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haemorrhagic disease virus (RHDV): a review
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Abstract

Rabbit haemorrhagic disease virus (RHDV) is a calicivirus of the genus Lagovirus that causes rabbit haemorrhagic

disease (RHD) in adult European rabbits (Oryctolagus cuniculus). First described in China in 1984, the virus rapidly

spread worldwide and is nowadays considered as endemic in several countries. In Australia and New Zealand

where rabbits are pests, RHDV was purposely introduced for rabbit biocontrol. Factors that may have precipitated

RHD emergence remain unclear, but non-pathogenic strains seem to pre-date the appearance of the pathogenic

strains suggesting a key role for the comprehension of the virus origins. All pathogenic strains are classified within

one single serotype, but two subtypes are recognised, RHDV and RHDVa. RHD causes high mortality in both

domestic and wild adult animals, with individuals succumbing between 48-72 h post-infection. No other species

has been reported to be fatally susceptible to RHD. The disease is characterised by acute necrotising hepatitis, but

haemorrhages may also be found in other organs, in particular the lungs, heart, and kidneys due to disseminated

intravascular coagulation. Resistance to the disease might be explained in part by genetically determined absence

or weak expression of attachment factors, but humoral immunity is also important. Disease control in rabbitries

relies mainly on vaccination and biosecurity measures. Such measures are difficult to be implemented in wild

populations. More recent research has indicated that RHDV might be used as a molecular tool for therapeutic

applications. Although the study of RHDV and RHD has been hampered by the lack of an appropriate cell culture

system for the virus, several aspects of the replication, epizootology, epidemiology and evolution have been

disclosed. This review provides a broad coverage and description of the current knowledge on the disease and the

virus.
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1. Natural history
In the 1980s, the European rabbit populations were

devastated by a new viral disease characterised by being

extremely lethal and highly contagious in both domestic

and wild rabbits (Oryctolagus cuniculus). The first out-

break of this new disease, designated as rabbit haemor-

rhagic disease (RHD), was noticed in 1984 in the

Jiangsu Province of the People’s Republic of China

within a group of commercially-bred Angora rabbits

imported from Germany [1]. In less than a year, RHD

killed 140 million domestic rabbits in China and spread

over an area of 50 000 km2 [1,2]. Korea was the next

country to report RHD outbreaks which were associated

with rabbit fur importation from China [3]. The disease
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then appeared in Europe and was first reported in Italy

in 1986 [4] from where it spread to the rest of Europe,

becoming endemic in several countries. In the Iberian

Peninsula, where European rabbits originated and where

they constitute a key species of the ecosystem [5], the

first outbreaks date back to 1988 for Spain [6] and to

1989 for Portugal [7] and caused severe reduction of wild

populations [8,9]. At the same time, domestic popula-

tions from several countries in North Africa experienced

RHD outbreaks [10]. In the Americas, the first outbreaks

were recorded in 1988 in Mexico following the importa-

tion of rabbit products from China [11]. Nevertheless,

Mexico is currently the only country that has managed to

successfully eradicate RHD with the last outbreak having

occurred in 1992 [11]. This successful eradication of the

disease might correlate with the absence of natural popu-

lations of wild European rabbits. North America recorded

the first outbreak only in 2000 and experienced a few

additional outbreaks since then [12]. As the virus spread

worldwide, naturally occurring RHD outbreaks were

reported in geographically distant regions, such as Cuba,

Uruguay and Reunion Island [13,14].

RHD causes important economic losses in the rabbit

meat and fur industry and has a significant negative eco-

logical impact among wild rabbit populations and indir-

ectly on its dependant predators [2,11,15,16]. In

Australia and New Zealand, where the rabbit is consid-

ered an important agricultural pest, as well as a major

threat to the endemic wildlife flora and fauna [17,18],

rabbit haemorrhagic disease virus (RHDV) was soon

considered as an agent for rabbit control [19]. In 1991,

a scientific research program was initiated in laboratory

under quarantine measures to assess the host specificity

and efficacy of the RHDV Czech reference strain (Czech

V351) as a biocontrol agent. After approval of the Aus-

tralian authorities, RHDV was released in the Wardang

Island in Spencer Gulf, South Australia. Despite the rig-

orous quarantine measures, in 1995 RHDV escaped

from the island, possibly transported by insects or air

currents and reached the mainland [20]. In less than

two years, it became established across southern Austra-

lia. The initial spread was estimated to be 50 km per

week. In some areas a reduction of more than 95% of

the wild rabbit populations was observed, particularly in

the more arid regions [21]. In New Zealand, after a

careful investigation on the benefits and risks of intro-

ducing RHDV, the government decided not to introduce

the virus [19]. The virus was later illegally introduced by

landholders [22]. Posterior characterisation of the New

Zealand virus showed it to be similar to the Czech V351

strain introduced in Australia suggesting that it was

imported from there [23].

Nowadays, RHDV outbreaks still occur on almost all

continents and cause significant mortality rates, being

endemic in most parts of Europe, Asia, and parts of

Africa, Australia and New Zealand. As a general trend,

it seems that in areas where the European rabbit is his-

torically present as wild populations, RHDV is also pre-

sent and endemic. In contrast, in regions where the

European rabbit is mainly present as a domestic or

industrial animal, the occurrence of RHDV (epidemics

or rare outbreaks) seems to be correlated with rabbit

colony number and density.

2. Aetiological agent
Early efforts to classify RHDV were erratic, mostly due

to its non-cultivable nature. Initially suspected to be a

picornavirus [24], a parvovirus [25] and a parvo-like

virus [2], it was finally assessed in the early 1990s as a

member of the Caliciviridae family [26-30].

The International Committee on Taxonomy of Viruses

(ICTV) recognises four genera in the Caliciviridae

family: Lagovirus, Vesivirus, Norovirus and Sapovirus.

Three more genera were recently proposed as part of

this family: Nabovirus or Becovirus [31], Recovirus [32]

and Valovirus [33], but are not yet recognised by the

ICTV. Caliciviruses infect a broad range of animals,

including humans, and cause a variety of diseases, such

as gastroenteritis by Norovirus and Sapovirus, haemor-

rhagic disease by Lagovirus, and vesicular lesions,

respiratory infections and reproductive failure by Vesi-

virus. The Lagovirus genus comprises both RHDV and

European brown hare syndrome virus (EBHSV), a virus

first detected in Sweden in the early 1980s prior to the

first RHDV outbreak [34] which affects hare species

(Lepus europaeus and Lepus timidus). European brown

hare syndrome (EBHS) is closely related to RHD with

regards to clinical signs, pathological and histopathologi-

cal alterations, mortality rates, virion morphology and

antigenicity, but cross-species infection and cross-spe-

cies protection could not be obtained in a reproducible

way. Despite the similarities, RHDV and EBHSV repre-

sent distinct agents, infecting different species although

causing similar diseases [35-40].

As in other caliciviruses, RHDV virions are small sized

(between 35-40 nm of diameter) and non-enveloped.

The capsid, which forms the protein layer that protects

the RNA molecule, is composed of 90 arch-like dimers

of the capsid protein which form 32 cup-shaped depres-

sions (calix in Latin for cup or chalice as the root for

the family name Caliciviridae) arranged in a T = 3 ico-

sahedral symmetry [41,42]. Each capsid monomer con-

sists of a shell (S) domain which is buried and

comprises the N-terminal connected by a hinge to the

protruding (P) domain that encompasses the C-terminal

region and is exposed on the surface [39-41,43-46]. The

P domain can be further subdivided into the subdo-

mains P1 (stem of arch) and P2 (top of arch) [47]. The
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subdomain P2, located at the most exposed region of

the capsid, displays the greatest genetic variation. This

variation is probably, at least in part, due to selection

pressure because host antibodies recognise and target

regions located in this subdomain [43,44,48]. In order to

avoid this recognition and the inherent selective pres-

sure, these regions tend to evolve faster [49,50] which

results in an increase of the genetic variability and

hence, of the antigenic variation. In addition, in noro-

viruses, the P2 domain has been shown to contain the

carbohydrate-binding domain, contributing to several

more conserved amino acids [51-53]. By analogy, this

should also apply to RHDV.

Sporadically, in rabbits affected by subacute or chronic

forms of RHD with long clinical courses, it is possible to

detect a second type of virus particle, the RHDV core-

like particles (CLP), also referred to as smooth particles

or s-RHDV [35]. These particles are found in large

amounts in the liver and spleen [54] and present unique

characteristics when compared to RHDV particles: a

smooth surface due to the lack of the cup-shaped

depressions; a smaller diameter of 25-29 nm; a molecu-

lar weight of 28-30 kDa indicating that CLP correspond

to the N-terminus (the buried shell domain) of the cap-

sid; no haemagglutinating activity, most likely as the

result of the absence of the C-terminus, but presenting

reactivity with sera from RHDV convalescent rabbits

and monoclonal antibodies directed towards the N-

terminal part of the RHDV capsid [35,54-56]. CLP seem

to be associated with the appearance of specific anti-

RHDV IgM [54]. Indeed, these particles have been sug-

gested to result from the degradation of the RHDV-IgM

immune-complexes formed during the humoral

response [54]. Although defective gene expression has

been suggested to be at the genesis of CLP [55], recent

data indicate that CLP directly derive from intact virions

with dissociated protrusion [45].

RHDV virions contain the genomic RNA (gRNA) and

an additional RNA species with 2.2 kb designated subge-

nomic RNA (sgRNA), which is collinear with the 3’ end

of the genomic RNA [26,57]. Subgenomic RNA usually

contributes to the production of high levels of products

required during the intermediate and late stages of

infection (e.g. structural proteins) [58]. For RHDV, these

comprise the capsid protein and VP10 [59-61]. Both the

genomic and subgenomic RNA are polyadenylated at

the 3’ end and at their 5’ region they are covalently

linked through a Tyr-21 residue to the VPg (virus gen-

ome-linked) protein [62]. The genomic RNA consists of

a positive-sense single-stranded molecule of 7437

nucleotides consisting of two slightly overlapping open

reading frames (ORF): ORF1, comprising nucleotides 10

to 7044 and ORF2, comprising nucleotides 7025 to 7378

[26]. ORF1 encodes a large polyprotein of ca. 257 kDa

[26] which is cleaved into the mature non-structural

proteins and a major structural protein, the capsid pro-

tein, by post-translational proteolytic processing by a

virus-encoded trypsin-like cysteine protease (Figure 1)

[57,63-65]. Some of these proteins derive from larger

precursors that result from further post-translational

modifications of the precursor proteins [57,64]. The bio-

logical role of some of the non-structural proteins

encoded by the genome of caliciviruses has been eluci-

dated by relying on previous knowledge gathered from

Figure 1 Genomic organization of RHDV. The genome of RHDV is composed of two narrowly overlapping ORFs, ORF1 and ORF2. ORF1 codes

for a polyprotein that is cleaved by the virus-encoded trypsin-like cysteine protease (arrowheads) and originates the major structural protein for

the capsid (VP60) and the non-structural proteins p16, p23, helicase, p29, VPg, protease and RdRp. ORF2 codes for a minor structural protein,

VP10. A subgenomic mRNA encoding both the structural proteins VP60 and VP10 can also be found in viral particles. Both the genomic and

subgenomic RNA are polyadenylated at their 3’end and have the virus-encoded protein, VPg, covalently attached to their 5’ end.
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members of the closely related Picornaviridae family

[26,64,65]. For RHDV, two proteins involved in the

replication of the viral RNA, a helicase and an RNA-

dependent RNA polymerase (RdRp), and a protease

responsible for the proteolytic processing of the large

polyprotein, have been characterised [63,66,67]. RdRp

has been shown to also catalyse VPg uridylation [62,68]

while a role in translation has been suggested for VPg

[e.g. [69]]. The function of the RHDV non-structural

proteins p16, p23 and p29 remains to be assessed.

VP10, a minor structural protein encoded by the 3’end

of gRNA and sgRNA in a different reading frame

(ORF2), was recently shown to increase the levels of

virus replication and to promote apoptosis [70]. In addi-

tion, its ability to downregulate the expression of VP60

was demonstrated [71]. Together, this suggests that

VP10 might regulate virus replication and virion release

from infected host cells [71].

3. Clinical signs and histopathological lesions
The incubation period of the disease ranges between 1

to 3 days and rabbits usually succumb within 12 h to 36

h after the onset of fever (> 40°C). Depending on the

clinical evolution of the disease, three different clinical

courses can occur [38,72]. In the peracute form, infected

animals show no clinical signs and die suddenly. Acute

infections are accompanied by anorexia, apathy and con-

gestion of the palpebral conjunctiva and neurologic

symptoms such as opisthotonos, excitement, paralysis

and ataxia may also be observed. There are occasionally

some respiratory signs (tracheitis, dyspnea and cyanosis)

and a foamy and bloody nasal discharge; lacrimation,

ocular haemorrhages and epistaxis can also occur. Suba-

cute forms of the disease present similar, but milder

clinical symptoms and most rabbits survive. Rabbits

experiencing subacute infections develop antibodies

against RHDV which confer protection upon re-infec-

tion [73]. In addition, it has been reported that during

an outbreak of RHD, a low percentage of rabbits may

experience a chronic form of the disease with symptoms

including a severe and generalised jaundice, anorexia

and lethargy [35]. These animals tend to die 1-2 weeks

later [54], but animals that overcome the disease present

a potent seroconversion [35]. Interestingly, this form of

the disease has been shown to be associated with the

presence of RHDV core-like particles [35,55].

The liver, lung and spleen are the primary target tis-

sues of RHDV. The major histopathological lesions

found at necropsy are acute hepatitis due to liver cell

loss as the result of RHDV-induced apoptosis, and sple-

nomegaly [74,75]. Haemorrhages and congestions can

be seen in several organs, particularly in the lungs, heart

and kidneys, as a result of a massive disseminated intra-

vascular coagulation (DIC) which is usually the cause of

death [76]. Depletion of both B and T lymphocytes in

the liver and the spleen accompanies the disease and

accounts for an impairment of the immune response

[72,77] and a fatal progression of the disease within 2-3

days. In contrast, resistant rabbits develop high titres of

IgM (and then of IgA and of IgG) already at day 3 pi,

thus presenting an effective humoral immune response

[54]. Table 1 presents a summary of the histopathologi-

cal alterations that can be observed upon RHDV

infection.

4. Epidemiology
The possible routes for transmission of the disease are

the oral, nasal, conjunctival and parenteral, as blood-

feeding insects have also been shown to be efficient

mechanical vectors [72,78]. Transmission of RHDV may

occur through direct contact with an infected animal,

since infected rabbits may shed viral particles in their

secretions and excretions [79], or indirectly by means of

fomites-contaminated food, bedding, water, clothing,

cages and equipment [19]-or vector-borne transmission

Table 1 Pathological and histopathological lesions

[16,77,222,241,243]

Organ Lesions

Liver Enlarged with marked lobular pattern, yellow-grey
colour, brittle, circumscribed infiltration with
granulocytes, degenerative alterations of
hepatocytes compatible with apoptosis (extensive
vacuolization, severe alterations in the
mitochondrial structure, karyopyknosis and
karyolysis) activation of Kupffer cells, leukopenia

Trachea Hyperaemia of mucous membrane, petechial or
diffuse haemorrhages, may be filled with bloody
foam

Lung Hyperaemia, pulmonary oedema, intra-alveolar and
perivascular haemorrhages, sometimes slight
catarrhal bronchiolitis, proliferation of lymphocytes

Kidneys Enlargement with spotted dark red coloration,
hyperaemia, haemorrhages within glomerular
loops and renal medulla, hyaline thrombi, dilated
tubuli, lymphocytic infiltration, degeneration of
tubular epithelium

Spleen Enlargement (splenomegaly), spotted dark red
colorations, hyperaemia, occasionally karyorrhexis
within follicles, hemosiderosis, leukopenia

Digestive tract Contents usually normal, occasional enteritis,
subserous haemorrhages

Chest and
abdominal cavity

Small amounts of serous, occasionally bloody
exudate, sometimes subserous haemorrhages

Muscles Anaemia in the area of the thighs, petechiae in
the heart muscle, focal necrosis in myocardium,
degenerative alterations, hemosiderosis

Central Nervous
System

Congestion of cortical vessels, dilated vessels in
the area of the pia mater of the cortex and
cerebellum, hyperaemia, small haemorrhages in
the cortex, occasionally non-purulent
encephalomyelitis with lymphocytic infiltration
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by scavenging mammals, birds and insects [e.g.

[78,80,81]]. The natural doors for viral entry have been

suggested to be located in the upper respiratory and

digestive tract [16,82]. In natural infections, the faecal-

oral route is considered the preferential mode of trans-

mission [10,11].

In the field, carcasses of RHDV-infected rabbits may

be a major source for viral spreading since the virus

seems to be highly resistant and stable when exposed to

harsh environmental conditions. Indeed, carcasses of

RHDV-infected rabbits exposed to environmental condi-

tions have been found to contain viable viral particles

for up to three months [83,84]. This ability is para-

mount for the epidemiology of RHD and supports the

importance of indirect routes in transmission. Environ-

mental factors have also been suggested to impact on

the effectiveness of RHD in rabbit populations [reviewed

in [20]]. Temperature and humidity seem to be the

most important climate variables. Indeed, in Australia,

mortality rates due to RHD are higher in arid and semi-

arid inland areas than in moist coastal regions experien-

cing milder temperatures and the disease becomes active

during the breeding season, peaks in early spring and is

absent in the summer [85]. Climate variables might con-

tribute to the geographic and seasonality observed for

the RHDV outbreaks by affecting the abundance and

activity of the vectors involved in RHDV transmission

[reviewed in [20]]. Other non-climatic factors have also

been suggested to contribute to the variable pattern of

the impact of RHD in rabbit populations such as the

timing of the breeding season, the presence of a related

and protective RHDV-like calicivirus in rabbit popula-

tions or the negative interaction of the myxomatosis

outbreaks in the populations [reviewed in [86]]. In addi-

tion, modelling studies indicated that population

dynamics and spatial structure may greatly influence

disease impact and host-virus co-evolution [87,88].

Caliciviruses occur in a wide range of animals apart

from rabbits, which include mustelids (minks and

skunks), reptiles, cattle, felids (cats and cheetahs), dogs,

humans, chimpanzees, pigs and sea mammals (sea lions,

seals, walrus, whales, and dolphins), but they are usually

restricted to their primary host and closely related spe-

cies [89]. Indeed, rabbits and hares are the only hosts

for the RHDV and EBHSV lagoviruses, respectively.

Other leporid species have been shown not to be sus-

ceptible to RHDV [11]. Additionally, several non-host

species from the Australian fauna, including domestic,

feral animals and wildlife, were assessed for susceptibil-

ity to RHDV. No viral replication could be detected

with an extensive panel of tests which included clinical

observations, pathology, electron microscopy, virology

and serology, reinforcing the idea that susceptibility to

RHDV is restricted to the European rabbit (Oryctolagus

cuniculus) [90]. Both subspecies of the European rabbit,

O. c. cuniculus and O. c. algirus, seem equally suscepti-

ble to RHDV [91]. Interestingly, antibodies against

RHDV had been found in animals that live in sympatry

with rabbit populations infected with RHDV [81,92,93]

and, more recently, RHDV RNA was isolated from sym-

patric wild micromammals opening the possibility of

other species being involved in the epidemiology of the

disease [94].

5. Virus life cycle
In adult rabbits, the targets of the initial stages of the

virus life cycle have been determined. Indeed, viral anti-

gens are detected in the liver within the first hours fol-

lowing infection with RHDV with viral replication

occurring in the cytoplasm of hepatocytes located

mostly in centriacinar areas [30,74,95-98]. The number

of infected hepatocytes clearly increases in the course of

the disease, reaching a maximum between 36-48 h

[95-97]. Detection of viral antigens in Kupfer cells has

also been reported [74,98] associated with viral replica-

tion [98]. Extrahepatic presence of the virus has also

been observed, but some discrepancies exist between

the different studies since different techniques had been

employed. Nevertheless, viral antigens have been

detected in the spleen, in particular in the macrophages

located in the red pulp [96-98], kidney [96], and alveolar

macrophages in the lungs. It has been suggested that

the presence of replicating virus in alveolar macro-

phages, which are in contact with the bloodstream,

might be important for initial virus dissemination, and

later when the virus reaches the liver, Kupfer cells may

be important for spreading the infection into other

organs [98].

In contrast, viral dissemination in young resistant rab-

bits is far unclear. Viral antigens have been detected in

hepatocytes from experimentally-infected 2-week old

rabbits [99], but most studies were only able to detect

them in rabbits older than 4-weeks [96,100]. Viral anti-

gens were found to be scattered and present in only a

small percentage of cells. Nevertheless, this suggests that

some hepatocytes in young (resistant) rabbits are able to

support viral replication, but that major changes must

occur in the liver to support a full infectious process. In

addition, clearance of the virus seems to be extremely

rapid as no viral antigens were detected after day 4 pi

[100]. The presence of the virus in other organs has not

been fully assessed.

However, as with most caliciviruses, understanding the

interaction between RHDV and its host has been ham-

pered by the lack of a suitable in vitro culture system.

Consequently, studies on the pathogenesis of calici-

viruses have relied on the ability of the capsid protein to

self-assemble into virus-like particles (VLP) when
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expressed in insect cells. These particles have the advan-

tage of being morphologically and antigenically indistin-

guishable from native virions, despite being devoid of

viral RNA [59,101-105]. RHDV VLP strongly aggluti-

nated human adult erythrocytes as the result of binding

to glycolipid ligands present on the erythrocyte surfaces

[72]. These ligands must develop with age since VLP

did not agglutinate erythrocytes from human umbilical

cords or foetuses presenting no agglutination [106]. Sub-

sequent studies revealed that several caliciviruses use the

carbohydrate moiety of host-cell histo-blood group anti-

gens (HBGA) for attachment (e.g. ABH/O and Lewis

antigens) initiating their replication cycle (Figure 2)

[82,107-115]. Histo-blood group antigens are complex

glycans either attached to proteins or lipids present on

the surface of epithelial cells and erythrocytes, either as

free oligosaccharides in biological fluids (milk, saliva,

blood and intestinal contents). HBGA are formed by the

sequential addition of monosaccharides to an oligosac-

charide precursor chain attached to the cell glycans.

This process, designated glycosylation, is catalysed by

glycosyltransferase enzymes with specific substrate affi-

nity and by a defined linkage [116]. Several genes

encode the glycosyltransferases resulting in ABO, Lewis

and secretor polymorphic phenotypes (Figure 3).

RHDV was shown to bind to the HBGA H type 2, A

type 2 and B type 2 oligosaccharides [82,117]. These

structures were shown to be present on the surface of

the epithelial cells of the upper respiratory and digestive

tracts that the virus first encounters when infecting the

host and therefore where doors for virus entry are most

likely located [16,82]. Synthesis of H type 2 requires the

Figure 2 The replication cycle of caliciviruses. After attachment to the cellular receptor, the virion is internalised into the cell (step 1).

Uncoating of the viral genome (step 2) is followed by translation of the polyprotein precursor (step 3) and co-translational processing releasing

the non-structural proteins (step 4). These proteins assemble in a replication complex (step 5) that synthesises the antigenomic RNA (step 6),

being itself used as a template for synthesis of the genomic RNA (step 7). The newly synthesized genomic RNA is translated as a polyprotein

precursor (step 3) or is used for packaging in the assembled viral protein core (step 10). The antigenomic RNA is also the template for synthesis

of subgenomic RNA (step 8). The subgenomic RNA is translated as structural proteins, VP60 and VP10 (step 9) and in lagoviruses, VP60 is also

released from the polyprotein precursor after processing by the viral protease. At a still not defined time in the virus life cycle, assembly of the

structural proteins as well as packaging of the genomic RNA occurs (step 10), followed by release of the mature virion from the cell (step 11).

Reprinted from Antiviral Research, 87, Rohayem J, Bergmann M, Gebhardt J, Gould E, Tucker P, Mattevi A, Unge T, Hilgenfeld R, Neyts J, Antiviral

strategies to control calicivirus infections, 167, 2010, with permission from Elsevier.
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addition of a fucose residue, the minimal structural epi-

tope [118], in a1,2 linkage to a precursor. This reaction

is catalysed by an a1,2-fucosyltransferase which in rab-

bits is encoded by three functional genes, Fut1, Fut2

and Sec1 that have undergone multiple events of gene

conversion during evolution [119]. Synthesis of the A

and B type 2 antigens involves the addition of either a

N-acetylgalactosamine or a galactose residue in a1,3

linkage to the H type 2 trisaccharide in a reaction cata-

lysed by an a1,3-N-acetylgalactosaminyltransferase or an

a1,3-galactosyltransferase (A or B transferases), respec-

tively. In rabbits, the ABO blood group locus is largely

unresolved, but preliminary data suggest that at least 6

Abo genes exist in the genome, arranged in tandem (K

Nyström and J Le Pendu, personal communication).

Following the attachment of RHDV to the cell surface,

internalisation, by an unknown mechanism, and desen-

capsidation occur, leading to the release of the viral gen-

ome into the cytoplasm. The virus life cycle then

proceeds to the translation of the polyprotein precursor

encoded by the ORF1 of the viral genome through

interaction with the host cellular machinery. The gRNA

and the sgRNA covalently-linked VPg uses the cellular

translation machinery, positioning the ribosome at the

initiation codon AUG without ribosome scanning and

initiating translation [69,120]. Post-translational proteoly-

tic processing by the viral gRNA encoded protease

cleaves the polyprotein precursor into the mature non-

structural proteins and, in RHDV, into the capsid protein

VP60 [57]. The non-structural proteins, helicase and

RdRp, then form a replication complex synthesising a

complementary negative-sense RNA from the genomic

RNA which is used as a template for the synthesis of

gRNA and the sgRNA [reviewed in [121]]. The resulting

RNA can either be de novo translated or packaged into

viral particles that will be released from the infected cell.

The mechanism used by RHDV for dissemination of the

viral progeny is still unclear, but the ability of VP10 to

induce apoptosis may suggest a role in programmed cell

death in virion release and dissemination [70,95].

Translation of the RHDV ORF2 produces VP10

through a unique mechanism of reinitiation after

Figure 3 Schematic biosynthesis of the HBGA ABH and Lewis. Several transferase enzymes (boxed) are involved in the addition of relevant

monosaccharides (in bold) to synthesise the ABH and Lewis ligands in a variety of tissues. Gal, Galactose; Glc, Glucose; GalNAc, N-

Acetylgalactosamine; GlcNAc, N-Acetylglucosamine; Fuc, Fucose. With kind permission from Springer Science + Business Media: Glycoconjugate

journal, Norwalk virus-like particles bind specifically to A, H and difucosylated Lewis but not to B histo-blood group active glycosphingolipids, 26

(9), 2009, 1172, Nilsson J, Rydell GE, Le Pendu J, Larson G, Figure 1 (the figure includes minor alterations).
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termination of translation of the preceding major capsid

protein [122]. This mechanism, although not fully

understood, is dependent on the RNA sequence located

upstream of the start/stop site, designated TURBS (ter-

mination upstream ribosomal binding site), but it is

independent on the presence of the AUG initiation

codon. Two critical motifs for VP10 expression have

been identified within TURBS: motif 1, which is highly

conserved among caliciviruses and shows complemen-

tarity with a short sequence in the 18S rRNA thus sug-

gesting an interaction between the viral RNA and the

ribosomal 18S rRNA, and motif 2, which is believed to

be involved in the correct positioning of the ribosome at

the translational start site [122,123].

6. Mechanisms of resistance to RHD
The lack of a cell culture system has been hampering

the study of RHDV pathogenesis and, as a consequence,

the mechanisms of resistance to the disease. The indir-

ect strategies that have been employed for the study of

the pathogenesis of RHDV allowed the identification of

the HBGA H type 2 as an attachment factor for RHDV

[82]. In humans, identification of alleles at the ABO,

FUT2 and FUT3 loci that generate failure to express

antigens recognised by different human Norovirus

strains and that confer resistance to infection led to the

search of such alleles in the a1,2-fucosyltransferase

genes in adult rabbits [124]. This represented the first

study on the genetic mechanisms underlying resistance

to RHDV. A link between a rabbit allele at the a1,2-

fucosyltransferase gene Sec1, that also intervenes in the

H type 2 synthesis, and survival to a devastating RHDV

outbreak was demonstrated [124]. This Sec1 allele

encoded a weakly functional a1,2-fucosyltransferase, but

was always found associated with Fut2 alleles coding for

active enzymes that could compensate for the inability

of Sec1 to synthesise H type 2. The authors hypothe-

sised that this Sec1 allele was probably associated with a

mutation located in the regulatory region of Fut2 which

had compromised the Fut2 enzymes and, therefore, the

synthesis of the virus’ ligand. This result suggests that

allelic variation in the a1,2-fucosyltransferase gene

appears to have a significant role in resistance to

RHDV. More recently, experimental challenge experi-

ments indicated that at low virus titres, adult rabbits

expressing low amounts of the HBGA ligands were less

susceptible to the disease than animals expressing high

amounts, although all animals were infected [117].

One striking characteristic of the pathogenesis is that

of resistance of young rabbits less than 2 months of age

to RHD [72]. Indeed, kittens less than 3 weeks old are

fully resistant, but when infected at an age of 4 weeks or

older the mortality rates increase to reach, at about 9

weeks old, the rates observed for adult individuals [10].

Thus, the mechanisms of resistance to RHDV have also

been studied in light of the differences observed

between adult and young rabbits. Interestingly, in

young-resistant rabbits the attachment factor H type 2

has been shown to be weakly expressed on the epithelial

cells of the upper respiratory and digestive tracts, where

primary infection by the virus is believed to occur

[82,106], which could explain their resistance to infec-

tion. Nevertheless, the reasons behind this differential

expression have not yet been disclosed and the picture

seems to be far more complicated. Indeed, and despite

compelling evidence that supports a role of carbohy-

drates in facilitating infection by RHDV in epithelial

cells of the upper respiratory and digestive tracts, other

attachment factors or receptors must be playing a role

at the epithelial level since low expression of the carbo-

hydrate receptor at the doors of entry confers only par-

tial protection against infection [117]. In addition,

hepatocytes, the main cellular target for viral replication,

have been shown not to express HBGA [82] and, in

young rabbits, infection is accompanied by hepatic

lesions due to virus replication as in adult individuals,

although they tend to be more severe in 4 week old

than in 2 week old rabbits [96,99,100,125,126]. This

indicates the existence of at least additional hepatic cel-

lular receptor(s) and that the genetic basis for the resis-

tance mechanisms goes beyond the attachment of the

virus to host cells through histo-blood group antigens.

Immune response related-genes, either of the innate or

the adaptive responses, are obvious candidate genes to

be involved in the resistance mechanisms to RHDV and

should deserve attention in future studies.

Differences in the innate immune response between

RHDV-infected adult and young rabbits have also been

observed [96,99,125-127]. Heterophils seem to be the

predominant type of leukocyte in the liver inflammatory

infiltrates in adult rabbits and are in close proximity

with damaged hepatocytes probably being involved in

the clearance of the dead cells. At variance, in young

rabbits, this infiltrate is composed mostly by lympho-

cytes associated with undamaged and possibly antigen-

presenting hepatocytes [127] and which are likely to

mount a more effective and specific immune response

than heterophils. In addition, in young rabbits only a

small fraction of hepatocytes supports viral replication

indicating that structural and functional changes have to

occur in the liver to support RHDV replication

[10,96,126].

Development of enzyme-linked immunosorbent assays

(ELISA) for the diagnosis of RHD [29,35] allowed an

early determination of the importance of humoral

immunity in the course of the disease. Indeed, animals

experiencing subacute forms of RHDV that survived

infection and that were later resistant upon re-exposure
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to RHDV where shown to present high levels of sero-

conversion [35,72,128,129]. A correlation between

cELISA titres and protection has been established which

is important for determination of the applicability of vac-

cination and to assess the current status of the disease

[54,128,130,131]. Recovering rabbits present IgM titres

that quickly reach a maximum within 2 weeks and then

sharply decrease. IgA titres are more prolonged in time,

but they also face a decrease. In contrast, IgG slowly

increase and are able to persist for months. With regards

to IgA, this suggests a mucosal response [128]. Passive

immunization (serotherapy) was also shown to be effec-

tive in stopping RHD in a rabbit farm hit by an outbreak

[132], demonstrating the importance of humoral immu-

nity in protection against RHD. In young rabbits, resis-

tance has also been associated with the presence of

maternal antibodies which are maintained during the

period of life when they are considered RHD-resistant

[128]. These are exclusively IgG acquired through the

placenta in the last days of pregnancy and show a decline

with age and body weight [19]. Additionally, if young rab-

bits are infected in their early life, they will become resis-

tant when adult, suggesting that their immune system is

capable of recognising the virus and producing an effec-

tive immune response that will confer long-term protec-

tion [133]. Therefore, humoral immunity clearly provides

protection against RHDV when present [28,103].

7. Genetic diversity/RHDV evolution
7.1. Pathogenic RHDV

The origin and evolution of RHDV are not well under-

stood. Although first reported in China in Angora rab-

bits imported from Germany, it was not clear if rabbits

were already infected with RHDV when they arrived in

China, since the disease might have been previously

observed in Germany [73], or if they became infected

later in China. The idea of RHDV being of Chinese ori-

gin has been challenged by several studies [50,134-136].

Indeed, these studies have shown that the pathogenic

form of RHDV originated before 1984 [50,134,136] and

that the Chinese strain isolated in 1984 had its origin in

European isolates [135]. In light of these results, it

seems that RHDV had its origins in Europe and that it

had been circulating for some time, but that mortalities

went unnoticed. Some hypotheses have been put for-

ward regarding how RHDV originated. One of them, the

transmission of the European brown hare syndrome

virus to the European rabbit [137] has been discarded

since EBHSV does not infect European rabbits. Other

hypotheses propose that a virus from another species

jumped to the rabbit where it became pathogenic [138],

but the presently favoured hypothesis would be the

change of a non-pathogenic virus closely related to

RHDV and that rendered it pathogenic (see below).

Identifying novel features in the genome of RHDV

might give some indications on the origin of the virus

and its virulence. The first complete genome sequence

of RHDV was obtained in 1991 by Meyers et al. [26].

The characterisation of the genetic diversity was

initiated by sequencing and comparing partial sequences

of a few European isolates [139-141]. The isolates were

found to be highly similar and closely related.

Later, in an attempt to characterise the relation

between EBHSV and RHDV, Wirblich et al. presented

evidence that the N terminal portion of the capsid was

highly conserved while the highest degree of variability

was located in the C terminal half [39]. Indeed, while

for the N-terminus homology between caliciviruses is

~80%, no strict conservation was observed for the C-ter-

minus. In RHDV, this highly variable portion seems to

correspond to the C and E domains as defined by Neill

[47], where the majority of the differences between cali-

civirus isolates have been detected and where the main

antigenic determinants have been found to be located

[43,44,47,142-144]. These domains were predicted to be

located at the capsid surface [46] and therefore more

variable as a result of the strong selective pressure due

to exposure to the host immune system.

In 1997, the first phylogenetic analysis of RHDV iso-

lates with different geographic locations and spanning

the years from 1987 to 1995 was performed [137]. Inclu-

sion of all the available information identified three

major branches and supported the high degree of

homology between samples, as previously reported, but

also showed that RHDV strains clustered according to

the year of isolation and not according to their geo-

graphic location. Le Gall et al. found the same pattern

among French isolates, and further assigned the isolates

into three chronologically established genogroups, G1,

G2 and G3 [145]. Later, they observed that in France

G1 and G2 had disappeared and three new genogroups

had emerged: G4, having evolved from G3; G5, as a new

independent group, and G6 (Figure 4) [14]. Interestingly,

this genogroup G6 corresponded to the first antigenic

variant of RHDV previously detected by Capucci et al.

which they have designated as RHDVa [142]. This var-

iant, although having the same level of pathogenicity as

other RHDV isolates, presented a distinct antigenic pro-

file and characteristic genetic differences [142]. Indeed,

most of the amino acid variability found in RHDVa iso-

lates was clustered in the 5’ region of region E (spanning

the amino acid positions 344-370), no reactivity was

observed with the monoclonal antibody 1H8 that con-

fers protection to experimentally-infected rabbits, but

inoculation of vaccinated rabbits with RHDVa isolates

caused no death [142,146]. RHDVa appears as a subtype

of the RHDV wild-type (RHDVwt). These variants have

been isolated in several countries and were detected as
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early as 1985 in China, where they might have emerged

[13,136,146-150]. In some areas, these variants seem to

be replacing the original strains [148].

In the Iberian Peninsula, only G1 strains have been

found, even among contemporary strains [91,134]. This

differs with the general pattern of RHDV evolution

observed in other European countries, but, overall, G1

strains seem to evolve following a temporal rather than

a geographic pattern as observed in the other gen-

ogroups [91]. This temporal structure is common in

RNA viruses and likely results from the strong selection

imposed by adaptive immune recognition by the host

[151]. This was confirmed for RHDV, where a few posi-

tively selected codons were detected located in the

major antigenic determinants of the capsid [49,50,134].

Interestingly, all the positively selected codons were

associated with potential N-glycosylation sites. Glycosy-

lation is known to play a role in the infectious process

in other non-enveloped viruses such as rotavirus and

Hepatitis E virus [152-155]. Positive selection recorded

at N-glycosylation sites in the capsid protein of RHDV

indicates that glycans might influence viral pathogeni-

city. This is further supported by the finding of non-

pathogenic RHDV-like strains which do lack some of

the positively selected N-glycosylation sites [49]

although it is not known at present if the capsid protein

from authentic virions is actually glycosylated.

Overall, with the exception of the RHDVa isolates, the

evolution of RHDV is associated with a high degree of

genetic homogeneity, with maximum nucleotide and

amino acid differences of 10% and 6%, respectively

[14,90,91,137,139-141,145,147,150,156-163], and mostly

located in the regions C and E. These differences are

much lower than those observed for other caliciviruses

(e.g. for Norovirus, amino acid differences can reach a

maximum of 61.4% while for Sapovirus they can reach

55%) [164,165]. This high homology may have resulted

from the rapid spread of a new virus, expanding into a

susceptible host population [139], but also from the fact

that RHDV is a newly emerging pathogen whose evolu-

tion started recently, at variance from that of Norovirus

and Sapovirus.

7.2. Non-pathogenic rabbit calicivirus

The emergence of RHDV from a pre-existing non-

pathogenic rabbit calicivirus that has mutated and

become pathogenic to rabbits has been hypothesised

[136,139,160,166-168]. The detection of antibodies spe-

cific to RHDV in rabbit sera collected before the first

RHDV outbreak, the identification of RHDV-seroposi-

tive rabbits where RHD was never recorded and the pre-

sence or persistence of viral RNA in populations where

no overt signs of disease could be observed, provided

compelling evidence for the pre-existence of a non-

pathogenic RHVD-like virus in European rabbit popula-

tions [29,128,160,169-179]. This non-pathogenic virus

would share antigenic properties with RHDV and circu-

lated asymptomatically amongst rabbit populations

before the first RHDV outbreak in China. Isolation of

several non-pathogenic rabbit caliciviruses related to

RHDV but with a tropism limited to the gut and no

obvious pathogenicity further substantiated this hypoth-

esis [160,166,168,176,180,181] and showed that the non-

pathogenic strains are still circulating. Protection to

RHD had been shown to be conferred by some of these

non-pathogenic strains which might provide an explana-

tion for the low level of RHD incidence in some regions

of Australia and Britain [166,168,169,171,173,179,

182-184]. More recently this hypothesis was confirmed

experimentally when Strive et al. showed that the non-

pathogenic Australian strain RCV-A1 is able to generate

an antibody response that cross-reacts to RHDV and

further protects animals from RHD, but not completely

and not from infection [184]. Other strains, however, do

not confer any kind of protection [181,185].

Understanding the evolutionary history and the origin

of RHDV will benefit from further studies of the non-

pathogenic strains. The isolation of non-pathogenic

Figure 4 Phylogenetic relationships between the RHDV

genogroups G1-G6 and the Italian non-pathogenic strain RCV.

The tree was obtained using the neighbour-joining method and

using nucleotide sequences from RHDV strains isolated worldwide.

Bootstrap values greater than 50% are presented at the nodes. RCV

was used as outgroup to root the tree. With kind permission from

Springer Science + Business Media: Archives of Virology,

Phylogenetic analysis of rabbit haemorrhagic disease virus in France

between 1993 and 2000, and the characterisation of RHDV antigenic

variants, 148(1), 2003, 72, Le Gall-Recule G, Zwingelstein F, Laurent S,

de Boisseson C, Portejoie Y, Rasschaert D, Figure 2 (the figure

includes minor alterations).
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strains has so far already revealed striking differences

between these strains and the pathogenic RHDV strains,

with the most important being, beside pathogenicity, tis-

sue tropism and capsid variability [160,166,168,176,180].

Interestingly, MRCV, a new variant of the non-patho-

genic rabbit calicivirus (RCV)-like group that was

recently characterised [180,186], displayed a pathogeni-

city of approximately 30% which is significant and in

contrast with reports from other non-pathogenic strains.

The viral RNA of this strain was detected in the liver

rather than in the intestine which seems to indicate that

the ability of a strain to cross the epithelia barrier and

reach other organs such as the liver is an important fea-

ture for the emergence of the pathogenic forms and

should be further explored. However, these results

should be considered with caution since experimental

reproduction of the disease failed, with only 2 out of the

14 inoculated rabbits presenting very mild symptoms.

Despite the accumulation of data, no mutations have

yet been attributed that would explain the switch from a

non-pathogenic to a pathogenic form. Recombination

within the RHDV genome is not uncommon [187,188]

and might have played a role in the origin of RHDV.

Indeed, the recombination event reported by Forrester

et al. [188] in the strain isolated in 1984 in China may

suggest that recombination was a common mechanism

at the time of emergence of the pathogenic forms.

Nevertheless, not all pathogenic forms are direct descen-

dants of this strain [135] and despite the relatively high

frequency at which recombination occurs (4 out of 10),

it does not seem to be widespread in all RHDV lineages

[136]. This might be the result of an incomplete and

non-systematic sampling or of the scarcity of complete

genomic sequences.

Recently, novel phylogenetic analysis approaches were

used to assess the emergence of RHDV [50,134,136].

Although the results could have brought an insight into

the timing of the appearance of the non-pathogenic and

the pathogenic forms of the virus, the studies led to

incongruent results most likely as the result of the dif-

ferent capsid fragment lengths used in each study. This

poses the question if the capsid is indeed the best gene

for inferring RHDV history. While Kerr et al. could

establish the Time to Most Recent Common Ancestor

(TMRCA) between RHDV and the non-pathogenic

forms of < 550 years and of < 150 years for the patho-

genic forms [136], Kinnear and Linde set the existence

of the ancestor of RHDV-RCV later in the 1930s and of

the ancestor of the pathogenic RHDV strains between

1957-1976 [50]. Consistent with the findings of Kerr et

al., Alda et al. set the TMRCA for all the RHDV to

~1884 [134]. Nevertheless, and considering these esti-

mates, it is surprising that the disease had not been

reported earlier than 1984. This might suggest an

alternative scenario for the virus emergence where the

virus would have come from another species through a

species jump, that would have acted as a reservoir and

was not affected by RHDV [136]. This scenario, how-

ever, implies the existence of such a reservoir host in

which the virus was able to replicate. Viral RNA has

been recently detected and isolated in micromammals

living in sympatry with European rabbit populations

that could represent the unidentified reservoir [94], but

viral replication within these species could not be con-

firmed. Since these species might be important for virus

transmission and spread and perhaps represent the

“unknown” reservoir for when the virus seems to be

inactive, i.e. between outbreaks, this hypothesis should

be further explored.

8. Host-virus co-evolution
The virus-host dynamics result in a co-evolutionary pro-

cess between the host resistance mechanisms and the

virus escape mechanisms with attenuation of the virus

and/or increase in resistance of the host. Therefore, the

study of the host-virus co-evolutionary processes

requires the analysis of each element of this dynamical

pair simultaneously. Regarding the host, and in order to

identify signatures of selection due to infectious agents,

the natural history of this species should be considered.

The fossil record suggests that the European rabbit ori-

ginated in the Iberian Peninsula during the medium

Pleistocene [189-192] and two morphologically differen-

tiated subspecies have been distinguished: O. cuniculus

algirus and O. cuniculus cuniculus [193]. O. c. algirus

inhabits the southwestern Iberian Peninsula, while O. c.

cuniculus is present in the northeastern Iberian Penin-

sula. These two subspecies diverged ~1.8 Mya [reviewed

in [194]] and then, by a post-glaciation expansion from

the southwestern refugium to North and from the

Northeastern to South or West, a contact zone was

established. While the natural populations of O. c.

algirus remained confined to the southwest of the

Peninsula, the natural populations of O. c. cuniculus

later expanded its range north towards France, likely

after the last glacial peak [195], where they still remain

present. The expansion of these populations with suc-

cessive bottleneck events caused a significantly lower

genetic diversity of the wild French O. c. cuniculus

populations compared to the Iberian populations

[195-201]. The European rabbit gene pool has been

manipulated by man through a recent single domestica-

tion event of French origin, and therefore, all domestic

rabbits belong to the subspecies O. c. cuniculus

[reviewed in [201,202]]. Today, by man-mediated disper-

sal, the subspecies O. c. cuniculus can be found in Eur-

ope, Australia, New Zealand, North and South America,

and North Africa. The gene pool of the European rabbit
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populations worldwide have been shaped differently by

these events and this might have also interfered with the

resistance mechanisms. Therefore, when studying the

co-evolution between the European rabbits and RHDV,

these events should be taken into account.

The introduction of myxoma virus in Australia was

soon followed by an increase in genetic resistance in

rabbits and the appearance of less virulent strains [203].

Recent field studies conducted in Australia suggest that

RHDV also has become less effective in keeping wild

rabbit numbers low and that in some populations rabbit

numbers are returning to the pre-RHDV levels [204].

Laboratory challenges have confirmed this scenario

when inoculation of rabbits from different Australian

populations with the original introduced strain (Czech

strain V351) failed to induce mortality or induced mor-

tality rates lower than that which was expected [205]. In

addition, in an Australian population, the frequency of

host resistant phenotypes, i.e., phenotypes that confer a

weak binding of the virus to the host HBGA that facili-

tate infection and thus provide protection to the host,

has significantly increased [117]. A similar co-adaptation

process seems to be occurring both in New Zealand

[92] and in rabbit populations from Europe [117].

Indeed, Nyström et al. found that in a French wild rab-

bit population recovering from a major RHDV outbreak

the frequency of resistant phenotypes increased among

the survivors [117]. As with the Australian population,

the resistant phenotypes are associated with weak viral

binding. This indicates that the virus has contributed to

select resistant hosts in accordance to the binding speci-

ficities of the circulating RHDV strains and gives further

support for a role of the HBGA in the virus epidemiol-

ogy and suggests that the virus is shaping the hosts’

HBGA diversity.

The virus also seems to be evolving to overcome the

host resistance mechanisms since significant mortalities

are still observed in the field, at least in Australia. Evi-

dence for this comes from the fact that in comparative

trials in rabbits known to be resistant to infection with

Czech 351, modern field strains appeared more virulent

than the original released strain, suggesting they had

evolved to keep pace with changes in rabbit resistance

[205]. In addition, HBGA specificities of the strains that

evolved in France from 1988 to 2009 progressively

shifted, allowing preferential recognition of subgroups of

animals that express distinct HBGA motifs, which sug-

gests an adaptation to the host genetic diversity [117].

9. Prevention, control and vaccination
In animals presenting subclinical or no clinical signs,

passively acquired immunity has been shown to act suc-

cessfully in emergency situations [132]. Indeed, this

therapy, which is achieved by inoculation with a

hyperimmune antiserum, confers short-term protection,

preventing death. Nevertheless, passive immunization is

ineffective on animals presenting clinical signs. Thus, as

yet, no cure is available for RHDV-dying rabbits. Pre-

vention and control of the disease through biosecurity

and immunoprophylactic measures such as vaccination

are, therefore, of utmost importance. Due to the lack of

a cell culture system for efficient virus propagation,

commercially available vaccines against RHDV are pro-

duced from tissue suspensions of experimentally

infected rabbits, followed by chemical inactivation of the

virus [132,177,206]. However, and to obviate the risks

inherent to the manufacturing and use of this kind of

vaccines (the use of infectious particles, the need for a

safe disposal of contaminant residues, social concerns

on animal welfare) the RHDV capsid protein has been

tested in various studies as a subunit vaccine against

RHD. Several heterologous expression systems or

recombinant animal viruses have been developed to pro-

duce recombinant versions of the VP60 protein. The

VP60 recombinant protein has been produced in Escher-

ichia coli [140]; insect cultured cells [59,101-104]; yeast

[207,208]; plants [209-213]; insect larvae [214] and

recombinant animal-derived viruses [215-219]. Most of

these systems were shown to be immunogenic and to

confer protection against lethal doses of RHDV by elicit-

ing a humoral response indicating that they are good

substitutes for the tissue vaccines. Features such as low

cost, high yields and ease of scaling up are amongst the

most important factors for their commercial viability.

Although commercially available vaccines have proven

effective in rabbitries, in wild rabbit populations vaccina-

tion campaigns are economically and logistically imprac-

ticable and their effects are considered insignificant

[220]. Indeed, administration to wild rabbits implies

capturing and handling of rabbits which by being a

stress factor might increase the mortality rates [221]. In

addition, this would need to be performed systematically

since induced-immunity lasts no longer than 1 year

[222] and efficacy has been shown to be dependent on

several physiological parameters of the individuals [223].

Therefore, alternative approaches are being explored to

overcome these limitations such as the development of

vaccines with the capacity for horizontal transmission to

ensure appropriate immunization of a relevant portion

of the population [219], vaccines that may be adminis-

tered by the oral or nasal routes [105,208,213,217,219,

224,225] or the construction of bivalent vaccines

[216,226]. Nevertheless, as yet, none of these vaccines

has been registered or is commercially available.

Biosecurity measures for control and prevention of

RHD, including surveillance, sanitation, disinfection and

quarantine, are of high importance to limit propagation

and to ensure prevention of the disease in particular in
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the rabbit industry. In countries where RHDV circulates

in wild rabbits and where eradication is not achievable,

these measures might prevent large-scale infection in

rabbitries. Thus, a careful and correct management of

the RHDV outbreaks is always dependent on the epide-

miological situation of the regions where they occur. In

addition, a continuous monitoring of the viral evolution

in the field is fundamental for the quick detection of

new genetic and antigenic variants which might be

determinant for the application of the most appropriate

measures.

10. Therapeutic applications of RHDV
More recently, RHDV VLP have been considered as a

mean for cancer and pathogen immunotherapies

[227-232]. The capsid protein of RHDV spontaneously

assembles into VLP which are morphologically and anti-

genically indistinguishable from native virions, but

devoid of the viral RNA [101]. By genetic engineering,

RHDV VLP have been shown to efficiently incorporate

antigens that might be presented to immune cells and

to elicit an adequate cell-mediated and humoral immune

response [228-232]. In addition, RHDV VLP have the

advantage of being easily produced and at low cost, and,

by deriving from a non-human virus, they are not sus-

ceptible to pre-existing neutralising antibodies [228],

thus providing a reliable molecular tool for therapeutic

applications.

RHDV has also been investigated for the study of

virally-induced acute liver failure (ALF) in humans

[233-239] as it fulfils several of the requirements to be a

good animal model [233]. ALF is a condition charac-

terised by severe liver injury, hepatic encephalopathy,

coagulopathy and multiorgan failure, with viral infec-

tions (e.g. hepatitis A, B and E) and drug use (e.g. para-

cetamol overdose) amongst the commonest causes

[240]. The hepatic lesions observed following infection

by RHDV [99] resemble those caused by ALF in

humans, but other physiologic, histological and bio-

chemical alterations are also shared. Indeed, the hemo-

dynamic changes, alterations in the intracranial pressure

and histological alterations such as apoptosis observed

in RHDV are common to ALF [74,233,241,242]. In addi-

tion, clinical symptoms such as prostration or convul-

sions observed on RHD are also observed in ALF [38].

RHDV has also been used for the study of therapeutic

approaches for ALF [236,238,239].

11. Conclusions
Despite the lack of an appropriate cell culture system,

some light has been shed on several aspects of RHDV

and RHD. Nevertheless, the host-parasite interactions

established between RHDV and the European rabbit are

still unclear. Indeed, the role of some of the proteins

encoded by RHDV is still unknown and the emergence

of RHDV as a pathogenic form has not yet been

resolved. In order to clarify these gaps, an effort should

be made in obtaining full genomic sequences, including

for non-pathogenic strains as these might contribute to

understand the pathogenesis of RHDV. As for the host,

and in particular as for key factors of susceptibility and

resistance, the rabbit genome project should be consid-

ered and used for the study of candidate genes. By using

temporal samples, i.e., samples of rabbits collected

before and after RHDV outbreaks, one might determine

those candidate genes. Further studies on immunity to

RHDV and on the related non-pathogenic viruses are

also warranted for a better understanding of the host-

pathogen relationships. In addition, the study of the clo-

sely related EBHSV and its host, might contribute to the

understanding of the interplay between lagoviruses and

leporid species. The possibility that RHDV might be

used as a model for the study of other calicivirus infec-

tions, in particular in view of its non-pathogenicity for

humans, as well as for the development of anti-cancer

and pathogen therapies transforms it into a valuable

research molecular tool.
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