

Novel and recurrent non-truncating mutations of the MITF basic domain: genotypic and phenotypic variations in Waardenburg and Tietz syndromes.

Sandy Léger, Xavier Balguerie, Alice Goldenberg, Valérie Drouin-Garraud, Annick Cabot, Isabelle Amstutz-Montadert, Paul Young, Pascal Joly, Virginie Bodereau, Muriel Holder-Espinasse, et al.

► To cite this version:

Sandy Léger, Xavier Balguerie, Alice Goldenberg, Valérie Drouin-Garraud, Annick Cabot, et al.. Novel and recurrent non-truncating mutations of the MITF basic domain: genotypic and phenotypic variations in Waardenburg and Tietz syndromes.: Non-truncating mutations of the MITF basic domain. European Journal of Human Genetics, 2012, 20 (5), pp.584-7. 10.1038/ejhg.2011.234 . inserm-00696260

HAL Id: inserm-00696260 https://inserm.hal.science/inserm-00696260

Submitted on 1 Jul2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Novel and recurrent non-truncating mutations of the MITF basic									
2	domain: genotypic and phenotypic variations in Waardenburg and									
3	Tietz syndromes									
4										
5	Sandy Léger ¹ , Xavier Balguerie ¹ , Alice Goldenberg ² , Valérie Drouin-Garraud ² , Annick									
6	Cabot ³ , Isabelle Amstutz-Montadert ⁴ , Paul Young ⁵ , Pascal Joly ¹ , Virginie Bodereau ⁶ ,									
7	Muriel Holder-Espinasse ⁷ , Robyn V Jamieson ⁸ , Amanda Krause ⁹ , Hongsheng Chen ¹⁰ ,									
8	Clarisse Baumann ¹¹ , Luis Nunes ^{12,13} , Hélène Dollfus ¹⁴ , Michel Goossens ^{6,15,16} ,									
9	Véronique Pingault ^{6,15,16}									
10										
11	¹ Clinique Dermatologique, INSERM U905, Rouen University Hospital, Rouen, France									
12	² Service de Génétique Clinique, Hôpital Charles Nicolle, 1 rue de Germont, CHU, F-									
13	76031, Rouen, France									
14	³ Service d'Ophtalmologie, Hôpital Charles Nicolle, 1 rue de Germont, CHU, F-76031,									
15	Rouen, France									
16	⁴ Service d'Oto-Rhino-Laryngologie, Hôpital Charles Nicolle, CHU, 1 rue de Germont,									
17	F-76031, Rouen, France									
18	⁵ Cabinet privé de dermatologie, 11 rue Jeanne d'Arc, F-76000, Rouen, France									
19	⁶ AP-HP, Hopital H. Mondor – A. Chenevier, Service de Biochimie et Genetique,									
20	Creteil, 94000, France									
21	⁷ Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHRU, F 59037, Lille,									
22	France									

1	⁸ Eye Genetics Research Group, The Children's Hospital at Westmead, Children's										
2	Medical Research Institute and Save Sight Institute & University of Sydney, Sydney,										
3	NSW, Australia										
4	⁹ Division of Human Genetics, National Health Laboratory Service and School of										
5	Pathology, University of the Witwatersrand, Johannesburg, South Africa										
6	¹⁰ Department of Otolaryngology, Xiangya Hospital, Central South University,										
7	Changsha, Hunan Province, PR China										
8	¹¹ Service de Génétique Clinique, Hôpital Robert Debré, AP-HP, 48 Bld Serrurier, 75019										
9	Paris, France										
10	¹² Serviço de Genética Médica, Hospital de Dona Estefania, R. Jacinta Marto, 1169-045										
11	Lisboa, Portugal										
12	¹³ Faculdade de Ciências Médicas, Lisboa, Portugal										
13	¹⁴ Service de Génétique Médicale, Hôpital de Hautepierre, Avenue Molière, 67000										
14	Strasbourg, France										
15	¹⁵ INSERM, U955, Equipe 11, Créteil, 94000, France										
16	¹⁶ Université Paris Est, Faculté de Médecine, Créteil, 94000, France										
17											
18	Correspondance: Dr Veronique Pingault, Hopital Henri Mondor, Laboratoire de										
19	Biochimie et Génétique, 94010 Créteil Cedex, France. Tel: +33 1 49 81 28 49; Fax: +33										
20	1 49 81 22 19; E-mail: veronique.pingault@inserm.fr										
21											
22	Keywords: Waardenburg syndrome, Tietz syndrome, MITF, Freckles, Pigmentation										
23											
24	Running title: Non-truncating mutations of the MITF basic domain										
25											

ABSTRACT

2 The microphthalmia-associated transcription factor (MITF) is a basic helix-loop-3 helix leucine zipper transcription factor which regulates melanocyte development and 4 the biosynthetic melanin pathway. A notable relationship has been described between 5 non-truncating mutations of its basic domain and Tietz syndrome, which is 6 characterized by albinoid-like hypopigmentation of the skin and hair, rather than the 7 patchy depigmentation seen in Waardenburg syndrome, and severe hearing loss. Twelve 8 patients with new or recurrent non-truncating mutations of the MITF basic domain from 9 six families were enrolled in this study. We observed a wide range of phenotypes and 10 some unexpected features. The patients all had blue irides and pigmentation 11 abnormalities that ranged from diffuse hypopigmentation to Waardenburg-like patches. 12 In addition, they showed congenital complete hearing loss, diffuse hypopigmentation of 13 the skin, freckling and ocular abnormalities, more frequently than patients with MITF 14 mutations outside the basic domain. In conclusion, the non-truncating mutations of the 15 basic domain do not always lead to Tietz syndrome but rather to a large range of 16 phenotypes. Sun-exposed freckles are interestingly observed more frequently in Asian 17 populations. This variability argues for the possible interaction with modifier loci. 18

19

1 **INTRODUCTION**

2	The microphthalmia-associated transcription factor (MITF) is a basic helix-loop-
3	helix (bHLH) leucine zipper transcription factor which regulates melanocyte
4	development and the biosynthetic melanin pathway. Its gene has several alternative
5	promoters and first exons that produce differentially expressed isoforms. ¹ Mutations in
6	the M (melanocytic) isoform of MITF are known to lead to Waardenburg syndrome type
7	2A (WS2A, MIM 193510), an autosomal dominant disorder characterized by variable
8	degrees of sensorineural hearing loss and pigmentation disorders of the skin, skin
9	appendages and irides. ²⁻³ Rarely, <i>MITF</i> mutations lead to Tietz syndrome (MIM
10	103500), an allelic condition characterized by a more severe phenotype of hearing loss
11	and generalized, albinoid-like hypopigmentation of the skin and hair from birth, rather
12	than the patchy depigmentation seen in Waardenburg syndrome (WS). ³⁻⁴
13	A notable relationship between non-truncating mutations of the basic domain and
14	Tietz syndrome has been described. ^{3, 5-10} The basic domain of bHLH transcription
15	factors is the DNA binding domain, necessary to recognize and bind their transcriptional
16	targets. In contrast to previous reports, we identify new families with such MITF
17	mutations associated with phenotypic features ranging from from Tietz to Waardenburg
18	syndrome, and the literature was reviewed to assess the genotype-phenotype correlation.
19	

20

PATIENTS AND METHODS

Sequencing of the *MITF-M* isoform exons was modified from Tassabehji et al.¹¹ 21 The absence of total or partial gene deletion was assessed by QMF-PCR (Quantitative 22 Multiplex Fluorescent PCR).¹² Mutations were named according to the international 23 nomenclature based on Genbank NM_000248.2 for MITF-M (isoform 4) cDNA. More 24 25 details are given in the supplementary data.

1	Twelve patients from six families, with new or recurrent non-truncating mutations									
2	of the MITF basic domain, were enrolled in this study. None of the mutations was									
3	described as a polymorphism in the relevant databases									
4	(http://www.ncbi.nlm.nih.gov/snp, http://browser.1000genomes.org). When necessary to									
5	confirm the de novo occurrence, six microsatellites were analysed using the linkage									
6	mapping set (Applied Biosystems, Foster City, CA). Mutations were analysed using									
7	several software packages including Human splicing finder v2.4 ¹⁵									
8	(http://www.umd.be/HSF/HSF.html) and Polyphen-2									
9	(http://genetics.bwh.harvard.edu/pph2/) in order to evaluate their effect. The									
10	conformation files for Srebp1-A, Usf, Myc, Mad and Max were imported from the									
11	protein data bank (accession codes 1AM9, 1AN4, 1HLO, 1NKP) and represented using									
12	the Swiss-Pdb Viewer software. ¹⁶									
13										
14	RESULTS									
15	Clinical Data									

16 Family 1: six members of a French family of Vietnamese and Martinique origins 17 were affected in three generations (Figure 1a). The proband (III.1) was a 9-year-old boy 18 who was referred for premature greying affecting hair, eyebrows and eyelashes. In 19 contrast with the familial dark skin pigmentation, he had generalized hypopigmentation 20 of the skin as well as patchy depigmented macules, freckles in sun-exposed regions, 21 lentigines and cafe-au-lait macules (Figure 1b,c,d). He had blue irides and global 22 hypopigmentation on fundoscopic examination. W index=0.87. The auditory function 23 was normal. A description of the whole family is presented in the supplementary data. 24 Family 2: a 36-year-old French woman had congenital profound sensorineural 25 hearing loss, a white forelock, blue irides but no skin pigmentation disorder. There was

1 a familial history of congenital deafness in her parents and siblings. Her father had 2 premature greying, and both her mother and brother had a white forelock with blue 3 irides. Her son had isolated hearing loss.

4 Family 3: a 33-year-old South African woman of European descent had 5 congenital profound sensorineural hearing loss (90-120dB), a white forelock preceding 6 premature greying of hair, eyelashes and eyebrows, hypopigmented macules and 7 freckles in the pigmented areas. She had blue irides, right exotropia and myopia. W 8 index=1.77. Fundus examination revealed marked hypopigmentation and visual evoked 9 potentials were normal. Her parents and two sisters had normal phenotypes, although an 10 history of greying at about 30 years of age was reported in the father's family.

11 Family 4: a 21-year-old French woman had congenital profound sensorineural 12 hearing loss, a white forelock preceding greying at the age of 16 years, and fair skin but 13 no skin pigmentation disorders. She had blue irides, hyperopia and left esotropia 14 complicated by amblyopia. Her parents and two sisters had normal phenotypes. 15 Family 5: a 3-year-old French girl had profound sensorineural hearing loss, 16 generalized hypopigmentation, bright blue irides and albinoid hypopigmentation on 17 fundoscopic examination. Her developmental milestones were delayed and she had axial 18 hypotonia. She had strabismus and a suspected amblyopia of the left eye. Her mother 19 had a similar phenotype consistent with Tietz syndrome. Her father had an isolated 20 acquired hearing loss.

21

Family 6: a 3-year-old Portuguese girl had congenital sensorineural hearing loss, 22 generalized hypopigmentation, blue irides and a white forelock. Her father had a similar 23 phenotype with greying at the age of 20 years.

24

25 **Identification of mutations**

1	Three novel mutations were characterized. A nucleotide substitution, c.635T>G,
2	that predicts a missense variation at the protein level (p.Ile212Ser) was found in all
3	affected members of family 1. A c.616A>C (p.Lys206Gln) mutation was found in the
4	proband of family 2 (parents not tested). In family 3, two variations were located on the
5	same allele: c.635-5delT and c.639A>C (p.Glu213Asp). The intronic variation (c.635-
6	5delT) was inherited from the unaffected father and was not predicted to result in splice
7	alteration by in silico analysis, while the missense (p.Glu213Asp) mutation occurred de
8	novo and is thought to be responsible for the disease. The proband of family 6 carried a
9	previously reported c.650G>T (p.Arg217Ile) mutation. ¹⁷ Parental samples were not
10	available for testing. We briefly reported the mutations found in families 4 (c.647G>A,
11	p.Arg216Lys, de novo) and 5 (c.649_651delAGA, p.Arg217del, in the mother and
12	daughter) in a recent review without a clinical description. ³ All mutations were
13	identified in the heterozygous state.
14	All the non-truncating mutations of the MITF basic domain (missense
15	substitutions and in-frame deletions, here described or previously published) are
16	reported in Table 1. They all involve amino-acids highly conserved across evolution.
17	None of them is predicted to result in a truncating protein through splice alteration. All
18	are predicted as probably damaging by polyphen-2. In order to further document
19	pathogenicity, we looked at their localisation in tertiary structure. The three-dimensional
20	(3D) structure of MITF has not been determined but several other bHLH factors have
21	been studied in their bound-to-DNA conformation. An example using SREBP1-A ¹⁸ is
22	shown in the supplementary Figure. Equivalent amino-acids that are mutated in MITF
23	are on the side of the basic domain α -helix that is localized in contact with the DNA
24	groove, while the unbound side of the α -helix appears devoid of mutations.

DISCUSSION

We report the clinical features and genotypes of six unrelated families segregating
missense mutations or in-frame deletions located in the MITF basic domain. Three of
these mutations have not been previously reported.

5 Our report brings to fifteen the number of cases with mutations specifically 6 affecting this domain. The p.Arg217del mutation is peculiar in that it is the only in-7 frame deletion and it represents half of the cases. It has been found in at least two ethnic 8 groups and often occurs de novo. Its recurrence might be partly due to the presence of a 9 short nucleotide triplet repeat. Functional tests have suggested that this mutation, or its 10 mouse homolog, may act as a dominant negative allele.^{9, 19}

Among the abundant mouse *Mitf* alleles, several are similar to the human mutations we identified or affect the same residue: *microphthalmia* (*Mitf*^{*Mi*}) is similar to p.Arg217del, *Oak-ridge* (*Mitf*^{*Mi-Or*}) to p.Arg216Lys, and *White* (*Mitf*^{*Mi-wh*}) affects the Ile212 that is changed to Asn.¹⁹ Due to the difference of transmission between mouse and human and to the influence of the background strain in mouse, it is difficult to speculate about the phenotypic correlations between species.

Table 1 regroups the clinical features observed in all fifteen families. The data
published initially have been completed here when the first description was brief.¹⁷ Our
study reveals a great variability of clinical features, and not exclusively Tietz syndrome
as previously hypothesized.

Patient 1 differs from the other cases by the absence of congenital hearing loss.
Deafness has a high frequency in our study, affecting 14 out of the 15 families.
Pigmentary disorders are always present including blue irides or partial heterochromia,
patchy to diffuse skin hypopigmentation, light blond hair from birth or a white forelock,

25 premature greying, freckles, lentigines and cafe-au-lait macules (Table 1).

1 According to the diagnostic criteria for WS proposed by the Waardenburg 2 Consortium, all the patients could be diagnosed as having WS. Indeed, Tietz syndrome 3 is characterized as a variant with a "more severe" phenotype: association of congenital 4 profound sensorineural hearing loss and uniform dilution of pigmentation (skin, eyes 5 and hair). The observation that melanocyte density is normal in the hypopigmented 6 areas suggests that the migration of melanocytes progenitors occurs normally and argues for an abnormality of melanocyte function⁸. However, both mechanisms may coexist, as 7 8 generalized hypopigmentation and WS-type depigmented patches are sometimes 9 observed in the same patients (Figure 1c). However, the difference between diffuse 10 hypopigmentation and normal fair skin may be unclear in some cases, and distinction 11 between Tietz and WS is sometimes difficult. Diffuse hypopigmentation could be 12 considered as another variable phenotypic feature of WS, being associated with some, 13 but not all, MITF basic domain mutations. Of note, the patients who independently carry 14 recurrent mutations (p.Arg217del or p.Arg217Ile) do not all show the same phenotype, 15 with only some being classified as Tietz syndrome. 16 We observed a striking frequency of freckles (60%), mainly in Asian populations 17 (66%). They were not observed within the depigmented patches, possibly because of a 18 complete absence of melanocytes. In the literature, we found only three cases of freckles in patients with other MITF mutations.^{17, 20-22} However freckles have not usually been 19 considered as part of the WS pigmentary disorders² so far and their occurrence might be 20 21 underestimated. Chen et al. recently proposed it to be a Chinese variant of the WS phenotype¹⁷ but we found it in some European patients as well. The melanocortin-1 22 23 receptor gene, MC1R, described as the major freckle gene,²³ is a good candidate to

24 influence this phenotype. It encodes a G-protein-coupled receptor that mediates the α -

25 MSH (melanocyte-stimulating hormone) effect in melanocytes, resulting in an

upregulation of *MITF*. *MC1R* is characterized by a remarkably polymorphic sequence.²⁴ 1 2 Some missense changes result in lower eumelanin induction that favors a eumelanin to 3 pheomelanin shift, and explains the association found between the presence of MC1R 4 variant alleles and the occurrence of red hair, fair skin and sun sensitivity.²⁵ 5 Among features not classically described in WS, we also found frequent eye and 6 vision problems including strabismus in 3 cases and amblyopia in 4 or 5. These 7 problems are not commonly reported to be associated with WS, but Delleman et al. 8 reported that 5 out of 26 WS patients had convergent strabismus (with or without 9 amblyopia), including one with WS2, leading to a 19% occurrence that is notably higher than in the general population.²⁶ In cases with other MITF mutations, strabismus has 10 only been reported in one family of WS2 with OA,²² a condition well-known for its 11 strabismus association, or with a polygenic deletion.²⁷ In our study the high rate (40%) 12 13 of ocular abnormalities leads to the possibility that they could be more frequently or 14 specifically associated with MITF basic domain mutations. In mouse *Mitf* mutants, eye 15 abnormalities range from severe microphthalmia to late retinal degeneration that were not described in human.¹⁹ 16

17 In conclusion, this study highlights the existence of unexpected features and a 18 wide range of phenotypes associated with non-truncating mutations of the MITF basic 19 domain. Congenital complete hearing loss, ocular abnormalities, freckles and diffuse 20 hypopigmentation of skin are more frequent than in patients with MITF truncating 21 mutations or missense mutations located elsewhere in the protein. The large range of 22 phenotype observed and the variability argues for the possible interaction with modifier 23 loci. Freckles are interestingly observed more frequently in Asian populations, which 24 also suggests the impact of genetic modifiers in the development of sun-exposed 25 freckles.

1	
2	CONFLICT OF INTEREST
3	The authors declare no conflicts of interest.
4	
5	ACKNOWLEDGEMENTS
6	We acknowledge the patients and families involved in this study as well as the
7	contributions of Dr John Grigg (Ophthalmologist, Sydney, Australia), Dr Anne
8	Besancon (maillon Blanc, Hôpitaux universitaires de Strasbourg, France), Mrs Anne
9	Pelletier (CARGO, Strasbourg, France).
10	

1 **REFERENCES**

2	1 Hershey CL, Fisher DE: Genomic analysis of the Microphthalmia locus and
3	identification of the MITF-J/Mitf-J isoform. Gene 2005; 347: 73-82.
4	2 Read AP, Newton VE: Waardenburg syndrome. J Med Genet 1997; 34: 656-665.
5	3 Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N: Review
6	and update of mutations causing Waardenburg syndrome. Hum Mutat 2010; 31: 391-
7	406.
8	4 Tietz W: A syndrome of deaf-mutism associated with albinism showing dominant
9	autosomal inheritance. Am J Hum Genet 1963; 15: 259-264.
10	5 Amiel J, Watkin PM, Tassabehji M, Read AP, Winter RM: Mutation of the MITF
11	gene in albinism-deafness syndrome (Tietz syndrome). Clin Dysmorphol 1998; 7: 17-
12	20.
13	6 Smith SD, Kelley PM, Kenyon JB, Hoover D: Tietz syndrome
14	(hypopigmentation/deafness) caused by mutation of MITF. J Med Genet 2000; 37: 446-
15	448.
16	7 Tassabehji M, Newton VE, Liu XZ, et al.: The mutational spectrum in Waardenburg
17	syndrome. Hum Mol Genet 1995; 4: 2131-2137.
18	8 Izumi K, Kohta T, Kimura Y, et al.: Tietz syndrome: unique phenotype specific to
19	mutations of MITF nuclear localization signal. Clin Genet 2008; 74: 93-95.
20	9 Shigemura T, Shiohara M, Tanaka M, Takeuchi K, Koike K: Effect of the mutant
21	microphthalmia-associated transcription factor found in Tietz syndrome on the in vitro
22	development of mast cells. J Pediatr Hematol Oncol 2010; 32: 442-447.

1	10 Chiang PW, Spector E, McGregor TL: Evidence suggesting digenic inheritance of
2	Waardenburg syndrome type II with ocular albinism. Am J Med Genet A 2009; 149A:
3	2739-2744.
4	11 Tassabehji M, Newton VE, Read AP: Waardenburg syndrome type 2 caused by
5	mutations in the human microphthalmia (MITF) gene. Nat Genet 1994; 8: 251-255.
6	12 Niel F, Martin J, Dastot-Le Moal F, et al.: Rapid detection of CFTR gene
7	rearrangements impacts on genetic counselling in cystic fibrosis. J Med Genet 2004; 41:
8	e118.
9	13 Fuse N, Yasumoto K, Suzuki H, Takahashi K, Shibahara S: Identification of a
10	melanocyte-type promoter of the microphthalmia-associated transcription factor gene.
11	Biochem Biophys Res Commun 1996; 219: 702-707.
12	14 Lee M, Goodall J, Verastegui C, Ballotti R, Goding CR: Direct regulation of the
13	Microphthalmia promoter by Sox10 links Waardenburg-Shah syndrome (WS4)-
14	associated hypopigmentation and deafness to WS2. J Biol Chem 2000; 275: 37978-
15	37983.
16	15 Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C:
17	Human Splicing Finder: an online bioinformatics tool to predict splicing signals.
18	<i>Nucleic Acids Res</i> 2009; 37 : e67.
19	16 Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment
20	for comparative protein modeling. <i>Electrophoresis</i> 1997; 18: 2714-2723.
21	17 Chen H, Jiang L, Xie Z, et al.: Novel mutations of PAX3, MITF, and SOX10 genes
22	in Chinese patients with type I or type II Waardenburg syndrome. Biochem Biophys Res
23	<i>Commun</i> 2010; 397 : 70-74.

1	18 Parraga A, Bellsolell L, Ferre-D'Amare AR, Burley SK: Co-crystal structure of
2	sterol regulatory element binding protein 1a at 2.3 A resolution. Structure 1998; 6: 661-
3	672.
4	19 Moore KJ: Insight into the microphthalmia gene. Trends Genet 1995; 11: 442-448.
5	20 Chen J, Yang SZ, Liu J, et al.: [Mutation screening of MITF gene in patients with
6	Waardenburg syndrome type 2]. Yi Chuan 2008; 30: 433-438.
7	21 Bard LA: Heterogeneity in Waardenburg's syndrome. Report of a family with ocular
8	albinism. Arch Ophthalmol 1978; 96: 1193-1198.
9	22 Morell R, Spritz RA, Ho L, et al.: Apparent digenic inheritance of Waardenburg
10	syndrome type 2 (WS2) and autosomal recessive ocular albinism (AROA). Hum Mol
11	<i>Genet</i> 1997; 6 : 659-664.
12	23 Bastiaens M, ter Huurne J, Gruis N, et al.: The melanocortin-1-receptor gene is the
13	major freckle gene. Hum Mol Genet 2001; 10: 1701-1708.
14	24 Gerstenblith MR, Goldstein AM, Fargnoli MC, Peris K, Landi MT: Comprehensive
15	evaluation of allele frequency differences of MC1R variants across populations. Hum
16	Mutat 2007; 28: 495-505.
17	25 Sulem P, Gudbjartsson DF, Stacey SN, et al.: Genetic determinants of hair, eye and
18	skin pigmentation in Europeans. Nat Genet 2007; 39: 1443-1452.
19	26 Delleman JW, Hageman MJ: Ophthalmological findings in 34 patients with
20	Waardenburg syndrome. J Pediatr Ophthalmol Strabismus 1978; 15: 341-345.
21	27 Schwarzbraun T, Ofner L, Gillessen-Kaesbach G, et al.: A new 3p interstitial
22	deletion including the entire MITF gene causes a variation of Tietz/Waardenburg type
23	IIA syndromes. Am J Med Genet A 2007; 143: 619-624.
24	

	Pigmentary disorders								-				
Even	aDNA*	A DN/mactóina	Inhoritonoo	Hear	Eye	Skin CU/DU	Hair WE/PC+/HC	Other E/CALM	Vision	Dhonotyma	Origin	Family	Deference
EXOII	UNA	AKN/proteine	mileritance	CIIL	DI/111	GII/FII	WF/I GV/IIC	F/CALM	5/A	rnenotype	Origin	гапшу	Kelelence
Exon 6	c.616A>C	p.Lys206Gln	Familial	+	+/-	-/-	+/-/Blond	-/-	-/-	WS2	France/Italy	2	This study
	c.630C>G	p.Asn210Lys	Familial	+	+/-	+/-	-/-/Blond	+/-	-/-	Tietz syndrome	USA / Ireland		6
Exon 7	c.635T>G	p.Ile212Ser	Familial	-	+/+	+/+	-/+/Brown	+/+	-/-	WS2	Vietnam/Martinique	1	This study
	c.639A>C (+ c.635-5delT)	p.Glu213Asp	De novo	+	+/-	-/ +	+/+/Red	+/-	+/-	WS2	Europe/South Africa	3	This study
	c.647G>A	p.Arg216Lys	De novo	+	+/-	-/-	+/+/Light brown	-/-	+/+	WS2	France	4	³ + this study
	c.649_651delAGA	p.Arg217del	Familial	+	+/-	+/-	-/+/Red	+/-	-/-	Tietz syndrome	Europe		5
	c.649_651delAGA	p.Arg217del	De novo	+	+/-	+/-	-/-(24)/Blond	+/-	-/-	Tietz syndrome	? (Japanese paper)		8
	c.649_651delAGA	p.Arg217del	Familial	+	+/-	?§/-	-/-(1)#/Red	-/-	-/-	WS2/Tietz syndrome	? (US paper)		¹⁰ The index case also had OA + P513R in the <i>TYRP1</i> gene
	c.649_651delAGA	p.Arg217del	Familial	+	+/-	+/-	-/-(3)/Brown	-/-	+/+?	Tietz syndrome	France	5	³ + this study
	c.649_651delAGA	p.Arg217del	Familial	+	+/-	+/-	-/-(15)/Blond	-/-	-/-	Tietz syndrome	Japan		9
	c.649_651delAGA	p.Arg217del	De novo	+	+/-	-/-	-/-(10)/Brown	+/-	-/ +	WS2	China		¹⁷ (completed)
	c.649_651delAGA	p.Arg217del	De novo	+	+/-	-/-	-/-(12)/Brown	+/-	-/ +	WS2	China		¹⁷ (completed)
	c.649_651delAGA	p.Arg217del	De novo	+	+/-	-/-	-/-(12)/Brown	+/-	-/ +	WS2	China		¹⁷ (completed)
	c.650G>T	p.Arg217Ile	Familial	+	+/-	+/-	+/-(3)#/Blond	-/-	-/-	Tietz syndrome	Portugal	6	This study
	c.650G>T	p.Arg217Ile	De novo	+	+/-	-/-	-/+/Brown	+/-	-/-	WS2	China		¹⁷ (completed)

Table 1 Phenotypic features associated with non-truncating mutations of the MITF basic domain.

CHL: congenital hearing loss, BI/HI: blue irides/heterochromia irides, GH/PH: generalized/patchy hypopigmentation, WF/PG/HC white forelock/premature greying/hair color, F/CALM : freckles/cafe-au-lait macules, S/A: strabismus/amblyopia, WS2: Waardenburg syndrome type 2, OA: ocular albinism.

*cDNA nucleotide numbering with +1 as the A of the initiation codon in the reference sequence NM_000248.2 corresponding to the M(melanocytic)-isoform of MITF.

 \dagger : when propositus did not show PG, age at the last consultation is indicated between brackets if < 20 years for Caucasian or < 25 years for Asian.

§: reported as a "fair complexion".

#: premature greying in other family member(s).

1 LEGENDS TO FIGURES

- 2
- 3 **Figure 1** Family 1. (a) Pedigree. (b) Photographs of the proband III.1 at the age of 11 years,
- 4 showing generalized hypopigmentation (in contrast with familial dark skin), premature greying
- 5 affecting hair, eyelashes and eyebrows, blue irides, freckles, with (c) depigmented patches and
- 6 (d) cafe-au-lait macules. Color figure can be seen in the online issue.
- 7