails was determined per gram of tissue, as previously

described [22,31].

Western Blot Analysis
A sample of aquatic insect SGH (60 lg) was run in an SDS-

polyacrylamide gel (4%–12%) (Bio-Rad), and the separated

bands were transferred onto a 0.45 lm nitrocellulose

membrane (Amersham, http://www5.amershambiosciences.

com). After blocking with 5% skimmed milk in PBS, the

membrane was incubated with serum from mice or humans

diluted 1:100 in PBS containing 0.05% Tween 80 for 1 h 30

min at 37 8C. After two washes with PBS, sheep anti-mouse

IgG (heavy and light chains) peroxidase-conjugated anti-

bodies (Interchim, http://www.interchim.com) at 0.5 lg/ml or

anti-human IgG (c chain) peroxidase-conjugated antibodies

(Sigma) at 1:2,000, and 0.5 lg/ml DAB (Interchim) was used,

respectively, for detecting the mouse or human IgGs bound to

the different bands.

Recovery of SGH Molecules Bound to M. ulcerans
M. ulcerans (107 bacteria) were incubated with 1 mg of

accessory salivary gland extract for 2 h at 28 8C with gentle

agitation. The bacteria were then extensively washed and

centrifuged at 5,000 g in PBS with 0.05% Tween 80. The

resulting pellet was resuspended in 200 ml of 20 mM Tris-HCl
(pH 7.5) containing protease inhibitors (Complete, EDTA-

free, Roche Diagnostics). After heating at 80 8C for 1 min, the

bacteria were centrifuged at 17,000 g for 15 min at 4 8C. The

supernatant was loaded on Bis-Tris polyacrylamide gels (4%–

12%) (Bio-Rad) and transferred to nitrocellulose membranes.
The blots were washed and incubated with 5% skimmed milk

in PBS at room temperature for 1 h and then incubated with

human serum samples diluted at 1:100 in PBS containing

0.05% Tween 80. Human IgGs were detected with anti-human
IgG (c chain) peroxidase-conjugated antibodies (Sigma) at

1:2,000, and 0.5 lg/ ml DAB (Interchim).

Detection of Aquatic Insect Saliva-Binding
Immunoglobulins in Human Sera
The participants in two cohorts (‘‘exposed’’ and ‘‘patients,’’

described below) who had given their written consent were

enrolled as volunteers in this study, the protocols of which

were approved by the Ministry of Health in Benin. All

volunteers lived in villages near the Ouémé river, where
Buruli ulcer disease is highly prevalent. Serum was prepared

from 8 ml of blood from each participant and tested for

potential HCV and HIV exposure using Access HIV-1/2

automated immunoassay (MDA/98/58) and Sanofi Diagnostics

Pasteur Access anti-HCV automated immunoassay (plus
update on five other anti-HCV assays—MDA/96/26).

The ‘‘exposed’’ group consisted of 55 participants (21

women and 34 men, aged 5–72 years). Typically, their

professional activities were fishing and farming, and river

water was used for domestic purposes. We assumed that this

group had an ongoing exposure to predatory aquatic insects
known to inhabit this swampy area. The ‘‘patients’’ group

consisted of 30 Buruli ulcer patients recruited from the

Centre de Diagnostic et de Traitement de l’Ulcère de Buruli

in Pobè, Benin (11 women and 19 men, aged 3–74 years).

Diagnoses of Buruli ulcer disease were made by Ziehl-Neelsen
staining of material taken from swabs of the lesions or

directly from the lesions and confirmed by PCR for M.

ulcerans-specific IS2404 DNA [16]. BCG vaccination coverage

was 60% (33 of 55) for the exposed group and 63.3% (19 of
30) for the patient group.

ELISA
Proteins (50 lg) from the insects SGH, diluted in 100 ll of

PBS containing 0.05% Tween 80, were coated onto 96-well
Nunc Maxisorb plates by incubation overnight at 4 8C. The

coated plates were then incubated with PBS containing 5%

skimmed milk at room temperature for 2 h. After three

washes in PBS containing 0.05% Tween 80, the samples were

incubated for 1 h at 37 8C with human serum diluted to 1:100
in PBS with 0.05% Tween 80. After three further washes,

plate-bound human immunoglobulins were detected using

peroxidase-conjugated goat anti-human IgG (c chain) anti-

bodies (Sigma) or with rat anti-human IgM (l chain)

antibodies (Interchim), and OPD (Dako, http://www.dako.
com). The diluted sera were tested in triplicate and the
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average absorbance measured at 650 nm was expressed in
optical density units.

Statistical Analyses
The v

2 test was used to compare sample size distributions
(proportions). One-way analysis of variance was used to
compare mean values between groups followed by Newman-
Keuls multiple comparison test to detect significant mean
differences between pairs of groups. A p-value below 0.05 was
considered statistically significant.

Results

M. ulcerans–Free N. cimicoides Bites Prevent the
Development of Lesions Caused by M. ulcerans

We previously established a mouse model in which we
showed that M. ulcerans-carrying aquatic bugs can transmit a
few bacilli into the tails of mice exposed to the bugs for ten
seconds [22]; two and four months after being bitten by M.

ulcerans-carrying N. cimicoides, more than 80% of the mice had
typical ulcerative lesions on their tails that contained M.

ulcerans bacilli. In the current study, using the same mouse
model we investigated the effect of prior exposure by first
exposing the tails of mice to bites of M. ulcerans-free N.

cimicoides and later exposing them to bites from M. ulcerans-
carrying insects (Figure 1). Of the BALB/c mice previously
bitten by M. ulcerans-free N. cimicoides, after being exposed to
the mycobacterium nine out of ten did not display any lesions
up to six months later when the experiment was ended. By
contrast, eight out of ten of the control BALB/c mice bitten
only by the M. ulcerans-carrying N. cimicoides developed typical
lesions on their tails. This result suggests that prior exposure
to insect bites prevented the mice from developing ulcerative
lesions at sites of M. ulcerans-carrying insect bites.

The sera of mice exposed or not to M. ulcerans-free insect
bites were screened for the presence of IgGs that bind
proteins present in the aquatic insect SGH. Many proteins
from the SGH bound IgGs present in the sera of mice
exposed to insect bites, whereas no binding was observed with

sera from mice not exposed to insect bites (Figure 2A, lane 2

versus lane 4). Three SGH proteins (22, 48, and 72 kDa) were

reproducibly recovered from M. ulcerans once the latter were

coincubated with SGH (Figure 2B, lane 2). Among these, two

proteins (22 and 48 kDa) did bind IgGs present in the serum

of mice exposed to insect bites, indicating that these insect

molecules were delivered to mice during the usual biting

process (Figure 2B, lane 4). Altogether, these results show that

the sera of mice bitten by N. cimicoides contain IgGs that bind

SGH-derived molecules, two of which are retained by M.

ulcerans clusters.

We next investigated whether (i) BALB/c mice immunized

with N. cimicoides SGH would not display any lesion at the site

of inoculation of M. ulcerans preincubated with SGH, and (ii)

any immune signature such as antibodies against the SGH

molecules otherwise known to bind to M. ulcerans could be

easily detected in people at risk.

N. cimicoides SGH Prevents Skin Lesions and Results in a
Lower Bacterial Load upon Infection with M. ulcerans

Preincubated with SGH
Mice were first immunised with crude N. cimicoides SGH

once a week for four weeks and then their tails were

inoculated with M. ulcerans. As M. ulcerans multiply in the

salivary glands of N. cimicoides [22], we prepared two different

inocula: M. ulcerans either incubated or not with N. cimicoides

SGH and then carefully washed. Twenty weeks after inocu-

lation, control BALB/c mice (i.e., those originally given PBS

instead of SGH) displayed lesions at the inoculation site. The

development of lesions correlated with the number of M.

ulcerans CFU present in the challenge inoculum but were

independent of whether the M. ulcerans challenge inoculum

had been previously incubated with SGH or not (Table 1,

groups A and B). This clearly showed that the SGH proteins

retained by M. ulcerans did not affect the course of the

infectious and pathogenic processes in mice that had never

been exposed to SGH. It further suggested that the

mycobacteria delivered by M. ulcerans-carrying insects are

Figure 1. Experimental Model 1

Effect of prior exposure or not to M. ulcerans-free N. cimicoides on the development of M. ulcerans lesions after delivery of M. ulcerans from M. ulcerans-
carrying N. cimicoides.
doi:10.1371/journal.pmed.0040064.g001
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coated with proteins from the salivary glands, which is where
these bacteria multiply.

Unlike the immediate transient inflammatory sign dis-
played by all mice upon being bitten by the insects, we saw no
signs of immediate or delayed inflammation after mice were
sensitized with SGH (e.g., itch, swelling, flare, or wheal).
Nevertheless, serum collected from immunized mice after the
last immunization (Figure 2A, lane 3)—that is, when the mice
were inoculated with 10 or 100 CFU ofM. ulcerans—contained
IgGs that bound SGH-derived proteins. In contrast to the
control mice, nine out of the ten mice immunized with SGH
and then inoculated with M. ulcerans preincubated with SGH
(Table 1, group D) did not develop lesions up to three months
later. Also, in this group, the number of M. ulcerans CFU was
about two orders of magnitude lower than in the three other
groups (Table 1, group D versus groups A, B, and C). By
contrast, mice that were immunized with SGH and then
inoculated with M. ulcerans previously incubated in PBS

(Table 1, group C) displayed tail lesions, suggesting that the
SGH components retained by M. ulcerans do not share any
common epitopes with M. ulcerans molecules. Indeed, no
mouse immunoglobulin bound to any component of the
insect SGH-free M. ulcerans extracts size-fractionated under

the same conditions as the SGH, irrespective of the mouse
serum samples tested, ruling out possible cross-reactivity with
mycobacterial components (unpublished data). Altogether,
these results suggest that the presence in mouse sera of IgGs
that bind aquatic insect SGH-derived molecules otherwise
retained by M. ulcerans clusters might be a relevant immune
biomarker of their protective status. We thus investigated the
potential relevance of this immune signature as a biomarker

of the protective status in humans by comparing the SGH-
reactive antibody profile in the sera of individuals with and
without Buruli ulcers living in areas endemic for Buruli
ulcers. Particular attention was paid to the SGH-derived
proteins known to be retained by M. ulcerans clusters.

Figure 2. Western Blotting to Detect the Presence in Mouse Sera of IgGs Binding to N. cimicoides SGH

(A) Lane 1: Coomassie staining of N. cimicoides SGH. Lane 2: Blotting of SGH with serum from mice bitten by N. cimicoides. Lane 3: Blotting of SGH with
serum from mice immunized with SGH. Lane 4: Blotting of SGH with preimmune mouse serum.
(B) Lane 1: Coomassie staining of N. cimicoides SGH. Lane 2: Coomassie staining of SGH-derived molecules bound to M. ulcerans cluster: arrows 1 to 3
correspond to 72, 48, and 22 kDa molecules, respectively. Lane 3: Coomassie staining of whole M. ulcerans bacteria never exposed to SGH. Lane 4:
Blotting of SGH-derived molecules bound to M. ulcerans with serum of mice bitten by M. ulcerans-free N. cimicoides.
MW, molecular weight.
doi:10.1371/journal.pmed.0040064.g002

Table 1. Experimental Model 2: Effect of Prior Immunization with N. cimicoı̈des SGH on the Development of Lesions in the Tails of
BALB/c Mice and the M. ulcerans Load after Subcutaneous Inoculation of M. ulcerans

Treatment Measure Group A Group B Group C Group D

Immunization with SGH — No No Yes Yes

Inoculation of M. ulcerans previously incubated with or without SGH — Without SGH With SGH Without SGH With SGH

Number of inoculated bacilli: 10 Lesionsa 5/5 5/5 5/5 1/5

Log CFUb 7.3 (0.13) 7.6 (0.06) 7.6 (0.13) 5.6 (0.13)

Number of inoculated bacilli: 100 Lesionsa 5/5 5/5 5/5 0/5

Log CFUb 8.5 (0.24) 8.4 (0.26) 8.2 (0.26) 6.1 (0.6)

Three months after M. ulcerans inoculation, presence of lesions and bacillus counts (log CFU)/gram of tissue were assessed.
aNumber of lesions/number in group.
bMean values of log CFU (standard deviation) are reported.
doi:10.1371/journal.pmed.0040064.t001
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In Areas Endemic for Buruli Ulcers, the Sera of Healthy
Individuals Contain Higher Titres of IgGs that Bind SGH
Proteins than Do the Sera of Patients with Buruli Ulcers

All sera from individuals living in areas of Benin endemic
for Buruli ulcers were first screened by Western blotting for
reactive antibodies against SGH prepared from the aquatic
insects present in the endemic areas, namely N. flavicollis

(Figure 3). Many of the SGH constituents, such as 22, 40, 48,
and 54 kDa proteins, bound IgGs present in the sera of
exposed group members. Surprisingly, none of the SGH
proteins bound IgGs present in 27 of the 30 sera collected
from the patient group. The IgGs in the sera from the
exposed group bound five of the SGH-derived molecular
species (22, 35, 40, 48, and 66 kDa) shown to coat M. ulcerans

(Figure 4). IgGs from the sera of participants from both
groups recognised four bands (32, 56, 85, and 172 kDa) from
heat-killed M. ulcerans bacteria, which are likely due to
common epitopes shared with other environmental myco-
bacteria (Figure 4). Altogether, this qualitative analysis
showed the presence of SGH-binding IgGs primarily in the
sera of exposed group members.

We then carried out a quantitative analysis using ELISA
(Figure 5). We detected SGH-reactive IgG antibodies in 87.2%
of the exposed group (48/55) and 60% of the patient group
(19/30). This difference was statistically significant (v2¼6.7, df
¼ 1; p ¼ 0.001). The relative mean titre of the SGH-binding
IgG antibodies was significantly higher in the exposed group
than in the patient group (p ¼ 0.05 for N. flavicollis and p ¼

0.001 for B. cordofana [Newman-Keuls multiple comparison
test]), suggesting a correlation between relative mean IgG
antibody titre and the absence or presence of Buruli ulcers.
Thus, in the sera of humans living in areas endemic for Buruli
ulcers, the presence and titre value of antibodies that bind
molecules derived from aquatic insect salivary glands may be

potentially relevant immune biomarkers of a protective status
in the absence of any preulcerative or ulcerative lesions
containing M. ulcerans.

Discussion

Using a previously developed mouse model [21,22], in this
study we demonstrated (i) that preulcerative and ulcerative
stages of Buruli ulcer at sites of inoculation of M. ulcerans are
prevented if the mice have been bitten by M. ulcerans-free
insects before being exposed to insects harbouring M.

ulcerans, and (ii) that the presence of insect saliva–reactive
antibodies in the mouse serum is an immune signature that
correlates with this protective status. However, this protective
status does not prevent M. ulcerans from establishing
themselves and expanding, although the size of the bacterial
population is one to two orders of magnitude lower than in
control mice not previously exposed to insect bites and
displaying a lesion at the site of inoculation.
In addition, we wished to determine whether insect saliva-

reactive IgGs could be used as an immune signature that
correlates with protection from disease. Two cohorts of
human study participants in the Buruli ulcer–endemic area of
Benin—those without ulcers (but assumed exposed to insect
bites) and those with ulcers (actual Buruli ulcer patients)—
were screened for the titre of IgGs that bind to insect
predator SGH, focusing on those molecules shown to be
retained by M. ulcerans clusters. In this investigation we
established that, when present, IgG titres were lower in the
Buruli ulcer patient group than in the Buruli ulcer-free
individual group.

Figure 3. Western Blotting with Human Serum Samples Grouped

According to Four Distinct N. flavicollis SGH Reactive-Antibody Profiles

SGH was size-fractionated and probed with human sera as follows. Lane 1:
Typical profile with serumof 49/55 (89%) exposed group participants only.
Lane 2: Typical profile with serum obtained for two other members of the
exposed group and one patient. Arrows correspond to protein bands at
22, 40, 48, and 54 kDa. Lane 3: Typical profile with sera obtained from two
participants in each group. The arrow indicates a protein band at 40 kDa.
Lane 4: No immune reactivity to SGHwith serum from twomembers of the
exposed group and from 27/30 (90%) of the patient group.
MW, molecular weight.
doi:10.1371/journal.pmed.0040064.g003

Figure 4. Western Blotting with Human Serum Samples as Probes for

SGH Molecules that Bound to M. ulcerans

N. flavicollis SGH molecules bound to M. ulcerans were size-fractionated
and probed with human serum samples. Lane 1: M. ulcerans not
preincubated with N. flavicollis SGH probed with serum from the patient
group. Lane 2: M. ulcerans not preincubated with N. flavicollis SGH
probed with serum from the exposed group. Lane 3: N. flavicollis SGH
molecules that bind to M. ulcerans probed with serum from the patient
group. Lane 4: N. flavicollis SGH molecules that bind to M. ulcerans
probed with serum from the exposed group. Arrows indicate four M.
ulcerans antigens. Arrow heads indicate five M. ulcerans-binding insect
protein bands at 22, 35, 40, 48, and 66 kDa.
MW, molecular weight.
doi:10.1371/journal.pmed.0040064.g004
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Buruli ulcer is the most common mycobacterial disease in

immunocompetent humans after tuberculosis and leprosy.

Although BCG can prevent M. ulcerans–driven lesion develop-

ment in a mouse model [32], no evidence of a protective

effect of routine BCG vaccination against Buruli ulcer was

detected in a case-control study in Benin [9]. Prior sensitiza-

tion to environmental Mycobacterium species may partly

explain the failure of BCG in African countries, as observed

for tuberculosis [33]. A classicalMycobacterium-based vaccine is

thus unlikely to induce the proper immune effectors/

regulators that would prevent bacterial colonisation and the

skin-damaging processes in the M. ulcerans-containing site.

This problem led us to investigate vaccine strategies that have

already proved promising against microorganisms trans-

mitted by arthropod hosts and vectors [34–36]. Furthermore,

it has been shown that some molecules present in the saliva of

the blood-feeding arthropods that are hosts and vectors of

certain parasites are immunogenic and may help prevent

infestation by the parasites causing the pathogenesis. For

example, a protective effect was reported in mice bitten by L.

major-free blood-feeding P. papatasi sand flies [37] or in mice

immunized with P. papatasi saliva molecules as either SGH or

saliva-encoding DNA sequences [28,30].

In our mouse model [22] we established that nine out of ten

BALB/c mice exposed to M. ulcerans-free N. cimicoides bites or

immunised with N. cimicoides SGH did not develop tail lesions

at the sites of M. ulcerans delivery either by the bite of M.

ulcerans-loaded N. cimicoides or by a syringe containing in

vitro–grownM. ulcerans colonies that had been incubated with

SGH. Unlike in the Leishmania model, in which the delivery of

parasites by L. major-carrying sand flies to naive mice

considerably enhanced the severity of the lesion [37,38], we

did not observe any marked difference between mice that

received either M. ulcerans with SGH by syringe or bites of

insects whose salivary glands contained M. ulcerans. Our data

show that in naive mice, both inoculation methods initiate

similar pathogenic processes to those seen for SGH-treated

or saliva-free M. ulcerans. Similar protection was obtained

whether a low- or a medium-dose inoculum was given.

However, despite the absence of any lesion, a high myco-

bacterial load was recovered from mouse tails previously

exposed to SGH. This suggests that when M. ulcerans is coated

with SGH or delivered from the Naucoris salivary gland, mice

that have an immune response against SGH or the saliva

molecules covering the bacteria present a skin microenviron-

ment that may delay the production of tissue-damaging

mycolactone toxin or other mycobacterial molecules. This

would allow the tissue-protective immune effectors to be

properly balanced with bacteria-targeted immune effectors.

InM. ulcerans–positive but lesion-free mice givenM. ulcerans

treated with SGH-derived molecules, the presence of IgGs

that bind insect molecules—and more specifically the SGH

molecules coating M. ulcerans—may be an interesting bio-

marker to focus on when investigating the presence of

protective effectors/regulators that remodel the early niche of

M. ulcerans. It is indeed reasonable to investigate whether both

type 1 T and regulatory T lymphocytes might be activated by

saliva-derived peptides loading the major histocompatibility

complex molecules displayed by dendritic leucocytes. Indeed,

in the experimental L. major/mouse model, the protection

conferred by SGH is coupled to activation of saliva-reactive

CD4þ cells, a positive skin delayed-type hypersensitivity to

SGH, and CD4-dependent interferon-c production [37].

Protection studies using the purified protein antigenic

molecules, and adoptive transfer experiments of saliva-

reactive antibodies and/or saliva-reactive CD4þ T lympho-

Figure 5. Human IgG Binding to Resident Aquatic Insect SGH by ELISA Assay

Mean values are indicated by arrows and are accompanied by corresponding standard deviations (in parentheses). Results from ELISAs are shown for
SGH from N. flavicollis (A) and from B. cordofana (B). Comparisons by one-way analysis of variance followed by the Newman-Keuls multiple comparison
test show that the relative mean titre of specific IgG in exposed individuals is significantly higher than in patients.
doi:10.1371/journal.pmed.0040064.g005
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cytes will determine whether this is the case in our
experimental system.

Although the seroepidemiological data collected from
humans living in Benin in an area endemic for Buruli ulcers
are only preliminary, they require some further comments.
We detected a higher relative mean antibody titre to SGH
from local aquatic insects in the sera from Buruli ulcer-free
healthy participants (‘‘exposed’’ group) than in the sera of
Buruli ulcer patients (‘‘patients’’ group) from the same
endemic areas. The healthy individuals regularly work and
live around the aquatic areas and probably are regularly
exposed to aquatic insect bites. This situation is similar to
that described for many residents living in regions endemic
for Lyme disease. Those experiencing a persistent tick-
associated itch were less likely to develop Lyme disease than
those who did not experience this reaction [35]. Many
different immune signatures to tick components, including
salivary gland antigenic molecules, may prevent Borrelia

disease or other diseases driven by parasitic microorganisms
transmitted by ticks [36]. A similar situation has been
extensively documented in an area endemic for leishmaniasis,
in which the occurrence of Leishmania-caused lesions de-
creased with age and level of antibodies against salivary gland
molecules in the absence of any parasite-targeted serological
signature [39].

Our results suggest potentially important immune markers
for epidemiological studies in regions in which Buruli ulcer is
showing features of an emerging disease. Comprehensive
studies that integrate the monitoring of aquatic insect saliva–
reactive antibodies and T lymphocytes would allow patients
who do not have high titres of antibodies to SGH to benefit
from regular tests for early signs of the disease that can be
cured with appropriate antibiotics. Such studies have been
recently set up in other endemic areas or in emerging areas
such as Cameroon.

As well as being the first report, to our knowledge, of a
robust, experimental mouse model that closely mimics the
processes driven by M. ulcerans in humans in endemic areas,
our study also shows, we believe for the first time, that
effective protection against M. ulcerans-caused pathogenic
processes is possible but that this will require immunogens
derived from insect host saliva rather than from pathogenic
microorganisms. However, investigations into the mecha-
nisms that prevent Buruli ulcer formation are still needed.
These studies should address whether the aquatic insect
SGH–reactive antibodies play a role in protection or whether
they are only relevant biomarkers of M. ulcerans delivery by
one of their hosts and vectors. Our results are the first step to
determine the immune mechanisms that prevent M. ulcerans

development into the nodular and ulcerative stages—the
Buruli ulcers—in humans. They will help structure future
investigations in Buruli ulcer endemic area, providing a
rationale for considering at least two novel parameters: (i) the
presence of immune signatures of exposure to insect
predators, and (ii) the insect saliva molecules that bind to
M. ulcerans.

Supporting Information

Alternative Language Abstract S1. Translation of the Abstract into
French by Laurent Marsollier and Colleagues

Found at doi:10.1371/journal.pmed.0040064.sd001 (21 KB DOC).
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Editors’ Summary

Background. Buruli ulcer disease is a severe skin infection caused by
Mycobacterium ulcerans, a bacterium related to those that cause
tuberculosis and leprosy. This poorly understood disease affects people
living near slow-flowing or standing water in poor rural communities in
tropical and subtropical countries. How people become infected with M.
ulcerans is unclear but one possibility is that infected aquatic insects
transmit it through their bites. The first sign of infection is usually a small
painless swelling in the skin. Bacteria inside these swellings produce a
toxin that damages nearby soft tissues until eventually the skin sloughs
off to leave a large open sore. This usually heals but the resultant scar
can limit limb movement. Consequently, 25% of people affected by
Buruli ulcers—most of whom are children—are permanently disabled. If
the disease is caught early, powerful antibiotics can prevent ulcer
formation. But most patients do not seek help until the later stages when
the only treatment is to cut out the infection and do a skin graft, a costly
and lengthy treatment.

Why Was This Study Done? There is currently no effective way to
prevent Buruli ulcers. To develop an effective preventative strategy,
researchers need to determine exactly how the infection is transmitted
to people and what makes some individuals resistant to infection.
Previous studies have indicated that 5%–10% of some aquatic insect
predators that live in areas where Buruli ulcers occur have M. ulcerans in
their salivary glands and that aquatic insects carrying M. ulcerans can
transmit it to mice through bites. Furthermore, people working close to
water inhabited by insect predators are less likely to develop Buruli
ulcers than their relatives who do not work near water. In this study,
therefore, the researchers investigated whether exposure to noninfected
insect saliva provides some protection against M. ulcerans infection.

What Did the Researchers Do and Find? The researchers let uninfected
aquatic insects bite ten mice several times before exposing these mice
and ten unbitten mice to M. ulcerans-infected water bugs. Only one pre-
bitten mouse developed an M. ulcerans-containing lesion compared with
eight control mice. Next, the researchers injected mice with insect
salivary gland extracts before challenging them with ‘‘naked’’ M. ulcerans
or bacteria coated with salivary gland extract. Most uninjected mice
developed lesions when challenged with coated or naked M. ulcerans, as
did experimental mice challenged with naked M. ulcerans. However,
most experimental mice challenged with coated M. ulcerans remained
lesion-free. In both experiments, the blood of the pre-bitten and extract-
treated mice (but not the control mice) contained antibodies (immune

system proteins that provide protection against infections and foreign
proteins) to proteins in insect salivary gland extracts that stick to M.
ulcerans. Finally, the researchers measured the blood concentration (the
titer) of antibodies that bind insect salivary gland proteins in patients
with Buruli ulcer and in healthy people living in the same area. People
with high titers of these antibodies, they report, were less likely to have
Buruli ulcers than those with low titers.

What Do These Findings Mean? These findings suggest that exposure
to aquatic insect saliva may provide some protection against M. ulcerans
lesion development. However, the current results have several limi-
tations. In particular they will only be relevant to human disease if M.
ulcerans is normally transmitted by insect bites, and this has not been
proven yet. Also, because the human study did not measure the overall
immune status of the study participants, the people with Buruli ulcers
may have had a general immune deficit rather than simply lacking
antibodies against insect salivary gland proteins. However, if the human
findings can be repeated and expanded, they suggest that low antibody
titers to salivary gland proteins might identify those people who are
most susceptible to M ulcerans infections and who would thus benefit
most from regular tests for early signs of the disease. Finally, further work
on the immune mechanism by which exposure to insect salivary gland
proteins protects against M. ulcerans infections may help in the
development of vaccines against Buruli ulcer disease.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/doi:10.1371/journal.pmed.
0040064.

� A related PLoS Medicine Perspective article by Manuel T. Silva and
others discusses this study and others on insect-borne parasitic
diseases

� World Health Organization has information on Buruli ulcer disease
� US Centers for Disease Control and Prevention has information on
Buruli ulcer

� The US Armed Forces Institute of Pathology Web site contains pages
on Buruli ulcer

� Leprosy Relief Emmaus Switzerland offers information on Buruli ulcer
� Wikipedia contains pages on Buruli ulcer (note: Wikipedia is an online
encyclopedia that anyone can edit)

� PLoS Medicine has a detailed review article on Buruli ulcer by Paul D. R.
Johnson and colleagues
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