
HAL Id: inserm-00691543
https://inserm.hal.science/inserm-00691543

Submitted on 26 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identifying single copy orthologs in Metazoa.
Christopher J. Creevey, Jean Muller, Tobias Doerks, Julie D. Thompson,

Detlev Arendt, Peer Bork

To cite this version:
Christopher J. Creevey, Jean Muller, Tobias Doerks, Julie D. Thompson, Detlev Arendt, et al.. Iden-
tifying single copy orthologs in Metazoa.. PLoS Computational Biology, 2011, 7 (12), pp.e1002269.
�10.1371/journal.pcbi.1002269�. �inserm-00691543�

https://inserm.hal.science/inserm-00691543
https://hal.archives-ouvertes.fr


Identifying Single Copy Orthologs in Metazoa
Christopher J. Creevey1,2., Jean Muller2,3,4., Tobias Doerks2, Julie D. Thompson4, Detlev Arendt2, Peer

Bork2,5*

1 Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, County Meath, Ireland, 2 European Molecular Biology Laboratory, Heidelberg, Germany,
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Abstract

The identification of single copy (1-to-1) orthologs in any group of organisms is important for functional classification and
phylogenetic studies. The Metazoa are no exception, but only recently has there been a wide-enough distribution of taxa
with sufficiently high quality sequenced genomes to gain confidence in the wide-spread single copy status of a gene. Here,
we present a phylogenetic approach for identifying overlooked single copy orthologs from multigene families and apply it
to the Metazoa. Using 18 sequenced metazoan genomes of high quality we identified a robust set of 1,126 orthologous
groups that have been retained in single copy since the last common ancestor of Metazoa. We found that the use of the
phylogenetic procedure increased the number of single copy orthologs found by over a third more than standard taxon-
count approaches. The orthologs represented a wide range of functional categories, expression profiles and levels of
divergence. To demonstrate the value of our set of single copy orthologs, we used them to assess the completeness of 24
currently published metazoan genomes and 62 EST datasets. We found that the annotated genes in published genomes
vary in coverage from 79% (Ciona intestinalis) to 99.8% (human) with an average of 92%, suggesting a value for the
underlying error rate in genome annotation, and a strategy for identifying single copy orthologs in larger datasets. In
contrast, the vast majority of EST datasets with no corresponding genome sequence available are largely under-sampled
and probably do not accurately represent the actual genomic complement of the organisms from which they are derived.
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Introduction

Not long after the release of the first bacterial genome sequence

[1], large-scale identification of gene families from multiple

organisms became feasible [2–5] and allowed them to be classified

into groups according to their homologous relationships [6]. These

classifications now represent a widely used resource for various

applications [7].

For many applications, it is critical to describe these

homologous relationships in more detail by differentiating

orthologs from paralogs [6]. Orthologs are genes that diverged

through a speciation event, as opposed to paralogous genes, which

diverged after a duplication event [8]. Unfortunately, in practice,

the identification and classification of orthologous genes remains

very difficult and relies on operational definitions [9]. Several

conceptually different approaches have been developed that aim to

establish these relationships between genes from different genomes

[10–13]. The methods are generally based on sequence alignments

between pairs of sequenced genomes where reciprocal best

alignments are used to define orthologs [13] and several online

databases now exist that provide pre-calculated sets at different

taxonomic levels [14–17]. Since defining a clear 1-to-1 relation-

ship between two genes is sometimes complex, operational

orthologous groups have been introduced [7] that allow difficult

cases to be resolved, although these groups depend on the

genomes and taxonomic levels used to derive the respective gene

sets [6]. This is illustrated nicely with an example from the

eggNOG database version 1 (evolutionary genealogy of genes:

Non-supervised Orthologous Groups) [14] which groups genes

into families at different taxonomic levels balancing phylogenetic

coverage and resolution. At the metazoan level in eggNOG (i.e.

metazoan Non-supervised Orthologous Groups or meNOG), all

myosins form a single orthologous group (meNOG06059) as the

differing body plans across the animals do not allow a more

specific classification. However, when considering the mammalian

level (i.e. mammalian Non-supervised Orthologous Groups or

maNOG), the myosins are divided into 5 gene families with

separate annotated functions (maNOG16585 - cardiac muscle;

maNOG08909 - skeletal muscle protein; maNOG04095 - motor

protein; maNOG16587 - striated muscle contraction and

maNOG17387 - myosin-1) [14]. At any taxonomic level, the

identification of single copy (or 1-to-1) orthologs is important for

phylogenetic measures while, 1-to-many and many-to-many

relationships of genes between sequenced genomes reveal

functional differences [18,19].

The definition of genes in a pair of species as single copy

orthologs implies that they have kept this status since the species

last shared a common ancestor [20] (although it does include rare
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complex scenarios, such as the differential loss of paralogs after

whole genome duplication [21] or orthologous gene displacement

[22]). The single copy status of such genes makes them very useful

for a variety of comparative genomic approaches such as large-

scale phylogenetic reconstructions [23–26], and assessments of

completeness of sequenced genomes [27–29]. Regardless of the

methods used to create the gene sets (or families), single copy gene

families are identified by counting the number of representatives of

each species in the family in question. Due to problems of genome

incompleteness or misannotation, a tolerance, e.g. of plus or minus

one copy from a single organism, has been shown to increase

prediction sensitivity [30]. Nevertheless, this arbitrary value is

insensitive to the number of genomes in the study, and while some

attempts at estimating the underlying stochastic error in low

coverage genomes have been made [31] no wide-scale adjustments

can be done. Furthermore, ortholog datasets constructed using

different methods can differ greatly, making comparisons between

different sets of single copy orthologs meaningless [32,33]. Finally,

standard taxon-count methods discard many multigene families

containing subsets of single copy orthologs. As a result, a

potentially large proportion of phylogenetically useful genes are

excluded from subsequent analyses.

To address these issues, we have developed a phylogenetic

approach for identifying overlooked single copy orthologs within

multigene families and applied it to a minimal set of (18) high

quality metazoan genomes spanning multiple metazoan phyla. We

identified a set of 1,126 single copy orthologs representing a wide

range of functional classes, expression profiles and evolutionary

rates. These ortholog sets were then used to assess 24 metazoan

genomes and 61 publicly available sets of ESTs from a wide

selection of metazoan groups for their completeness.

Results/Discussion

Identifying single copy metazoan orthologs
We assembled all the gene families from a minimal set of 18

metazoan genomes using eggNOG version 1 [14]. The genomes

were chosen on the basis that they have been in the public domain

long enough to have been improved and refined (Supplemental Table

S1). The choice of genomes is critical for our purposes, since we need

to balance the quality of the dataset used to ensure confidence in our

results and a wide enough distribution of distinct lineages to enable us

to assess the true status of metazoan single copy orthologs.

Firstly, single-copy orthologs were identified from the gene

families where one copy from each of the 18 metazoan genomes was

present. A loss or duplication event in a single genome per family

was permitted since (i) many published genomes are not complete,

(ii) gene predictions are not perfect and (iii) in some genomes,

pseudogenes are not annotated as such, thus appearing as artificial

duplications. This resulted in 219 genes with exactly one ortholog in

each genome examined, 125 genes that were duplicated in only a

single genome and 478 genes that were lost in only a single genome,

with an average coverage of 92% per genome. Given that both

duplication and loss events are likely to occur at rates determined by

the molecular clock [18], the much higher number of losses seems to

indicate a considerable incompleteness of the published genomes

(see Supplemental Table S2 for more details). This hypothesis

provides a strategy for estimating the underlying stochastic error

rate in genome annotation in other datasets.

Secondly, a gene-tree reconciliation approach [34] was used to

identify sub-trees of multigene families where the sub-tree contains

only single copy orthologs and no duplications or losses have been

observed since the last common ancestor of Metazoa. These sub-

trees will be referred to as ‘single copy sub-trees’ hereafter. This

procedure necessitated the construction of robust gene-trees for

over 20,000 multigene families, as well as a ‘‘species’’ tree from 40

universally distributed single copy gene families (Figure 1.1) [35].

The species tree was then used as a guide to construct a reconciled

tree for each multigene family, where the history of the gene tree

was embedded in the species tree. We then calculated the number

of duplications and losses that are required to explain the topology

of the gene tree, given the species tree. As this is dependent upon

the root chosen for the gene-tree, all possible rootings were

assessed for each gene tree, and the one that minimized the

number of duplications and losses was considered to be the most

parsimonious (Figure 2) [36].

Two different species trees were applied in the reconciliation

procedure: one supporting the Coelomata hypothesis for animal

evolution, although this hypothesis is questionable due to potential

long-branch attraction and other issues [37], and one supporting

the Ecdysozoan hypothesis for animal evolution (Figure 3). The

results from both reconciliations were then pooled. For each gene-

tree, the most parsimonious reconciliation for the species trees was

used to determine whether there were any single copy sub-trees in

the corresponding multigene family (allowing for species-specific

duplications or losses) (Figure 2). Using this approach, we

identified 304 additional single copy Metazoan orthologs,

increasing the number of single-copy orthologs by 36%.

By combining the single gene families and the single copy sub-

trees in multigene families, we identified a total of 1,126 single

copy metazoan orthologs with an average gene length of 552

amino acids (ranging from 72 to 4,762, see Supplemental Figure

S1 and Supplemental Table S3 for more details). Interestingly,

the distribution of expression profiles for the human genes in

these families showed no significant difference from the

distribution of expression profiles for 33,675 human gene

transcripts (from across 79 different tissue types), indicating that

the single copy orthologs are representative of a wide spectrum of

expression profiles (Supplemental Figure S2). Similarly, the

distribution of sequence conservation in the 1,126 single copy

orthologs is similar to that found in the complete spectrum of

meNOGs, ranging from low to highly divergent gene families

(Supplemental Figure S3).

Author Summary

The correct identification of single copy (1-to-1)
orthologs is crucial for functional classification of genes
and for phylogenetic studies of groups of organisms,
including the Metazoa. Nevertheless, despite the recent
increase in the number of genomes and short sequence
read datasets (e.g. ESTs) from the Metazoa, we know
little about their completeness and how useful they may
be for phylogenetic studies. Here we describe a novel
approach for the identification of single copy gene
families at any hierarchical level and demonstrate its
effectiveness by identifying a set of over one thousand
gene families that have been in single copy since the
last common ancestor of the Metazoa. By comparing our
orthologs to those predicted by other datasets we show
that our procedure identifies a significantly larger set of
single copy orthologs in the Metazoa. We then use this
dataset to assess 24 metazoan genomes and 61
metazoan EST datasets for their completeness. We thus
identify the underlying error rate in genome annotation
and suggest a mechanism for assessing the quality of
genomes and EST datasets in terms of their suitability
for phylogenetic studies.

Metazoan Orthologs
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Assessing the level of genome misannotation
To test the validity of our assumption that the loss of a gene in a

single lineage (genome) may be representative of misannotation,

we examined two genomes that represent extremes in genome

annotation quality. Homo sapiens (version NCBI 36) was the best

annotated genome in our dataset and was missing representatives

from only 2 single copy gene families. We compared this with Pan

troglodytes (version 1.0) which was missing representatives from 231

single copy gene families. We searched the latest annotation of the

chimpanzee genome (version 2.1) and identified 115 orthologs of

these missing genes. In addition, BLAST [38] searches were

performed for a random sample of the remaining 116 genes and

homologous regions with high identity were found for all of them.

Our findings are corroborated by a recent manual comparison of

the single copy orthologous regions between the human and

chimpanzee genomes which revealed that only 3 human genes did

not have corresponding orthologs in the chimpanzee genome [39].

We then carried out the same procedure for the two single copy

genes missing in the human genome. Using NCBI BLAST to

search the latest human genome database (build 37), we identified

significantly conserved homologous regions for both gene families,

further supporting our assumption that a loss in a single genome

may be representative of annotation errors rather than a genuine

loss. Another factor, which may contribute to the apparent

differences observed in the single copy gene complement of some

genomes, is that the human genome is often used as a template to

identify putative orthologs in metazoan genome projects. This may

not be appropriate for some species because of differential

evolutionary rates or adaptation, and may lead to orthologs not

being identified in the new genomes.

Figure 1. Project workflow. The analysis workflow is divided into 3 major steps. The first step (Eukaryotic guide tree construction) aims at
constructing the guide tree used to infer duplication and loss events. The second step (Identification of core metazoan gene families) is the core of
our method, i.e. the identification within the eggNOG database of the single copy genes. The last step concerns the extraction of the single copy
genes from the EST datasets.
doi:10.1371/journal.pcbi.1002269.g001

Metazoan Orthologs
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Assessing genomes and EST datasets
To demonstrate the utility of a complete ortholog dataset for a

particular phylogenetic group, we assessed the number of single

copy orthologs in 18 established and 6 draft or recently published

metazoan genomes (and 1 outgroup genome) (Supplemental Table

S4), as well as in 62 published EST datasets (Supplemental Table

S5). The percentage of detected single copy orthologs can be used

as a good approximation of genome completeness.

The choice of genomes to include is an inherent problem for

identifying true single copy orthologs, as one would expect the

number of gene losses observed in individual gene families to

increase with the number of genomes included in the analysis. In

our dataset of 18 established genomes, we observed on average 8%

of the genes missing per genome, ranging from only 2 missing

genes in human to 370 in Ciona intestinalis (Figure 4 and

Supplemental Table S1). The large number of missing genes in

Ciona intestinalis might be due to the divergence of the organism

[40], perhaps in combination with incomplete sequencing and/or

annotation. As demonstrated above for Pan trogylodytes, we expect

the number of missing genes to decrease considerably as the

quality of the genome annotation increases. For this set of

genomes, we would therefore expect on average 1.44 genes/

species missing per family, but for a larger dataset of 30 genomes,

an average of 2.4 genes missing per family may be more

appropriate.

This is further supported by the fact that, on average, only 10%

of the single copy orthologs in the 6 draft or recently published

metazoan genomes were found to be missing (Supplemental Table

S4). While the slightly higher average number of missing single

copy orthologs suggests that high quality genomes should be used

for the initial definition of orthologous groups, this result

demonstrates the universality of these single copy orthologs in

the Metazoa.

The majority of the EST datasets examined were far from

complete, missing on average 936 (83%) of the 1,126 universal

single copy orthologs (ranging from 1,123 (99.8%) missing in

Suberites domuncula to 153 (14%) in Lottia gigantea) (Figure 4 and

Supplemental Table S5), even though the datasets contained many

thousands of EST sequences (Supplemental Table S5). For

instance, there were 164,325 ESTs for Hydra magnipapillata, but

we failed to identify representatives for 480 (43%) of the single

copy orthologs. Despite the different library normalization

protocols used for EST dataset generation, the number of single

copy orthologs initially correlates with the size of the dataset and

then plateaus (Supplemental Figure S4), suggesting that with more

data it may be possible to define a minimum number of ESTs

necessary to achieve complete coverage of the genes from an

organism.

Our results identify taxonomic groups that are poorly

represented so far, despite EST sets being available for some

species and regardless of coverage and other annotation issues

(Figure 4). Among the major groups of Metazoa, the Chordates

achieve the best coverage of single copy orthologs, with an average

of 989 (88%) per species (the majority of which were genomes).

Similarly, on average 1,032 (92%) of the single copy orthologs

were found in the Insects (all genomes). However, some other

groups were not as well represented: the Crustacea for example

had on average 251 (22%) single copy orthologs per dataset (all

ESTs), while the Mollusca had 237 (21%). Interestingly, these

datasets have been used recently to reconstruct hypotheses about

their interrelationships [26,41]. These major metazoan groups

require either representative genomes to be sequenced or in the

short-term, larger (or at least normalized) EST datasets to be

generated.

Assessing the method using other resources
Depending on the methods and sequence databases used to

construct the orthologous groups, the exact content of a specific

gene family can differ [42]. In general, corresponding gene

families in different databases will share a ‘‘core’’ of proteins, but

Figure 2. Gene tree reconciliation process. Reconciling a gene tree with a (guide) species tree. A) Given the species tree on the left, we need to
estimate the most parsimonious number of duplications and losses that explain the topology and distribution of the gene tree (on the right). In order
to assess correctly the number of duplications and losses, we need to find the best rooting of the gene tree. To this end, the gene tree is rooted at
every possible position, and for each rooting, the most parsimonious number of duplications and losses is calculated. The rooting that requires the
fewest number of steps (duplications and losses) is considered the most parsimonious rooting of the gene tree. For example: the reconciliations for
two possible rootings are shown: positions X and Y in panes B) and C). The positions of duplication events are indicated with a diamond, losses are
indicated with a dashed line. B) Rooting the gene tree at position X in B) requires duplication and two losses, while rooting at position Y in C) requires
1 duplication and 1 loss. Of the two rootings, position Y is the most parsimonious. The numbers on the internal branches indicate the internal branch
of the species tree in A)that they are mapped to. If we were trying to identify single copy genes at the hierarchical level of internal branch 2 on the
species tree, then the sub-tree marked with a * in C) would represent a gene family that has been in single copy since this hierarchical level.
doi:10.1371/journal.pcbi.1002269.g002

Metazoan Orthologs
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Figure 3. Eukaryotic guide trees used in the analysis. The Eukaryotic guide trees constructed based on a concatenated alignment of the 40
universally distributed genes [35]. A) The phylogeny supporting the Coelomata hypothesis for the evolution of animals. B) The phylogeny supporting
the Ecdysozoa hypothesis for the evolution of animals was created by hand from A). Branch lengths represent the evolutionary distances between
the taxa based on their amino acid sequences and were estimated using the same alignments of universal genes. Both trees were used in the gene-

Metazoan Orthologs
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the inclusion of differing ‘‘peripheral’’ proteins causes differences

to be observed in copy numbers in some species. In order to

demonstrate that our results were not just a product of the

approach taken to reconstruct the gene families in eggNOG, we

also carried out the single-copy ortholog identification using the

Ensembl compara dataset (version 56) [16].

The Ensembl compara dataset consists of 18,762 gene families,

constructed using 830,582 genes from 49 metazoan species and

one fungal species (Saccharomyces cerevisiae). Gene sequences and

computed phylogenies are provided for each family [16], however

as there is no indication of levels of support for each of the internal

branches on the computed trees, we reconstructed multiple

sequence alignments and phylogenies for each gene family,

retaining only the most highly supported branches. This dataset

was much larger than the dataset from eggNOG, but included

genomes of varying quality and sequencing coverage. Given the

influence of these factors [43,44], we carried out three analyses:

firstly with the entire dataset, then excluding all those genomes

that had less than 36 coverage and finally less than 76 coverage.

The resulting datasets comprised 49, 34 and 24 genomes

respectively (Supplemental Figure S5).

Using all 49 genomes, only 112 single-copy gene families were

identified using the standard taxon-count approach, while the

phylogenetic analysis rescued 5 additional ones, representing an

increase of 4.5%. However, when the lowest quality genomes were

excluded (less than 36 coverage) the total increased to 258, of

which 34 were identified only using our method (a total of 15%

increase in single-copy families). Finally, when only the highest

quality genomes were included (greater than 76 coverage), we

were able to identify a total of 687 single-copy orthologs, of which

173 were found with the phylogenetic approach, increasing the

number of single-copy gene families by 34%. This latter number is

comparable to the 36% increase achieved with the eggNOG

dataset using the same genome quality.

The increased number of identified single copy gene families

demonstrates the advantage of analysing multigene families using

a phylogenetic approach. Such differentiation between orthology

and ‘hidden paralogy’ can only be achieved by taking the

phylogenetic signal of the gene family into account, such as in

our gene tree reconciliation analysis. This is especially important

when marker genes are used for the purposes of reconstructing

phylogenetic trees.

Conclusions
In conclusion, we report a protocol for the identification of

single copy orthologs in Metazoa that leads to considerably higher

accuracy than other methods. The absence of these genes in some

genomes seems to indicate mostly missing sequence and gene

annotation rather than true gene loss. This provides a unified, fast

and efficient way to estimate the expected number of missing genes

in a genomic or transcriptomic dataset. Furthermore, the low

numbers of universal single copy metazoan orthologs in current

EST datasets point to their relatively low gene coverage, despite

the fact that these datasets sometimes contain many thousands of

ESTs. The set of metazoan single copy orthologs derived here

should not only be useful for simple coverage control of genomic

datasets, but with its 600,000 aligned amino acid positions, it

represents a dataset which is likely to be very useful for many other

phylogenetic studies.

Materials and Methods

We define the metazoan single copy orthologs as the set of genes

that have remained in single copy (without duplications or losses

occurring) since the last metazoan common ancestor. All Metazoa

should possess these genes and any absence would represent

incomplete sampling from the species or misannotation. Marker

genes such as these are identified by compiling all the genes that

are in ‘‘one to one’’ relationships with orthologs in other species.

However, this fails to identify subsets of large-multigene families,

which may have remained in single copy since the last common

ancestor of the species in question. In order to address this

inadequacy, our methodology as outlined in Figure 1 consists of 4

main steps:

1) Construction of a robust eukaryotic species tree

2) Identification of single copy orthologs from the meNOGs

3) Extraction of single copy orthologs from draft genomes and

EST datasets

4) Assessing the method using other resources

1) Eukaryotic species tree construction (Figure 1.1)
The 40 universal gene families previously described in [35] were

used to construct a species tree of the Eukaryotes. Each of the gene

families was aligned separately using Muscle [45] with the default

settings. Gblocks [46] was then used to remove the badly aligned

regions (using the default settings, except for the following:

Minimum Length Of A Block = 2; Allowed Gap Positions = all).

All 40 resulting Multiple Sequence Alignments (MSA) were

manually checked and then concatenated. Next, 100 bootstrap

replicates of the alignment were carried out using the SEQBOOT

program from the Phylip package [47]. Following this, PhyML

[48] was used to find the maximum likelihood tree for each of the

100 bootstrap replicates and for the original alignment. The

parameters used were as follows: the JTT model of evolution with

the proportion of invariable sites estimated; site rate-heterogeneity

was estimated using a gamma model with an estimated alpha

parameter; rate heterogeneity was summarized using 4 site

categories.

Finally, a consensus tree was constructed, using the CON-

SENSE program from the Phylip package [47]. The phylogenetic

hypotheses constructed were visualized using the iTOL web server

[49]. A pruned version of this tree containing only the species in

our set of metazoan orthologous groups (e.g. 19 species in the

meNOGs including Monosiga brevicollis as an outgroup) was

extracted from the resulting phylogeny. The resulting pruned tree

supported the Coelomata hypothesis of animal evolution. A

second version of the tree was constructed by hand which

supported the competing Ecdysozoa hypothesis (Figure 3). Both

species trees were then used in the subsequent analyses so as not to

bias results towards either of the two hypotheses.

2) Identification of single copy orthologs from the
meNOGs (Figure 1.2)

The metazoan Non-supervised Orthologous Groups (meNOGs)

were obtained from the eggNOG database (Version 1) [14]. The

meNOGs are gene families built from 363,805 proteins from the

following 18 metazoan species: Homo sapiens, Pan troglodytes, Macaca

tree reconciliation step, so as not to bias subsequent analyses towards either hypothesis. Filled circles represent internal branches that received
greater than 95% Bootstrap proportion (BP) support. Open circles represent internal branches with greater than 60% BP support.
doi:10.1371/journal.pcbi.1002269.g003

Metazoan Orthologs

PLoS Computational Biology | www.ploscompbiol.org 6 December 2011 | Volume 7 | Issue 12 | e1002269



Figure 4. Distribution of single copy genes in the analyzed species. Distribution of single copy genes across all studied species. The tree
contains the species analyzed in this study and their relationships as defined by the NCBI taxonomy. The number of single copy genes found in each
species is shown, along with a representation of that value as a percentage of all the 1,126 single copy genes and as a percentage of the total number
of genes in the genome or EST dataset used. The black bars represent counts from genomes, grey bars from published EST datasets. Species names in
bold indicate the species that were used to define the set of single copy orthologs.
doi:10.1371/journal.pcbi.1002269.g004

Metazoan Orthologs
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mulatta, Mus musculus, Rattus norvegicus, Canis familiaris, Bos taurus,

Monodelphis domestica, Gallus gallus, Xenopus tropicalis, Tetraodon

nigroviridis, Takifugu rubripes, Danio rerio, Ciona intestinalis, Anopheles

gambiae, Drosophila melanogaster, Apis mellifera, Caenorhabditis elegans

from version 38 of Ensembl (see: http://www.ensembl.org/info/

website/archives/assembly.html for details of the genome ver-

sions). The meNOGs link 241,305 proteins in 23,033 gene

families. They can be divided into 4,404 groups having a 1-to-

many relationship (i.e. only a single species had duplication

events), 3,721 many-to-many (i.e. multiple species have undergone

duplications) and 14,908 with 1-to-1 relationships (i.e. a single

copy for each genome). The single copy relationships between the

different numbers of species in eggNOG are outlined in

Supplemental Table S6.

Identification of single copy orthologs. Using the gene

families from eggNOG, we searched for potential metazoan

marker genes that have been in single copy since the last common

metazoan ancestor. In order to overcome possible misannotation

in the genomes used in the analysis, we allowed for the absence of

a gene copy if the reconciliation showed it was species-specific.

Similarly, we also allowed for the inclusion of a family with a

duplication if the duplication event was species-specific (e.g. in

some genomes, pseudogenes are not annotated and appear as

artificial duplications). For single copy orthologs found in all

Metazoa, naturally occurring duplications are rare [50]. The

protocol resulted in the identification of 822 single copy genes (219

found in all 18 species, 125 with 1 duplication, 478 with 1 loss) (see

Supplemental Table S2 for more details).

We also identified sub-families of large multigene families that

had been in single copy since the last common ancestor of the

Metazoa. Since we used a phylogenetic approach, we were able to

locate duplications or losses in the sub-families. Thus, we only

included those sub-trees that had undergone only species-specific

duplications or losses, or none at all. The rationale behind the

inclusion of these duplications or losses was that they would have

no effect on the phylogenetic signal of the metazoan species tree (if

indeed they were real duplications or losses and not just

misannotations).

Firstly, robust MSA were constructed for each of the 23,033

meNOGs. Of these, 20,262 contained more than 2 sequences and

were aligned using the AQUA program [51], which was setup to

run Muscle [45] and Rascal [52]. AQUA exploits the NORMD

program [51], in order to assess the quality of each individual

MSA and to select the best MSA with the highest norMD score.

Here, the Muscle MSA was selected in 14,617 of the cases and the

refined Rascal MSA in 5,645 of the cases. The distribution of the

norMD scores in the resulting 20,262 MSA is a good indicator of

the quality of our dataset. Indeed, one can observe in

Supplemental Figure S6 the high proportion of highly reliable

MSA (i.e. norMD score.0.6 [52]).

Secondly, each of the meNOG alignments was used to construct

a phylogenetic tree. This was done by initially carrying out 100

bootstrap replicates of each alignment using the SEQBOOT

program from the Phylip package [47]. Following this, PhyML

[48] was used to find the maximum likelihood tree for each of the

100 bootstrap replicates and for the original alignment. The

parameters used were as follows: the JTT model of evolution with

the proportion of invariable sites estimated; site rate-heterogeneity

was estimated using a gamma model with an estimated alpha

parameter; rate heterogeneity was summarized using 4 site

categories. A consensus tree was constructed using the ‘‘consen-

sus’’ command in Clann [53]. In general, sequence format

conversion was carried out using the ReadSeq program [54]. The

phylogenetic hypotheses constructed were visualized using the

iTOL web server [49].

Finally, each of the meNOG trees was reconciled with the two

eukaryotic species trees (i.e. Coelomata and Ecdysozoa trees)

(Figure 3) using gene-tree parsimony [34] as implemented in Clann

(version 4) [53]. This procedure assumes that all conflicts between

the gene trees and the species trees arise from either duplications or

losses (which is reasonable when dealing with the Metazoa) and

estimates the most parsimonious solution for the number of

duplications and losses required to explain the discrepancies

between them [34,36]. As gene trees are (by their nature) unrooted

and our protocol requires a reliable rooting, this procedure was

carried out for every possible rooting of each of the gene trees. The

number of duplications and losses calculated for each rooting was

used as an indication of the reliability of the rooting. The most

parsimonious rooting (which required the fewest number of

duplications and losses to explain the difference between its

topology and that of the two species trees) was used to study the

duplications and losses in the Metazoa (Figure 2). Unresolved

internal branches in the gene trees are treated as soft polytomies

during the reconciliation process and are assumed not to conflict

with the species tree (thus do not contribute to the number of

duplications and losses reconstructed). The sub-trees of meNOGs

that were in single copy since the last metazoan ancestor were then

identified, extracted and classified as single copy orthologs (allowing

for species-specific duplication or losses to account for genome

annotation errors) (see Figure 5 for an example).

This gene tree reconciliation method identified a further 304

single copy orthologs. Since our approach is dependent upon

constructing reliable trees for each of the gene families, (as

described above) we summarized the bootstrapped trees, retaining

only those relationships with greater than or equal to 80% BP

support. Even using this conservative approach, it is possible that

phylogenetic reconstruction artifacts, such as systematic bias, long

branch attraction or poor model selection, may cause the gene

trees to differ from the ‘‘species’’ tree. However, our method

excludes any sub-trees that explicitly differ from the species trees

(e.g. not having monophyletic chordates). This reduced the

number of single copy orthologs identified, but also minimized

the possibility of including false positives.

After removal of redundant single copy orthologs found using

both of the species trees described above, a total of 1126 meNOGs

were used to define our final dataset (see Supplemental Table S3

for details of the genes in the dataset).

In order to explore some of the characteristics of the single copy

meNOGs identified here, we report their function distribution (see

Supplemental Figure S7), expression profiles (see Supplemental

Figure S2) and sequence conservation (Supplemental Figure S3).

Functional distribution. The functional classifications for

each of the 1,126 single copy genes were extracted from the

automatically generated annotations in the eggNOG database

[14]. These functions were summarized in 4 categories: Poorly

characterized; Metabolism; Cellular processes and signaling;

Information storage and processing (Supplemental Figure S7).

Gene expression comparison. Gene expression data for

33,675 human gene transcripts from 79 tissue types were

downloaded from the BIOGPS database [55]. A subset of 61

transcripts, which overlapped with our dataset of single copy

orthologs, was identified from this larger dataset. The average GC-

RMA values across all 79 tissue types was calculated and the

expression level distribution for this subset of 61 genes was

compared to the distribution for all 33,675 genes in our dataset

using the R statistical software package [56] (Supplemental Figure

S2).
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Sequence conservation within the meNOGs. To provide

an estimate of evolutionary divergence, we calculated the mean percent

identity in the MSA for each meNOG (described as the ‘‘FamID’’ in

[57]). We then compared the sequence conservation distribution for

the 1,126 single copy orthologs to the distribution for the full set of

20,262 meNOGs. No specific differences could be observed, indicating

that our dataset of single copy meNOGs contains the full spectrum

from fast to slow evolving gene families (Supplemental Figure S3).

3) Extraction of single copy orthologs from draft
genomes and EST datasets (Figure 1.3)

Draft genomes. Six draft metazoan genomes (Capitella,

Trichoplax adhaerens, Branchiostoma floridae, Helobdella robusta, Nematostella

vectensis and Strongylocentrotus purpuratus) and 1 draft outgroup genome

(Monosiga brevicollis) were assessed for completeness using the 1,126

single copy orthologs (see Supplemental Table S4). All the proteins

from these draft genomes were aligned using the PARALIGN

software [58] and the Smith-Waterman algorithm against the

363,805 proteins in eggNOG. Genome proteins were assigned to

the meNOGs based on best reciprocal hits (with a bit score

threshold of at least 180). The number of proteins assigned from

each genome to the meNOGs is outlined in Supplemental Table

S4. The genes assigned to any of the 1,126 gene families found to

be in single copy in the Metazoa were retained.

EST datasets. The 62 metazoan EST datasets, described in

Supplemental Table S5, were assembled to assess their

completeness using the single copy orthologs identified as part of

this study. The following procedure was used to extract the single

copy orthologs from each of the EST datasets separately.

1. Each EST was aligned to all proteins from eggNOG, using the

BLASTX program from the Washington University’s BLAST

Figure 5. Multigene family reconstruction. An example of the reconciliation of a proteasome 26S subunit multigene family is shown in the left.
Duplications are hypothesized to have occurred on the branches colored in red, while those branches that are hypothesized to be lost are in grey.
The subtree in the dashed box has been identified as being in single copy. The tree on the right is a more detailed view of the same clade. The leaves
on the tree are labeled with their species names followed by the protein ID of the specific sequence that was mapped to that position.
doi:10.1371/journal.pcbi.1002269.g005
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package (WUBLAST) (http://blast.wustl.edu). Alignments with a

bit score greater than or equal to 60 bits were considered

significant and were retained for further analysis.

2. Each EST with significant alignments to proteins belonging to

single copy orthologous groups were extracted. Any ESTs with

a higher affinity to a protein that was not a member of the

single copy gene families was discarded in order to minimize

the possibility of including paralogs. Generally, for each EST

related to a single copy orthologous group, multiple significant

alignments to different family members were found. This

information was used to identify the first and last position on

the EST that matched the orthologous group. These positions

were then extended where possible to the nearest methionine

or stop codon respectively. Finally, this portion of the EST was

extracted and translated into its amino acid equivalent using

the reading frame indicated from the BLASTX results. These

ESTs are referred to hereafter as the 1-to-1 ESTs.

3. In order to identify ESTs that may be mitochondrial versions of

genes included in the single copy orthologous groups, a database

of 1,016 mitochondrial genomes was retrieved from NCBI

RefSeq [59]. Alignments were then carried out between the 1-to-

1 ESTs and all the mitochondrial sequences, using the BLASTP

program from the WUBLAST package. ESTs that aligned to a

mitochondrial sequence with a bit score equal or higher than the

best bit score from the genomic databases were discarded.

4. All remaining single copy ESTs were combined with the sequences

from the meNOGs to which they belonged. MSAs for each family

were then computed using the default settings in Muscle [45].

5. Using the aligned sequences, multiple ESTs were then

assembled into a single sequence by combining ESTs that

spanned different parts of the gene and discarding ESTs that

represented portions of the gene covered by larger ESTs.

6. Finally, the quality of the assembled ESTs was assessed at the

level of the whole sequence and at the level of individual

assembled sites, using the following two methods:

N The quality of the combined and translated EST sequences

was assessed by aligning them individually to each of the

sequences from its single copy ortholog family, using the

BLASTP program from the WUBLAST package. ESTs with

similarity scores of less than 60 bits to the best-matching

single copy ortholog were discarded. This filter was designed

to remove ESTs that were not translated into the correct

amino acid equivalent, generally due to sequencing errors

changing the reading frame mid-sequence when several

ESTs were assembled into a single sequence.

N Individual sites of the assembled and translated EST

sequences were assessed using a Hidden Markov Model

(HMM) based on the genomic sequences corresponding to its

meNOG, using HMMBUILD from the HMMer package

[60]. Each assembled EST was then aligned to the HMM

using HMMALIGN [60] and sites in the combined ESTs that

did not align to the HMM were discarded. This filter was

designed to remove sites that were originally at the start or end

of an individual EST (but did not belong to the coding

sequence), and that were relocated within the combined

sequence during the EST assembly process (step 5 above).

4) Assessing the method using other resources
Metazoan gene families and their associated sequences were

retrieved from the ENSEMBL compara (Version 59) database

[16]. The ENSEMBL compara dataset consists of 18,762 gene

families, constructed using 830,582 genes from 49 metazoan

species and one fungal species (Saccharomyces cerevisiae) as an

outgroup. While phylogenies for each of the gene families are

provided, there is no indication of the support level for each

internal branch. In order to include only the most highly

supported hypotheses of relationships, we extracted the sequences

for all the proteins in a given gene family and realigned them using

AQUA [51]. The resulting alignment was then used to build a

phylogeny from 100 bootstrap resamplings using BIONJ [61] in

Paup* [62]. The representative species tree provided by

ENSEMBL for these genomes was used for the purposes of the

reconciliation analysis.

To study the effect of including genomes of varying quality,

we identified the levels of coverage of the ENSEMBL genomes.

We then carried out three analyses: the first included all the

metazoan genomes from the dataset; the second excluded those

genomes with less than 36 coverage; the third excluded those

genomes with less than 76 coverage. This resulted in datasets

containing 49, 34 and 24 genomes respectively. For each

dataset, all 18,762 gene trees, as well as the Ensembl species

tree, were pruned down to the corresponding taxon set. A

standard taxon-count approach was then used to identify the

number of single copy gene families in each dataset. For the

remaining multigene families, Clann [53] was used to perform

gene tree reconciliations in order to identify sub-trees that were

in single copy in the Metazoa.

Supporting Information

Figure S1 Distribution of average gene lengths. The

distribution of average gene lengths (in amino acids) of the

1,126 single copy metazoan orthologs identified as part of this

analysis.

(PDF)

Figure S2 Comparison of the expression profiles of the
single copy orthologs with all known human transcripts.
The average GC-RMA normalized expression profiles of 33,675

human gene transcripts from across 79 tissue types are compared

with the expression profiles of the 61 single copy orthologs for

which we could find expression profiles from the same tissue types.

The expression profile data was retrieved from the BioGPS

database [55].

(PDF)

Figure S3 Comparison of the mean percent identities of
the single copy orthologs with all orthologous groups.
The distributions of the mean percent identities for the 20,262

orthologous groups in the meNOGs and for the 1,126 single copy

orthologs identified as part of this study.

(PDF)

Figure S4 Statistics of the EST datasets analyzed in this
study. A) The number of core metazoan gene families found

versus the number of ESTs in the dataset. B) The average size

of a gene versus the number of EST datasets in which it was

found.

(PDF)

Figure S5 ENSEMBL compara (version 59) genomes.
The genomes from ENSEMBL version 59 used to demonstrate the

effectiveness of the reconciliation technique on another dataset.

The boxes indicate the level of coverage that the genome sequence

had reached at this version.

(PDF)
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Figure S6 Distribution of norMD scores calculated.
Distribution of norMD scores computed for the MSAs of the

20,262 meNOGs.

(PDF)

Figure S7 Functional classifications of the genes in the
single copy gene dataset. The bar chart shows the functional

classifications for all 1,126 single copy gene families.

(PDF)

Table S1 Genomes used to define the orthologous
groups. The genomes used to define the orthologous groups,

from which single copy orthologs in Metazoa were identified.

(PDF)

Table S2 Number of single copy gene families identi-
fied using the taxon-count approach. The number of gene

families identified as having either a single loss or duplication in an

individual metazoan species, using the standard taxon-count

approach.

(PDF)

Table S3 Description of all 1,126 single copy orthologs
identified. Gene descriptions where available for the 1,126 single

copy orthologous groups identified as part of this study.

(PDF)

Table S4 Details of the draft or recently published
genomes assessed. NCBI = National Center for Biotechnology

Information. JGI = Joint Genome Institute (These sequence data

were produced by the US Department of Energy Joint Genome

Institute http://www.jgi.doe.gov/ in collaboration with the user

community).

(PDF)

Table S5 EST datasets assessed for completeness. The

EST datasets assessed for completeness as part of this study.

(PDF)

Table S6 Distribution of single copy meNOGs accord-
ing to species composition. The distribution of single copy

meNOGs according to species composition.

(PDF)
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