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Abstract 
Among several peroxisomal neurodegenerative disorders, the pseudoneonatal 
adrenoleukodystrophy(P-NALD) is characterized by the acyl-coenzymeAoxidase 1 
(ACOX1) deficiency, which leadsto the accumulation of very-long-chain fatty acids 
(VLCFA) and inflammatory demyelination. However,the components of this 
inflammatory process in P-NALD remain elusive. In this study, we usedtranscriptomic 
profiling and PCR array analyses to explore inflammatory gene expression in 
patientfibroblasts. Our results show the activation of IL-1 inflammatory pathway 
accompanied by theincreased secretion of two IL-1 target genes, IL-6 and IL-8 cytokines. 
Human fibroblasts exposed tovery-long-chain fatty acids exhibited increased mRNA 
expression of IL-1alpha and IL-1beta cytokines.Furthermore, expression of IL-6 and IL-8 
cytokines in patient fibroblasts was down-regulated byMAPK, p38MAPK, and Jun N-
terminal kinase inhibitors. Thus, the absence of acyl-coenzyme A oxidase 1 activity in P-
NALD fibroblasts triggers an inflammatory process, in which the IL-1 pathwayseems to 
be central. The use of specific kinase inhibitors may permit the modulation of the 
enhanced 
inflammatory status.  
 
Introduction 
In several peroxisomal disorders, the peroxisomal fatty acid beta-oxidation pathway is 
defective. This may be dueto the specific deficiency of an enzyme or transporter 
involved in peroxisomal beta-oxidation or the absence of thecomplete organelle 
resulting from a genetic defect in oneof the many genes required for proper peroxisome 
biogenesisand maintenance (1, 2). Pseudoneonatal adrenoleukodystrophy(P-NALD) 
(OMIM 264470) is a rare,neuroinflammatory, and a neurodegenerative peroxisomal 
disorder characterized by craniofacial dysmorphia,generalized hypotonia, 
hepatomegaly, infantile seizures,loss of motor achievements, and white matter 
demyelination(3– 6). P-NALD disease is due to acyl-coenzyme A(CoA) oxidase 1 
(ACOX1) deficiency, which leads to aselective impairment of the peroxisomal fatty acid 
beta-oxidationpathway specifically affecting the oxidation ofvery-long-chain fatty acids 
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(VLCFA). As a consequence,VLCFA accumulate in plasma and tissues (1, 7). ACOX1 
catalyzes the alpha, beta-dehydrogenation of a range of acyl-CoAesters, including the 
CoA-esters of dicarboxylic acids, eicosanoidderivatives, and saturated VLCFA (2, 7, 8). In 
human and mice, the ACOX1 enzyme is encoded by asingle gene, which generates two 
splice variants, includingexon 3a or exon 3b, respectively, leading to the synthesisof two 
protein isoforms ACOX1a or ACOX1b (2, 9). Althoughno apparent genotype-phenotype 
correlation hasbeen established in P-NALD (7), a patient with a singlehomozygous 
mutation on exon 3b has also the clinicalsigns and symptoms of P-NALD (10), thus 
revealing thesubstrate specificity of the specific ACOX1 isoforms (2,8). Mice lacking 
Acox1 manifest severe inflammatory steatohepatitiswith increased intrahepatic H2O2 
levels andhepatocellular regeneration (11, 12). Progressively,chronic endoplasmic 
reticulum stress contributes to hepatocarcinogenesis(13), and this steatoticACOX1null 
phénotype can be reversed by expression of the humanACOX1b isoform (8, 13). 
However, even if they showsmaller size and growth retardation when compared 
withtheir littermates, Acox1 null mice have no apparent neurologicaldisorder (11, 14). 
In brain lesions of patientsdeveloping the demyelinating form of peroxisomalX-linked 
adrenoleukodystrophy, oxidative, inflammatory,and apoptotic processes have been 
described (15–17). In this related peroxisomal disorder, lipid dérivatives with an 
abnormally high proportion of VLCFA residueshave been proposed to trigger the initial 
cascade of theinflammatory demyelination (18, 19). However, the componentsof this 
inflammatory process in P-NALD haveremained elusive. To explore the inflammatory 
responsein ACOX1 deficiency, we used two patient-derived fibroblastsfor transcriptomic 
microarray analysis associatedwith a PCR array screening in an attempt to identify 
theinvolved proinflammatory components. 
In the present work, we report the expression profilingof inflammatory cytokines in 
fibroblasts from P-NALDpatients. Alterations in the expression of IL-1 pathwaywere 
revealed and accompanied by increased secretions ofthe IL-6 and IL-8. Fibroblasts 
exposed to VLCFA showincreased expression of cytokines mRNA. Signaling 
pathwaysinvolved in the induction of these cytokines were alsoexplored. 
 
Materials and Methods 
 
Cell culture and VLCFA treatment 
Skin fibroblasts were cultured as described (7) and handledaccording to national and 
institutional guidelines. Cerotic acid(C26:0) (Sigma-Aldrich, St. Louis, MO) was 
solubilized in alpha-cyclodextrine(Sigma-Aldrich). Final concentration of alpha-
cyclodextrine(vehicle) in the culturemediumwas 1 mg/ml. For fibroblaststreatment, the 
final concentration of C26:0 was 10 microM. 
 
Acyl-CoA oxidase activity measurement 
It was performed as described by Oaxaca-Castillo et al. (2). 
 
Immunostaining, fluorescence microscopy, and Nile red staining 
Immunostaining, fluorescence microscopy, and Nile redstaining were achieved as 
previously described (20). 
 
Microarray analysis (Affymetrix, Santa Clara, CA), cytokinesanalysis by Cytometric Bead 
Array Human Inflammation kit (BDBiosciences, Courtaboeuf, France), andPCRarray 
analysis (PAHS-011; SABiosciences-QIAGEN, Courtaboeuf, France) are describedin 
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Supplemental Materials and Methods, published on The EndocrineSociety’s Journals 
Online web site at http://endo.endojournals.org 
 
 
 
Results and Discussion 
 
Characterization of patient-derived-deficient fibroblasts 
 
To characterize the deficiency of ACOX1 in P-NALDfibroblasts, the activity of ACOX1 was 
first measured incell extracts. As shown in Fig. 1A, weak residual palmitoyl-CoA oxidase 
specific activity was present in patient 1fibroblasts, although much reduced, whereas 
thisACOX1activity was undetectable in patient 2 fibroblasts. Bothpatients’ fibroblast 
cells exhibited a strong reduction in thenumber of peroxisomes per cell, as shown by 
peroxisomesimmunostaining with antibodies against catalase (matrixprotein) and 70-
kDa peroxisomal integral membrane protein(Fig. 1B). This is accompanied by the 
enlarged size ofperoxisomes as shown by anticatalase immunofluorescence(Fig. 1C). 
Fibroblasts Nile red staining reveals atransition from the predominance of polar lipids in 
controlfibroblasts (green fluorescence) (Fig. 1C) to an accumulationof neutral lipids in 
P-NALD fibroblasts (yellow fluorescence)(Fig. 1C). Accumulation of VLCFA in plasmahas 
been previously shown for these patients (7). 
 
Transcriptomic profiling of inflammatory genes inP-NALD fibroblasts 
To identify proinflammatory genes that are dysregulatedin P-NALD/ACOX1-deficient 
fibroblasts, we usedAffymetrix microarray profiling. Transcriptional profilingrevealed 
that a number of genes coding for cytokinesand other proinflammatory proteins was up-
regulated (1.5), including, IL-6, IL-8, and several TNFalpha familymembers (3, 8, 9, 
10A, 12, and 14) as well as interferoninducibleproteins (Supplemental Table 1). 
Interestingly,the expression of genes coding for cytokines IL-6, IL-8, and TNFalpha, 
which are typically produced by macrophages and by CD4+ T cells Th1, has also been 
found to beincreased in multiple sclerosis and cerebral forms of 
Xadrenoleukodystrophylesions (15). On the other hand,several cytokines and 
chemokine mRNA are stronglydown-regulated in P-NALD fibroblasts, including 
chemokine(C-X-C motif) ligand (CXCL)14 andCXCL12genes,which have been shown to 
participate in the regulation ofcell or tissues homeostasis (21, 22). 
 
Alterations of the IL-1beta pathway in P-NALD fibroblasts 
To define a specific inflammatory pathway activated inACOX1 deficiency, PCR array 
(SABiosciences), containing84 key genes mediating the inflammatory response 
andwhich include several genes deregulated in our transcriptomicprofiling, was used to 
determine the profile of reverse-transcribed RNA from the two patients derived 
fibroblastscompared with the control fibroblasts. Table 1shows results for genes 

significantly regulated in both patients.Based on the 2-CT analyses of three PCR 

arrays(n3) for each fibroblasts sample, 14 genes were strikinglyand similarly regulated 
in ACOX1-deficient fibroblastsfor both patients (cut-offs, -1.5-fold  gene fold 
expression 1.5-fold). Absence of ACOX1 activity,which leads to VLCFA accumulation, 
triggered mRNAup-regulation of IL-1, IL-1, IL-1R1, IL-1RN, IL-17C,secreted 
phosphoprotein 1 (SPP1), chemokine (C-C motif)receptor type 1 (CCR1), chemokine (C-
C motif) ligand(CCL)3, CCL7, CAAT/enhancer binding protein (CEBP), and Toll-

http://endo/
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interacting protein (TOLLIP) (1.65- to15-fold) and down-regulation of CXCL14, CCL26, 
andCXCL5 (1.92- to 50-fold). Remarkably, all these regulatedgenes are connected to the 
IL-1 pathway. Activationof this pathway is triggered by the binding of theIL-1/IL-1 
heterodimer to IL-1R1 (23). Correspondingly,Table 1 shows that IL-1, IL-1, and IL-
1R1mRNAare significantly induced in P-NALD fibroblasts. Thus,IL-1, which is 
recognized as a proinflammatory cytokine(24), is known to control the expression of 
other inflammatorygenes, including TNF and interferon through awell-defined 
transduction signaling pathway (24). In-triguingly, the expression of IL 1RN, an IL-1 
receptor antagonist,which modulates the inflammatory responses(23), was induced as 
well (Table 1). It is noteworthy thatIL-1RN is also induced in patient serum developing a 
neurologicaldisorder, such as schizophrenia (25). We cannotexclude that IL-1RN 
induction may contribute to the atténuation of the inflammatory stress during P-NALD 
progressionby antagonizing IL-1 activity and thus preservingimmune homeostasis (23). 
Furthermore, another cytokinetranscript IL-17C was increased more than 2-fold in 
bothpatients derived fibroblasts (Table 1). It is a homologuegene of IL-17, which is 
increased in autoimmune diseases,such as multiple sclerosis (26). Thus, IL-17C may 
participates in P-NALD-fibroblasts to the release of both IL-1and TNF (27). 
As shown in Table 1, the SPP1 (also called osteopontin)mRNA is highly induced (at least 
4-fold) in ACOX1-nullfibroblasts. Reportedly, SPP1 expression is induced byIL-1 or IL-1 
as well (28, 29). SPP1 is an extracellularglycoprotein, belonging to the integrin 
superfamily (30). 
This two-sided mediator acts in a context-dependent manneras a neuroprotectant (31) 
or as triggering the neuronaltoxicity (32) and has been reported in several 
neurodegenerativediseases, such as multiple sclerosis, Parkinson’sdisease, and 
Alzheimer’s disease (32). Interestingly, in PNALDfibroblasts beside the induction of 
cytokinemRNA, the expression of several chemokine transcripts(CCL3, CCL7, CCL26, 
CCR1, CXCL5, and CXCL14) isstrongly modified as well (Table 1). Transcripts of 
bothCCR1 and its chemokine ligands CCL3 (Rantes/macrophageinflammatory protein 1) 
and CCL7 (monocytechemoattractant protein-3) were highly induced inP-NALD 
fibroblasts. CCR1 and its ligands play a criticalrole in the recruitment of inflammatory 
cells to neurologicallesions (33, 34). Hence, infusions of several cell lineswith IL-1 or IL-
1, including Caco-2, hepatoma, smoothmuscle, or astrocytes cell lines (35–38), display 
enhancedsynthesis of CCL3 and/or CCL7, which may interact withits CCR1 receptor. 
Thus, induction of CCR1 and its ligandsin P-NALD-fibroblasts may reflect a common 
inflammatoryresponse as reported in many neurodegenerativediseases (34, 39). 
Interestingly, the increased expression of CEBP(2.25-fold) and TOLLIP (mean 2.8-fold) 
constitutes an additionalargument of the activation of the IL-1 inflammatorypathway in 
P-NALD-fibroblasts (Table 1 and SupplementalTable 1). Hence, enhanced synthesis of 
CCL3 ligand(Table 1) through the activation IL-1 pathway (as citedabove) is dependent 
on the transcriptional activation ofCCL3 gene promoter by CEBP (40). Furthermore, 
TOLLIPwhich constitutes an important component of IL-1Rsignaling pathway (41), can 
limit the production of proinflammatorycytokines (42) by controlling the magnitudeof 
IL-6 and TNF in response to IL-1beta (43). 
According to our transcriptomic profiling results (SupplementalTable 1) and using 
cytometric bead array analysis,we show in Fig. 2 that the secretions of IL-6 and IL-
8cytokines were strongly induced in P-NALD fibroblasts,whereas secretion of TNF was 
not significantly changed(data not shown). Thus, ACOX1 deficiency in P-NALDfibroblasts 
leads to the activation of IL-1 inflammatorypathway and enhanced synthesis of its target 
genes, IL-6and IL-8 (Fig. 2). 
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From the 84 genes present in PCR array, only threechemokine genes (i.e. CCL26, CXCL5, 
and CXCL14) exhibiteda similar down-regulation in the two patients derivedfibroblasts 
(Table 1). The CCL26 (or Eotaxin-3) is astrikingly decreased chemokine gene in P-NALD-
fibroblasts(3.5- to 14-fold) (Table 1). This may be correlatedto the induction of CCL3, 
revealing an autocrinemechanism involving CCL3, which selectively down-
regulatesCCL26 (44). Two other transcripts encodingchemokine ligands were highly 
decreased in P-NALD fibroblasts,and both belong to the CXCL family. CXCL5(also called 
epithelial-derived neutrophil-activating peptide78) is down-regulated in P-NALD 
fibroblasts (Table1) and also in plasma of patients with chronic liver diseaseand serves 
as biomarker of necroinflammation and liverfibrosis (45). Hence, P-NALD patients are 
known to develophepatomegaly and liver fibrosis (7). AlthoughCXCL14 deficiency has 
been linked to the attenuation ofobesity and brain control of behavior feeding (46). 
Decreasedexpression of both CXCL5 and CXCL14 (Table1) may reflect the dysregulation 
of lipid metabolism, thusimpacting the inflammatory process during P-NALD 
diseaseprogression. 
 
Inflammatory response of fibroblasts to increasedVLCFA-cerotic acid 
concentration 
The increase in the VLCFA levels precede largely thewhite matter demyelination in P-
NALD and the neuroinflammatoryresponse in childhood X-linked 
adrenoleukodystrophyas well (15, 18, 19). Although it is wellknown that both P-NALD 
and X-linked adrenoleukodystrophyare associated with the accumulation ofVLCFA(1,8), 
the direct role of VLCFA in the induction of inflammatory process still is, however, 
merely speculative (18).To try and understand this possible relationship, wetreated 
control fibroblasts with the cerotic C26:0 fattyacid. Figure 3 shows the time-course 
expression of cytokines(IL-1alpha, IL-1beta, and IL-6) and ACOX1b, the ACOX1isoform 
involved in C26:0-beta-oxidation (2, 8), transcriptsin fibroblasts exposed to 10 microM 
C26:0 during 48 h. Asshown in Fig. 3, enhanced cytokines mRNA expression,particularly 
IL-1alpha and IL-1beta, was evident already between6 and 12 h, showing a sequential 
and similar inductionwith a maximum at 12 h. A return to the control level ofboth 
cytokine mRNA at 18 h is concomitant to a delayedACOX1b mRNA expression hit (Fig. 
3). By contrast, 6 hlater (a 24-h time course), the expression levels of IL-1alpha andIL-
1beta mRNA increased at 24 and 48 h, whereas at the opposite,ACOX1 transcripts were 
reduced again and stay Under the control threshold at 48 h ofVLCFAtreatment. 
Thus,C26:0-VLCFA seems to regulate concomitantly and sequentially,in a divergent 
manner, both cytokines and ACOX1mRNA levels. This sequential regulation in 
fibroblasts isprobably linked to the fact that cytokines, such IL-1beta, areable to increase 
accumulation of VLCFA through inhibitionof the peroxisomal beta-oxidation of C26:0-
cerotic acid by anunknown mechanism (19). This may install a vicious circle,in which 
C26:0 fatty acid triggers earlier increase of mRNAcytokines, which down-regulate 
peroxisomal beta-oxidationleading to the accumulation of VLCFA. The latter in 
turnpromotes the reinduction of cytokine transcripts during asecond late phase. 
 
Signaling pathway involved in cytokines expression 
To explore the transduced signaling associated with IL-1pathway activation in P-NALD 
fibroblasts, we used severalknown kinase inhibitors and evaluate by cytometry the level 
of both IL-6 and IL-8 cytokines. In the light of the activationof IL-1 pathway in P-
NALD/ACOX1-deficient fibroblasts,induced IL-6 is mostly addressed to themedium(Fig. 
4A). Byusing PD 98059, a selective noncompetitive inhibitor of theMAPK kinase 
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(MAPKK), we have shown the inhibition ofsecreted IL-6. This result was confirmed by P-
NALD fibroblasts exposure to another MAPKK inhibitor, U0126 (Fig.4A). Likewise, SB 
203580, a highly specific inhibitor of p38MAPKK, decreased IL-6 secretion as well. 
Similarly, PD98059, U0126, and SB 203580 molecules inhibited IL-8 expressionin P-
NALD fibroblasts (Fig. 4). On the other hand,treatment with SP600125 compound, a 
selective Jun kinases(JNK) inhibitor, exhibited differential effects on IL-6 andIL-8 
secretions by decreasing only IL-8 secretion (Fig. 4, AandB).Regardingthe activation of 
IL-1pathwayinP-NALDfibroblasts, the induction of IL-8 seems to be dependent onthe 
activation of p38MAPK and JNK kinase. 
Hence, IL-1 transduction cascadethrough these kinases has beenshownforbothIL-
8andCCL3(47). In addition, theimplication of nuclear factor Bsignalingpathway is not 
excluded, becauseC/EBPbeta-dependent transcriptional inductionof chemokines by IL-1 
is triggeredthrough the activation of p38MAPK and inhibitor of B kinase (40). 
Accordingly, we also reported (SupplementalTable 1) that themRNAincreaseof TNF 
receptor-associated factor 6,which is known as an IL-1 control relay,functions as signal 
transducer of inhibitorof B kinase (48). 
 
Conclusions 
Although precise role of VLCFA accumulationin P-NALD demyelination remainsto be 
determined, their ability toinduce an inflammatory response addsfurther evidence to 
the role of peroxisomalbeta-oxidation in the maintenanceof cellular homeostasis. 
Therefore, thereported results in the present reporthighlight that in P-NALD, ACOX1 
deficiencyis associated with significantalterations in the inflammatory responseleading 
to the activation of IL-1pathway. Such activation is triggeringthe induction of both IL-6 
and IL-8 cytokinesmostly throughMAPKand p38MAPKK, in addition to the possiblerole 
of JNK kinase in IL-8 induction. 
Our results also suggested a feed-forwardmechanism leading to an additionaldown-
regulation of peroxisomalVLCFA beta-oxidation by the producedcytokines, which may 
aggravates theinflammatory picture in P-NALD. 
These results open a way to explore the modulation ofkinase pathway in an attempt to 
reduce the inflammatoryprocess in this orphan disease. 
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El Hajj, Figure 1 

Characterization of P-NALD patient’s fibroblasts. A, ACOX1 activity measured in both 
patients’ (1 and 2) fibroblasts. Enzymatic activity ofACOX1 was measured using 
palmitoyl-CoA as substrate (2). B, Immunostaining of fibroblasts (control, patient 1 and 
patient 2 fibroblasts) bycatalase, a peroxisomal marker, reveals high number of 
peroxisomes in control cells and low number of peroxisome in P-NALD patient 1 
fibroblasts. C, Immunostaining of control (a) and P-NALD (b) fibroblasts by anticatalase 
reveals enlarged peroxisome size in patient 1 P-NALDfibroblasts (b). Nile red staining of 
control (c) and P-NALD (d) fibroblasts. The green color indicates the predominance of 
polar lipids in control cells,whereas the yellow staining of deficient fibroblasts reveals 
an accumulation of neutral lipids. Microscope images magnifications, X100. Scale bar,10 
m. PMP70, 70-kDa peroxisomal integral membrane protein. 
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El Hajj, Figure 2 
IL-6 and IL-8 cytokine secretion in the culture mediumobtained from the control and P-
NALD fibroblasts. 1.2 x 106 cellswere seeded in 10-cm Petri dishes and cultured in 
DMEMsupplemented with 10% fetal calf serum at 37 C with 5% CO2; 24 hafter seeding, 
fibroblasts were rinsed three times with PBS andincubated in DMEM without serum for 
18 h. Culture media werecollected and analyzed by cytometric bead array as described 
in Materials and Methods. Values are mean  SD. Fib, Fibroblasts. 
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El Hajj, Figure 3 

Time-course fold inductions of cytokines and ACOX1b mRNAin human control 
fibroblasts treated with C26:0 at 10 M in -cyclodextrine at final concentration of 1 
mg/ml. 1.2 x 106 cells wereseeded in 10-cm Petri dishes and cultured in DMEM 
complementedwith 10% fetal calf serum at 37 C with 5% CO2; 24 h after 
seeding,fibroblasts were rinsed three times with PBS solution and incubated in DMEM 
with -cyclodextrine (1 mg/ml) as control or with -cyclodextrine (1 mg/ml) 
supplemented with C26:0 at 10 M. Cellswere collected at the indicated time point by 
trypsination. Values are mean  SD. Total RNA isolated from treated fibroblasts were 
analyzedby RT-quantitative PCR using 
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El Hajj, Figure 4A 
Regulation of IL-6 cytokine in P-NALD fibroblasts by kinases inhibitors. 
P-NALD fibroblasts were treated with the indicated concentration of kinase inhibitors 
for 24 h.Culture media and fibroblasts were collected separately. Cells were washed in 
PBS solution. Themedia and the cell pellet were deep frozen at -80 C until analysis. 
Values are mean  SD.Statistical significance of higher mean signal intensity (**, P  0.01; 
*, P  0.05) compared withthe control. MEK, MAP kinase or extracellular signal-
reregulated kinase. 



El Hajj et al., accepted for publication in Endocrinology, 2012 15 

El 

Hajj, Figure 4B 
Regulation of IL-8cytokine in P-NALD fibroblasts by kinases inhibitors. 
P-NALD fibroblasts were treated with the indicated concentration of kinase inhibitors 
for 24 h.Culture media and fibroblasts were collected separately. Cells were washed in 
PBS solution. Themedia and the cell pellet were deep frozen at -80 C until analysis. 
Values are mean  SD.Statistical significance of higher mean signal intensity (**, P  0.01; 
*, P  0.05) compared withthe control. MEK, MAP kinase or extracellular signal-
reregulated kinase. 
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Supplemental Table 1 
 
Table 1: Microarray results of regulated inflammatory genes in P-NALD 
fibroblastsobtained by Affimetrix profiling. Genes were considered to be significantly 
changed whenraw q-value <0.05 and -1.2>fold-change >1.2. 
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Supplemental Material and Methods 
 
Microarray analysis: Total RNA was extracted from fibroblasts as recommended by 
thesupplier (Qiagen, Courtaboeuf, France). RNA quality was measured on an Agilent 
2100bioanalyzer (Agilent Technologies, Amsterdam, the Netherlands) using 6000 Nano 
Chips 
according to manufacturer’s instructions. cRNA synthesis was performed using 5 μg of 
RNAusing one cycle kit (Affymetrix, Santa Clara, CA). Hybridization, washing and 
scanning ofAffymetrix human genome 133 2.0 plus arrays was carried out according to 
standardAffymetrix protocols. Scans of the Affymetrix arrays were processed using 
packages from theR/Bioconductor project. Arrays were normalized with quantile 
normalization and expressionlevels of probe sets were calculated using the robust 
multichip average method. Differentiallyexpressed probe sets were identified using 
Limma and genes were considered to besignificantly changed when raw q-value <0.05 
and -1.2>fold-change >1.2. 
 
Cytokines analysis: Flow cytometric quantification of cytokine secretion with 
theCytometric Bead Array (CBA): Culture medium was collected by centrifugation and 
stored at−80° C. Samples were defrosted and centrifuged immediately before cytokine 
analysis. IL-8and IL-6 were quantified using the Cytometric Bead Array Human 
Inflammation kitaccording to the supplier instructions (BD Biosciences, Courtaboeuf, 
France). 
 
PCR array analysis: total RNA was isolated as described above. cDNA synthesis andPCR 
arrays (PAHS-011) were achieved using the RT2 PCR Array First Strand kit and 
RT²qPCR Master Mixes respectively (SABiosciences-Qiagen, Courtaboeuf, France). PCR 
arraysincluding customized primers for 84 key human genes mediating the 
inflammatory response,five housekeeping genes, 3 RT controls and 3 positive qPCR 
controls were performedaccording to the manufacturer's instructions in an iCycler (Bio-
Rad, Marnes La Coquette,France). Data analysis was done using the excel analysis 
tool(www.sabiosciences.com/pcrarraydataanalysis.php), which includes descriptive 
statistics,including fold change and volcano plots. 
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