1479-5876-10-70 1479-5876 Editorial <p>Toward integrative cancer immunotherapy: targeting the tumor microenvironment</p> EmensALeishaemensle@jhmi.edu SilversteinCSamuelscs3@columbia.edu KhleifSamirskhleif@georgiahealth.edu MarincolaMFrancescofmarincola@mail.cc.nih.gov GalonJérômejerome.galon@crc.jussieu.fr

Tumor Immunology and Breast Cancer Research Programs, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA

Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA

Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA

Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA

Georgia Health Sciences University (GHSU) Cancer Center, Georgia, USA

Infectious Diseases and Immunogenetics Section (IDIS), National Institutes of Health, Bethesda, MD 20891, USA

Department of Transfusion Medicine, Clinical Center and trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20891, USA

INSERM, UMRS872, Cordeliers Research Centre, Laboratory of Integrative Cancer Immunology, Paris F-75006, France

Assistance Publique-Hopitaux de Paris, AP-HP, Georges Pompidou European Hospital, Paris, France

Université Paris Descartes, Paris, France

Université Pierre et Marie Curie Paris 6, Paris, France

The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University, 1650 Orleans Street, Room 409, Bunting Blaustein Cancer Research Building, Baltimore, MD 21231-1000, USA

Journal of Translational Medicine 1479-5876 2012 10 1 70 http://www.translational-medicine.com/content/10/1/70 10.1186/1479-5876-10-7022490302
1932012104201210420122012Emens et al; licensee BioMed Central Ltd.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The development of cancer has historically been attributed to genomic alterations of normal host cells. Accordingly, the aim of most traditional cancer therapies has been to destroy the transformed cells themselves. There is now widespread appreciation that the progressive growth and metastatic spread of cancer cells requires the cooperation of normal host cells (endothelial cells, fibroblasts, other mesenchymal cells, and immune cells), both local to, and at sites distant from, the site at which malignant transformation occurs. It is the balance of these cellular interactions that both determines the natural history of the cancer, and influences its response to therapy. This active tumor-host dynamic has stimulated interest in the tumor microenvironment as a key target for both cancer diagnosis and therapy. Recent data has demonstrated both that the presence of CD8+ T cells within a tumor is associated with a good prognosis, and that the eradication of all malignantly transformed cells within a tumor requires that the intra-tumoral concentration of cytolytically active CD8+ effector T cells remain above a critical concentration until every tumor cell has been killed. These findings have stimulated two initiatives in the field of cancer immunotherapy that focus on the tumor microenvironment. The first is the development of the immune score as part of the routine diagnostic and prognostic evaluation of human cancers, and the second is the development of combinatorial immune-based therapies that reduce tumor-associated immune suppression to unleash pre-existing or therapeutically-induced tumor immunity. In support of these efforts, the Society for the Immunotherapy of Cancer (SITC) is sponsoring a workshop entitled "Focus on the Target: The Tumor Microenvironment" to be held October 24-25, 2012 in Bethesda, Maryland. This meeting should support development of the immune score, and result in a position paper highlighting opportunities for the development of integrative cancer immunotherapies that sculpt the tumor microenvironment to promote definitive tumor rejection.

Introduction

Historically, cancer therapies have largely focused on destroying the transformed cancer cell itself. Local therapies, including surgery and radiotherapy, aim to grossly neutralize malignancy, either by removing the tumor, or by destroying the replicative capacity of the cancer cells within it. Chemotherapy (and for some cancers endocrine therapy) classically exerts an anti-tumor effect by selectively disrupting an aspect of tumor cell biology that gives malignant cells a relative growth advantage compared to normal cells. More recently, innovative targeted therapies have been developed that selectively target and disrupt signaling pathways essential for tumor cell growth; examples include the HER-2-specific monoclonal antibody Trastuzumab for breast cancer, and the BRAF inhibitor vemurafenib for melanoma. Their use results in higher cure rates and less collateral damage to normal tissues than conventional chemotherapy or radiotherapy. Effectively sequencing these different treatment modalities and using combinations of drugs with complementary mechanisms of action and non-overlapping toxicities has reduced the mortality rates for many cancers 1.

There is now widespread appreciation that non-transformed host cells (endothelial cells, fibroblasts, other mesenchymal cells, and cells of the innate and adaptive immune systems) interact with malignant tumor cells to form a dynamic tumor microenvironment in which the non-transformed cells exert both positive and negative effects on the growth and spread of the cancer cells, and that these in turn affect the phenotype of the non-transformed host cells 2. The balance of cellular and secretory-product interactions within this microenvironment determines whether the tumor mass regresses or grows, and whether the malignant cells remain in place, or metastasize to distant sites. In addition, these interactions can determine whether tumors respond well to radiation or systemic cancer therapy. These interactions likely also underlie the phenomenon of a mixed clinical response to therapy, where some metastases regress and others grow in response to the same treatment 3.

Over the last decade, the influence of host immune cells both within and surrounding tumors has emerged as a critical determinant of cancer biology, and a key factor in the success or failure of human cancer therapy 4. Recognition of their impact has produced two major initiatives in the field of cancer immunotherapy: (1) the development of the "immune score" as a new and important component of the routine diagnostic and prognostic evaluation of human cancers 5, and (2) the development of combinatorial immune-based therapies that abrogate tumor-associated immune suppression in order to unleash the full tumoristatic and tumoricidal activity of pre-existing or therapeutically-induced immunity 6. A deeper understanding of how cellular and molecular interactions within the tumor microenvironment sculpt the activities of innate and antigen-specific immune cells will lead to integrative cancer immunotherapies that selectively impinge on regulatory mechanisms within the tumor microenvironment to result in immune-based tumor rejection and clinical cure. To focus attention on these issues, the Society for the Immunotherapy of Cancer (SITC) is holding a workshop entitled "Focus on the Target: The Tumor Microenvironment" from October 24-25, 2012 in Bethesda, Maryland 7.

The interplay of immunity and cancer growth and progression

The Janus face of the immune system in cancer presents a complex challenge for tumor immunotherapy. Cells of the innate and acquired immune systems are involved in cellular transformation, in the establishment and growth of tumors, and in the metastasis of malignant tumor cells. Carcinogenesis results from the inflammation associated with a variety of chronic infections 8. Cells of the immune system facilitate tumor progression and spread by selecting for tumor cells intrinsically capable of escaping immune recognition 4, by creating a tumor microenvironment that fosters disease progression 4, and by facilitating the local invasion and subsequent metastasis of tumor cells 9. Conversely, cells of the innate and acquired immune systems can protect patients against both nascent and established cancers, either by destroying cancer cells directly, or by establishing and maintaining a state of tumor dormancy 4. The influence of the immune system on the natural history of cancer is further highlighted by observations that the concentration of CD8+ T cells determines their killing efficiency in preclinical models 10, and that the quantity, quality, and location of tumor-infiltrating lymphocytes (TIL) are predictive of patient survival in cancer patients 11121314. For example, in colon cancers, the density of CD8+ T cells within the tumor predicts patient survival 111213. Furthermore, for many cancers including colon cancer, the relative quantity and location of CD8+ T cells and CD4+CD25+FoxP3+ regulatory T cells (Treg) are also key predictors of clinical outcome 1213. Genomic profiling of these "good prognosis," lymphocyte-infiltrated tumors typically reveals a striking signature of Th-1-type inflammation that includes markers of innate immune cell activation, chemokines that promote T cell trafficking into the tumor parenchyma, and expression of pro-inflammatory cytokines 131516171819. In parallel, a growing literature illustrates a role for the immune system in the clinical response to standard systemic cancer therapy. Individuals with breast cancer who carry a specific mutation of toll-like receptor 4 (TLR-4) have a higher risk of relapse after adjuvant anthracycline-based chemotherapy 20. Patients with early breast cancers who are treated pre-operatively with paclitaxel have new immune cell infiltrates within their tumors at the time of surgery 21. Similarly, patients treated with Trastuzumab for breast cancer can develop tumor-specific CD4+ T lymphocytes within the peripheral blood 22, and within the breast tumor itself 23.

The immune score

An immune score that quantifies the intra-tumoral location and density of CD8+ T cells and memory CD45RO+ T cells has been proposed as a useful approach both for predicting the impact of the tumor microenvironment on clinical outcome in colon cancer patients, and possibly for selecting therapy 13. The clinical relevance of the immune score is that the intra-tumoral location and density of CD8+ T cells and memory CD45RO+ T cells are tightly correlated with disease-free and overall survival, and are, in fact, superior to the standard TNM staging system. Detailed analysis of colon cancer-associated lymphocytes reveals that a T helper type 1 profile is associated with a favorable prognosis, whereas a T helper type 17 profile is associated with a poor prognosis 24.

Other factors within the tumor microenvironment are also likely to influence the immune score, including other immune cells (intra-tumoral Treg, myeloid-derived suppressor cells, alternatively activated macrophages), stromal factors (fibroblasts, other mesenchymal cells, secretory products like tenascin 25), and the integrity of the tumor cell genome. Of these factors, intra-tumoral Treg are one variable that has been associated with poor prognosis in many solid tumors (ovarian, breast, and pancreatic cancers), but paradoxically with favorable prognosis in colon cancer 26. Whether cancer cell-specific genomic instability, associated with a more favorable prognosis in ovarian and colorectal cancers, is associated with or independent of the immune score remains to be determined 2627. Other elements of the tumor microenvironment also may shape the immune score 28. For example, in lung cancer, low vascular endothelial growth factor-A (VEGF) and VEGF Receptor-2 expression in association with high concentrations of intra-tumoral CD4+ and CD8+ T cells is associated with a favorable prognosis 29.

Overall, the association of large numbers of tumor-associated CD8+, CD45RO+, and granzyme B+ T cells with improved clinical outcome suggests that these cells represent the cumulative interactions of diverse tumor and host-derived cells within the tumor microenvironment. A major initiative to measure and incorporate the numbers of relevant cytotoxic memory CD8+ T cells (CD8+, CD45RO+, and granzyme B+ T cells) into standard clinical practice as a tumor immune score is underway 5. A concept (based on the task force meeting "Immunoscoring as a New Possible Approach for the Classification of Cancer" convened in Naples, Italy February 13, 2012) will be presented at the SITC Workshop on the Tumor Microenvironment in October 2012. This will be followed by a "Workshop in Immune Scoring" in Naples, Italy in December 2012 that will recommend approaches to the harmonization of methods for immune scoring of tumors, and seek acceptance and implementation of immune scoring as a standard practice in the diagnosis and classification of cancers.

Re-sculpting the tumor microenvironment to promote tumor rejection

Given the influence of the tumor microenvironment on cancer biology and overall clinical outcomes, cancer therapies that target host elements involved in cancer development are an increasingly important component of the standard of care for many cancer types. Agents that modulate the tumor microenvironment in wide clinical use today include therapeutic monoclonal antibodies that promote antibody-dependent cellular cytotoxicity (Trastuzumab for breast and gastric cancers and Rituximab for hematologic malignancies), drugs that target tumor neovascularization (bevacizumab, sunitinib, and sorafenib for a variety of cancers), and those that modify the bone microenvironment (the bisphosphonate zolendronate and the RANKL inhibitor denosumab for malignant bone disease).

There is increasing evidence that Trastuzumab 22, Rituximab, and other therapeutic monoclonal antibodies stimulate clinically relevant adaptive immune responses, and that they do so in part by cross-priming immune cells within the locoregional tumor microenvironment 3031. Trastuzumab-like monoclonal antibodies can promote the evolution of a tumor-specific central memory CD8+ T cell response in preclinical models 32, Bevacizumab can alleviate the dendritic cell-based immune suppression caused by VEGF 33, and sunitinib can diminish the suppressive influence of intra-tumoral myeloid-derived suppressor cells and T regulatory cells in both preclinical models 34, and in patients with renal cell carcinoma 35. Treating established tumors with a monoclonal antibody specific for the VEGF receptor 2 as a single agent can induce tumor-specific T cell immunity associated with tumor rejection and protection from a subsequent tumor challenge in an immune competent preclinical model 36. The bone-modifying drug zolendronate can augment the activity of dendritic cells and NK cells, thereby promoting activation of γδ and αβ T cells 37. It may also modulate the tumoristatic and tumoricidal activity of tumor-associated macrophages 38.

Importantly, immune-modulating drugs that directly promote anti-tumor immune responses (the sipuleucel-T vaccine for prostate cancer and the immune checkpoint inhibitor Ipilimumab for melanoma) have become part of the standard of care. Building on these leads, Ipilimumab and Bevacizumab have been combined with tumor vaccines to explore whether they enhance vaccine potency 3940. Trastuzumab has been combined with distinct cancer vaccines to capitalize on the direct antitumor activity of the antibody as well as its ability to modulate tumor immunity by various mechanisms 4142. Delineation of the accessory pathways that control T cell activation has led to the development of targeted checkpoint inhibitors that can further support immune priming and T cell activity within the tumor microenvironment. Novel drugs that specifically target immune regulatory pathways (including toll-like receptor modulators 43, antibodies specific for the PD-1 pathway 44, the OX-40 pathway 45, and the CD40 pathways 46) are a growing focus of clinical development. The impact of epigenetic therapy on tumor immunity is also an emerging area of investigation 47.

Conclusions

The findings that the proper concentration of tumor-antigen specific CD8+ T cells is required to control tumor growth and eradicate antigen-expressing tumor cells in preclinical models, and that the relative numbers and distribution of CD8+ T cells in human cancers is associated with disease-free and overall survival define a target goal and biomarker for clinically effective cancer immunotherapy. To meet that goal, successful immune-based therapies will likely ultimately integrate strategies that induce, recruit, and deliver tumor antigen-specific effector cells by adoptive cellular therapy or active vaccination with approaches that maximize their antitumor activity by mitigating active pathways of immune suppression within the tumor microenvironment in a scientifically rational manner. Progress in cancer immunotherapy will also require better characterization of the tumor-homing capacities, intratumoral concentration, lifespan, and functional activity of tumor antigen-specific effector T cells. The successful clinical development of such integrative cancer immunotherapies will require novel clinical trial designs that incorporate extensive blood, tissue, and imaging correlates in order to develop strategies that predict the likelihood of tumor response to immunotherapy, and evaluate immune and clinical responses in real time by imaging or tissue sampling. The overall goal of the 2012 SITC Workshop "Focus on the Target: The Tumor Microenvironment" is to focus on distinct aspects of the host-tumor interaction, and their implications for tumor immunotherapy. By systematically applying the best science to re-shape the host-tumor interaction, we will develop personalized, integrative cancer immunotherapies capable of inducing tumor rejection and effecting cure.

<p>Cancer statistics, 2012</p>SiegelRNaishadhamDJemalACA Cancer J Clin2012621029<p>Cancer invasion and the microenvironment: plasticity and reciprocity</p>FriedlPAlexanderSCell20121479921009<p>Regression of melanoma metastases after immunotherapy is associated with activation of antigen presentation and interferon-mediated rejection genes</p>CarreteroRWangERodriguezAIReinbothJAsciertoMLEngleAMLiuHCamachoFMMarincolaFMGarridoFCabreraTInt J Cancer2011<p>Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion</p>SchreiberRDOldLJSmythMJScience201133115651570<p>The immune score as a new possible approach for the classification of cancer</p>GalonJPagesFMarincolaFMThurinMTrinchieriGFoxBAGajewskiTFAsciertoPAJ Transl Med20121014<p>Cancer immunotherapy comes of age</p>TopalianSLWeinerGJPardollDMJ Clin Oncol20112948284836<p>Focus on the Target: The Tumor Microenvironment</p>GalonJEmensLASilversteinSCKliefSMarincolaFMorganizershttp://www.sitcancer.org/meetings/am12/workshop12<p>Tumor promotion via injury- and death-induced inflammation</p>KuraishyAKarinMGrivennikovSIImmunity201135467477<p>Macrophages: obligate partners for tumor cell migration, invasion, and metastasis</p>CondeelisJPollardJWCell2006124263266<p>CD8<sup>+ </sup>T cell concentration determines their efficiency in killing cognate antigen-expressing syngeneic mammalian cells <it>in vitro </it>and in mouse tissues</p>BudhuSLoikeJDPandolfiAHanSCatalanoGConstantinescuAClynesRSilversteinSCJ Exp Med2010207223235<p>Effector memory T cells, early metastasis, and survival in colorectal cancer</p>PagesFBergerACamusMSanchez-CaboFCostesAMolidorRMlecknikBKirilovksyANilssonMDamotteDN Engl J Med200535326542666<p>Type, density, and location of immune cells within human colorectal tumors predict clinical outcome</p>GalonJCostesASanchez-CaboFKirilovskyAMiecnikBLagorce-PagesCTosoliniMCamusMBergerAWindPScience200631319601964<p>Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction</p>MlecnikBTosoliniMKirilovskyABergerABindeaGMeatchiTBrunevalPTrajanoskiZFridmanWHPagesFGalonJJ Clin Oncol201129610618<p><it>In situ </it>immune response after neoadjuvant chemotherapy for breast cancer predicts survival</p>LadoireSMignotGDabakuyoSArnouldLApetohLRebeCCoudertBMartinFBizollonMHVanoliAJ Pathol2011224389400<p>Tumor infiltrating FoxP3<sup>+ </sup>regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer</p>ShimizuKNakataMHiramiYYukawaTMaedaATanemotoKJ Thorac Oncol20105585590<p>Prognostic role of FOXP3<sup>+ </sup>regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer</p>LadoireSMartinFGhiringhelliFCancer Immunol Immunother201160909918<p>Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy</p>GajewskiTJLouahedJBrichardVGCancer J201016399403<p>Prospective molecular profiling of melanoma metastases suggests classifiers of immune responsiveness</p>WangEMillerLDOhnmachtGAMocellinSPerez-DiazAPetersenDZhaoYSimonRPowellJIAsakiECancer Res20016235813586<p>An immunologic portrait of cancer</p>AsciertoMLDe GiorgiVLiuQBedognettiDSpiveyTLMurtasDUccelliniLAyotteBDStroncekDFChouchaneLManjiliMHWangEMarincolaFMJ Transl Med20119146<p>Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy</p>ApetohLGhiringhellijFTesniereAObeidMOrtizCCriolloAMignotGMaiuriMCUllrichESauinierPNature Med20071310501059<p>Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy</p>DemariaSVolmMDShapiroRLYeeHTOratzRFormentiSCMugiaFSymmansWFClin Cancer Res2001730253030<p>Augmented HER-2-specific immunity during treatment with trastuzumab and chemotherapy</p>TaylorCHershmanDShahNSuciu-FocaNPetrylakDPTaubRVahdatLChengBPegramMKnutsonKLClynesRClin Cancer Res20071351335143<p>T-bet expression in intratumoral lymphoid structures after neoadjuvant trastuzumab plus docetaxel for HER-2-overexpressing breast carcinoma predicts survival</p>LadoireSArnouldLMignotGApetohLRebeCMartinFFumoleauPCoudertBGhiringhelliFBr J Cancer2011105366371<p>Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer</p>TosoliniMKirilovskyAMlecnikBFredriksenTMaugerSBindeaGBergerABrunevalPFridmanWHPagesFGalonJCancer Res20117112631271<p>Blockade of α<sub>5</sub>β<sub>1 </sub>integrins reverses the inhibitory effect of tenascin on chemotaxis of human monocytes and polymorphonuclear leukocytes through three-dimensional gels of extracellular matrix proteins</p>LoikeJDCaoLBudhuSHoffmanSSilversteinSCJ Immunol200116675347542<p>TNM staging in colorectal cancer: T is for T cell and M is for memory</p>BroussardEKDisisMLJ Clin Oncol201129601603<p>BRCA1 and BRCA2 mutations correlate with TP53 abnormalities and presence of immune cell infiltrates in ovarian high-grade serous carcinoma</p>McAlpineJNPorterHKobelMNelsonBHPrenticeLMKallogerSESenzJMilneKDingJShahSHuntsmanDGGilksCBModern Pathol 20 <p>Intrinsic modulation of lymphocyte function by stromal cell network: advance in therapeutic targeting of cancer</p>GorgunGAndersonKCImmunother2011312531264<p>Combination of low vascular endothelial growth factor A (VEGF-A/VEGF receptor 2 expression and high lymphocyte infiltration is a strong and independent favorable prognostic factor in patients with nonsmall cell lung cancer</p>DonnemTAl-ShibliKAndersenSAl-SaadSBusundKTBremnesRMCancer201011643184325<p>Tumor-antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape</p>FerrisRLJaffeeEMFerroneSJ Clin Oncol20102843904399<p>Driving effective tumor immunity with combinatorial immunotherapy</p>EmensLAAmerican Society of Clinical Oncology 2010 Educational BookAlexandria, VA: American Society of Clinical OncologyGovindan R2010460465<p>Antibody association with HER-2/<it>neu</it>-targeted vaccine enhances CD8<sup>+ </sup>T cell responses in mice through Fc-mediated activation of DCs</p>KimPSArmstrongTDSongHWolpoeMEWeissVManningEAHuangLQMurataSSgourosGEmensLAReillyRTJaffeeEMJ Clin Invest200818817001711<p>Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function</p>GabrilovichDIIshidaTNadafSOhmJECarboneDPClin Cancer Res1999529632970<p>The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies</p>Ozao-ChoyJMaGKaoJWangGXMeseckMSungMSchwartzMDivinoCMPanPYChenSHCancer Res20096925142522<p>Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients</p>KoJSZeaAHRiniBHIrelandJLElsonPCohenPGolshayanARaymanPAWoodLGarciaJDreicerRBukowskiRFinkeJHClin Cancer Res20091521482157<p>A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism</p>ManningEAUllmanJGLeathermanJMAsquithJMHansenTRArmstrongTDHicklinDJJaffeeEMEmensLAClin Cancer Res20071339513959<p>Immune modulation by zolendronic acid in human myeloma: an advantageous cross-talk between Vγ9Vδ2 T cells, αβ CD8<sup>+ </sup>T cells, regulatory T cells, and dendritic cells</p>CastellaBRigantiCFioreFPantaleoniFCanepariMEPeolaSFogliettaMPalumboABosiaACosciaMBoccadoroMMassaiaMJ Immunol201118715781590<p>Tumour macrophages as potential targets of bisphosphonates</p>RogersTLHolenIJ Transl Med20119177180<p>Improved survival with ipilimumab in patients with metastatic melanoma</p>HodiFSO'DaySJMcDermottDFWeberRWSosmanJAHaanenJBGonzalezRRobertCSchadendorfDHasselJCN Engl J Med2010363711723<p>Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (Provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy</p>RiniBIWeinbergVFongLConrySHershbergRMSmallEJCancer20061076774<p>Concurrent trastuzumab and HER-2/<it>neu</it>-specific vaccination in patients with metastatic breast cancer</p>DisisMLWallaceDRGooleyTADangYSlotaMLuHCovelerALChildsJSHigginsDMFIntakPAdela RosaCTietjeKLinkJWaismanJSalazarLGJ Clin Oncol20092746854692<p>A feasibility study of combination therapy with trastuzumab (T), cyclophosphamide (CY), and an allogeneic GM-CSF-secreting breast tumor vaccine for the treatment of HER-2+ breast cancer [abstract]</p>EmensLAGuptaRPetrikSLaikoMLeviJLeathermanJMAsquithJMDaphtaryMMGarrett-MayerEKobrinBJ Clin Oncol201129s2535<p>Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T cell responses modulated by the local central nervous system tumor microenvironment</p>LiauLMPrinsRMKiertscherSMOdesaSKKremenTJGiovannoneAJLinJWChuteDJMischelPSCloughesyTFRothMDClin Cancer Res20051155155525<p>Phase I study of single agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates</p>BrahmerJRDrakeCGWollnerIPowderlyJDPicusJSharfmanWHStankevichEPonsASalayTMMcMillerTLJ Clin Oncol20102831673175<p>Signaling through OX40 enhances tumor immunity</p>JensenSMMastonLDGoughMJRubyCERedmondWLCrittendenMLiYPuriSPoehleinCHMorrisNSemin Oncol201037524532<p>CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans</p>BeattyGLChioreanEGFishmanMPSabouryBTeifelbaumURSunWHuhnRDSongWLiDSharpLLScience201133116121616<p>Circumventing immune tolerance through epigenetic modification</p>DubovskyJAVillagraAPowersJJWangHWPinilla-IbarzJSotomayorEMCurr Pharm Des201016268276