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Abstract

Background: The data from high throughput genomics technologies provide unique opportunities for studies of

complex biological systems, but also pose many new challenges. The shift to the genome scale in evolutionary

biology, for example, has led to many interesting, but often controversial studies. It has been suggested that part

of the conflict may be due to errors in the initial sequences. Most gene sequences are predicted by bioinformatics

programs and a number of quality issues have been raised, concerning DNA sequencing errors or badly predicted

coding regions, particularly in eukaryotes.

Results: We investigated the impact of these errors on evolutionary studies and specifically on the identification of

important genetic events. We focused on the detection of asymmetric evolution after duplication, which has been

the subject of controversy recently. Using the human genome as a reference, we established a reliable set of 688

duplicated genes in 13 complete vertebrate genomes, where significantly different evolutionary rates are observed.

We estimated the rates at which protein sequence errors occur and are accumulated in the higher-level analyses.

We showed that the majority of the detected events (57%) are in fact artifacts due to the putative erroneous

sequences and that these artifacts are sufficient to mask the true functional significance of the events.

Conclusions: Initial errors are accumulated throughout the evolutionary analysis, generating artificially high rates of

event predictions and leading to substantial uncertainty in the conclusions. This study emphasizes the urgent need

for error detection and quality control strategies in order to efficiently extract knowledge from the new genome

data.
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Background
High throughput genomics technologies are now provid-

ing the raw data for genome-level or systems-level stu-

dies [1]. At the same time, the avalanche of data also

poses many new challenges. The shift to genome scale

studies in evolutionary biology, for instance, has led to

many interesting, but often controversial studies. Many

branches in the Tree of Life are still the subject of

intense discussions, and simply adding more sequences

has not resolved the inconsistencies [2]. In prokaryotes,

phylogenetic incongruencies are often assumed to be

the result of lateral gene transfers, but the frequency of

these events has been challenged recently [3,4]. In

eukaryotes, the ancestral relationships between the

major eukaryotic kingdoms [5-8], as well as many more

recent clades such as fish or mammalian [9-11], are also

hotly debated. It has been suggested that at least some

of the conflicting results from evolutionary analyses are

due to differences in the models and methodologies

used to test the original hypotheses, e.g. [12,13], as well

as errors in the input sequences [2].

High throughput biological datasets are notoriously

incomplete [14-16], noisy and inconsistent and DNA or

protein sequences are no exception. The DNA

sequences produced by next generation sequencing
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(NGS) technologies or low-coverage assemblies pose

particular problems [17,18]. A number of recent studies

have investigated the rate of errors in these new genome

sequences and their impact on the accuracy of down-

stream analyses [19-22]. In the context of proteome stu-

dies, the DNA sequencing errors are further confounded

by inaccuracies in the delineation of the protein-coding

genes. Coding regions are mostly predicted by automatic

methods, but the relationship between genes, transcripts

and proteins is complex and automated genome annota-

tion is not completely accurate. Thus, ten years after the

publication of the human genome, the exact number of

human protein-coding genes is still unknown [23].

Furthermore, recent analyses have shown that, even for

those genes that have been identified, the complete

exon/intron structure is correctly predicted for only

about 50-60% of them [24-26]. In eukaryotic genomes,

the situation is also complicated by widespread alterna-

tive splicing events, which affects more than 92-94% of

multi-exon human genes [27].

To what extent do these quality issues affect our

understanding of the evolutionary events shaping mod-

ern organisms? Although sequence errors are essentially

ignored in most genome-scale analyses, some studies

have addressed certain aspects of this question. For

example, Hubisz and coworkers [19] investigated the

impact of DNA sequencing errors in low-coverage gen-

ome assemblies on inferred rates and patterns of inser-

tion/deletion and substitution on the mammalian

phylogeny. Schneider et al. [28] showed that the esti-

mated amount of positively selected genes in genome

scale analyses may be inflated by the presence of unreli-

able sequences.

Here, we have investigated the impact of erroneous

protein sequences, resulting from either DNA sequen-

cing errors or inaccurate prediction of exon/intron

structures, on evolutionary analyses and the detection of

important genetic events. We concentrated specifically

on duplication events, which are known to be an impor-

tant source of functional diversity [29-32] and where

there has been a great deal of debate about the long

term fate of duplicated genes. Two main models have

been proposed for the evolution of novel gene function

associated with gene duplication. The neofunctionaliza-

tion model predicts the evolution of a new function in

one of the duplicates, with accelerated evolution of the

deconstrained copy compared with the copy that retains

the ancestral function. The subfunctionalization model

implies the division of the ancestral functions among

the duplicates and does not make any prediction about

the symmetry or asymmetry of sequence evolution.

Although individual cases of both modes of evolution

have been reported, the relative frequency of the differ-

ent scenarios in nature is still not clear [12,33,34].

To some extent, the evolutionary fate of duplicated

genes depends on the duplication mechanism. After tan-

dem duplications or large-scale (e.g. whole-chromosome

or whole-genome) duplications, both gene copies retain

the same genome context. In contrast, after segmental

duplications or retrotranspositions, one of the gene

copies retains the ancestral genome position while the

other copy is relocated elsewhere. It is generally

expected that the gene copy that retains the genome

context will be more conserved, and thus will be more

likely to retain the ancestral functions [35]. The hypoth-

esis is that newly duplicated genes that have been trans-

posed to new chromosomal locations experience a new

genomic and epigenetic environment, modifying the

expression and/or function of the genes.

In this work, we have searched for duplication events

that contradict this hypothesis, in order to quantify the

effect of protein sequence errors on our ability to accu-

rately identify unusual evolutionary histories. The goal

was not to identify an exhaustive list of duplications, but

to establish a reliable test set of events that could be

used for the error analysis. Using the well-studied

human genome as a reference, we identified 114,680

homologs in 13 high coverage vertebrate genomes from

the Ensembl [36] database that were located in a region

with local synteny (Figure 1). We then identified 688

cases where another homolog of the reference human

gene was found elsewhere in the vertebrate genome

with significantly higher sequence similarity than the

syntenic homolog. In other words, we identified 688

gene triplets, composed of one human reference gene

and two corresponding gene copies from another verte-

brate genome (the local “syntenic homolog” and the

remote “highest similarity homolog”), that might indi-

cate putative asymmetric evolution after duplication

(AED) events where the less similar gene copy retained

Figure 1 Evolutionary scenario involving asymmetrical

evolution after duplication (AED). A schematic view of the AED

events included in this study. Using the human gene Hi as a

reference, homologs are detected in each vertebrate genome that

maintain the same genome neighborhood as the human gene. At

the same time, the homologs from each genome with the highest

similarity to the human reference gene are identified (full arrows

indicate similarity homologs and dashed arrows indicate syntenic

homologs). We then selected AED events where the relocated

similarity homolog has evolved significantly faster than the local

syntenic homolog.
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the ancestral gene-neighbourhood. To determine what

proportion of these putative AED events may be due to

erroneous protein sequences (resulting from either DNA

sequencing errors or badly predicted protein coding

regions), we identified potential sequence errors in the

gene triplets and showed that the majority (57%) of

detected AED events are in fact false positives. A Gene

Ontology (GO) functional analysis highlighted a number

of GO categories that are over-represented in the true

positive gene set, which were masked before filtering of

the erroneous sequences.

Results
Estimation of sequence error rates

We predicted protein sequence errors, resulting from

genome sequencing errors and exon/intron prediction

errors, in the 14 high coverage vertebrate genomes

(Table 1) from the Ensembl database, using a previously

published method [37]. First, we constructed multiple

sequence alignments (MSAs) for each of the 19,778

human protein sequences defined by the Human Pro-

teome Initiative (HPI) and their potential vertebrate

homologs. The sequences in the alignments were then

clustered into more similar subgroups and errors were

predicted if discrepancies were observed between one

sequence and its close neighbours, for example between

human-chimpanzee or between fish genomes. The error

detection protocol was thus used to identify lineage-spe-

cific insertions, deletions or sequence segments, which

are inconsistent with the conservation information in

the MSA. Finally, we calculated the rate of sequence

errors found in all 19,778 MSAs (Figure 2A). The MSAs

contained a total of 344,437 protein sequences and

240,313 potential sequence errors, giving an estimated

sequence error rate of at least 0.7 errors per sequence.

The total number of sequences with at least one poten-

tial error was 142,836. Thus, on average 41% of

sequences were predicted to be erroneous.

The observed error rates were not homogeneous

across the different species. Lower rates were observed

for the human and mouse proteomes, with 30-31% erro-

neous sequences, as might be expected for these well

studied organisms. Among the non-human primate pro-

teomes considered here, lower error rates were esti-

mated for the orangutan (Pongo pygmaeus), compared

Table 1 Ensembl genomes used in this study

Genome identifier Organism No. of genes No. of proteins

ENSP ’Human’,’Homo sapiens’ 21971 60953

ENSPTR ’Chimpanzee’,’Pan troglodytes’ 19829 39256

ENSPPY ’Orangutan’,’Pongo pygmaeus’ 20068 29256

ENSMMU ’Macaque’,’Macaca mulatta’ 21905 42370

ENSECA ’Horse’,’Equus caballus’ 20322 28128

ENSCAF ’Dog’,’Canis familiaris’ 19305 29804

ENSBTA ’Cow’,’Bos taurus’ 21036 29517

ENSMUS ’Mouse’,’Mus musculus’ 23873 43630

ENSRNO ’Rat’,’Rattus norvegicus’ 22503 37672

ENSMOD ’Opossum’,’Monodelphis domestica’ 19471 34132

ENSGAL ’Chicken’,’Gallus gallus’ 16736 22945

ENSORL ’Medaka’,’Oryzias latipes’ 19686 25174

ENSTNI ’Tetraodon’,’Tetraodon nigroviridis’ 19602 23909

ENSDAR ’Zebrafish’,’Danio rerio’ 21322 35967

Protein sequences were obtained from the Ensembl database version 51.

Figure 2 Estimation of sequence error rates. A) Percentage of

predicted sequence errors in 19,778 protein families in 14 vertebrate

genomes. In blue, the percentage of sequences with at least one

error. In red, the percentage of total errors observed. B)

Classification of sequence errors into 7 types according to their

position in the sequence and their nature (see methods). The

histogram shows the frequencies of each error type observed in all

protein sequences (C-deletion = C-terminal deletion; C-extension =

C-terminal extension; N-deletion = N-terminal deletion; N-extension

= N-terminal extension; segment = suspicious sequence segment:

deletion = internal deletion; insertion = internal insertion).
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to the chimpanzee (Pan troglodytes) and especially the

Rhesus macaque (Macaca mulatta). The relatively high

error rate for the macaque is not surprising since the

macaque genome in Ensembl version 51 is a preliminary

assembly using whole genome shotgun (WGS) reads

from small and medium insert clones. On the other

hand, the relative error rates in chimpanzee and orangu-

tan are more surprising. Both the chimpanzee and oran-

gutan genomes have been sequenced to 6x coverage, but

in a recent study of primate genome assembly quality,

the chimpanzee genome assembly was estimated to be

of higher quality [38].

Nevertheless, the same study found that about 70% of

inferred errors in the orangutan genome were clustered

in the 3.2% of the assembly that is of low quality, imply-

ing that > 96% of the assembly could be considered of

high fidelity. We found the highest error rates in the

opossum, chicken and fish proteomes, with > 45% erro-

neous sequences. Although these genomes have all been

sequenced to high coverage, the lack of a well annotated

reference genome from a closely related model organism

may result in lower quality protein sequence prediction.

The predicted protein sequence errors were then char-

acterized according to two different factors: (i) the nat-

ure of the error, i.e. insertion, deletion or suspicious

segment and (ii) the position in the sequence, i.e. at the

N/C-terminus or within the sequence. Figure 2B shows

the proportion of the different errors observed. The

most commonly found error was the presence of a sus-

picious sequence segment, possibly representing a mis-

predicted exon. At the N- and C- termini, deletions

were observed more frequently than extensions.

Although this may be due in part to the protocol used

to detect sequence errors, it may also reflect the diffi-

culty of predicting the first and last coding exons. In

contrast, internal insertions were more common than

internal deletions, suggesting that more internal errors

were due to the over-prediction of introns as coding

sequences, rather than the under-prediction of exons.

Comparison of similarity and synteny based homologs

Putative orthologs were predicted for each of the 19,778

human proteins based on the MSAs of the human refer-

ence sequences and related sequences from the 13 ver-

tebrate genomes. Two different approaches were

implemented. First, the sequences from each organism

with the smallest evolutionary distance were identified

based on pairwise alignments extracted from the MSAs,

and denoted “highest similarity homologs”. Second,

“syntenic homologs” were defined based on the local

gene order conservation. The genome coverage achieved

by the two methods is shown in Figure 3 and Table S1

in Additional file 1. The highest similarity homologs

covered 80% of the 265,658 genes in the 13 vertebrate

genomes, ranging from 89% in chimpanzee to 68% in

zebrafish. As expected, a smaller proportion (43%) of

homologs was found with locally conserved synteny,

including 77% of chimpanzee genes and only 3% of zeb-

rafish. Although our definition of locally syntenic

regions is relatively stringent, we observe a comparable

coverage to other existing methods. For example, we

found 51% of mouse genes to be syntenic with human,

compared to 59% using the method developed by [39].

Other more refined methods have been developed, such

as Syntenator [40], that use less stringent criteria to

define conserved syntenic regions. By allowing more

gene mismatches and gene insertions/deletions, Syntena-

tor aligned 79% of mouse genes with human.

We then investigated whether the gene that is most

similar on the sequence level is also the gene that shares

the same gene-neighbourhood (Figure 3 and Table S2 in

Additional file 1). Of the 212,409 similarity homologs

identified in the 13 vertebrate genomes, 113,517 were

found in locally syntenic regions. In mammals, this

represents 69% of the highest similarity homologs. This

is less than that estimated in a previous study [41],

Figure 3 Number of putative ortholog relationships between

human and 13 vertebrate genomes. A. Putative ortholog

relationships between human and each of the 13 vertebrate

genomes used in this study were identified by similarity-based and

synteny-based approaches. B. The proportion of orthologs predicted

by the synteny approach for which the same ortholog was

predicted by the similarity-based approach.
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where 97.5% of Inparanoid orthologs in human, mouse,

rat and dog were found in syntenic regions, most likely

due to our stricter definition of local synteny. On the

other hand, only 1% of the identified syntenic homologs

(1,157 out of 114,680) were not identified by the similar-

ity-based approach. As expected, a generally higher level

of disagreement was observed for more divergent gen-

ome pairs. Nevertheless, in human-chicken comparisons,

the synteny method identified the same homolog as the

similarity approach in 98.8% of the cases. Fewer consis-

tencies were observed in human-fish comparisons (84-

87% of syntenic homologs were also the highest similar-

ity homologs), possibly due in part to the whole genome

duplications in the fish lineage, resulting in a larger

number of paralogs.

Asymmetric evolution events

We then examined in more detail the 1,157 gene triplets

(consisting of the human reference sequence and the

two homologs representing putative orthologs in one of

the 13 vertebrate genomes), where the syntenic homolog

was not the same as the highest similarity homolog. To

avoid including chance outcomes caused by very similar

rates of sequence evolution of these homologs relative

to the human sequence, we identified significantly differ-

ent rates of evolution at the 95% confidence level (see

Methods). Of the 1,157 gene triplets, a total of 688 cor-

responded to evolutionary scenarios where the syntenic

homolog (i.e. the gene copy with the shared genome

neighbourhood) evolved significantly faster (Table 2). A

complete list of the 688 gene triplets is available in

Table S3 in Additional file 1. The alternative scenario

for asymmetric evolution where the remote copy

evolved faster than the synteny copy is not detected by

our protocol. since in this case the homologs defined by

similarity and synteny would be the same.

Effect of erroneous sequences on prediction of

asymmetrical evolution

The 688 gene triplets identified above, consisting of the

human reference sequence, the highest similarity homo-

log and the synteny homolog, constitute a reliable test

set representing potential asymmetrical evolution events.

To study the impact of errors on the prediction of AED

events, we identified erroneous sequences in this test

set. Figure 4A shows the number of events that are

assumed to be artifacts since at least one of the

sequences was predicted to be erroneous, as well as the

number of remaining ‘true’ events. Of the 688 gene tri-

plets, only 294 (43%) do not contain erroneous

sequences and may correspond to true events, while a

total of 394 (57%) are putative artifacts.

As might be expected, the proportion of artifactual

events varies with the different genomes studied,

depending on the percentage of erroneous sequence

detected (Figure 4B). For example, 19% of chimpanzee

and 24% of mouse predicted events are due to artifacts,

while this figure increases significantly for the draft

macaque and chicken genomes (69% and 88% respec-

tively). It is interesting to note that a larger proportion

of artifacts are observed in the orangutan genome than

in the chimpanzee, even though the orangutan genome

is predicted to contain less sequence errors than the

chimpanzee (see above).

Table 2 Number of syntenic homologs with significantly faster evolutionary rates compared to the remote similarity

homolog

Genome
identifier

No. of syntenic
homologs

No. of inconsistencies: syntenic versus highest similarity
homologs

Significant asymmetric evolution
events (AED)

Human 15295 37 21

Chimpanzee 12881 54 26

Orangutan 12286 121 82

Macaque 11447 59 37

Horse 11443 64 39

Dog 10486 59 30

Cow 12276 70 33

Mouse 10439 117 69

Rat 9261 126 65

Opossum 6231 65 41

Chicken 1027 166 99

Medaka 907 114 83

Tetraodon 701 111 63

Total 114680 1157 688

These may indicate putative asymmetric evolution after duplication (AED) events where the less similar gene copy retained the ancestral gene-neighbourhood.
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In order to validate the putative protein sequence

errors leading to artifactual AED events, we investigated

the 413 predicted sequence errors in the human refer-

ence sequences and their syntenic homologs. The results

of the analysis are shown in Table 3 and examples of

the different errors detected are provided in Additional

file 2. The majority (59%) of the erroneous sequences

resulted from DNA sequencing or assembly errors, char-

acterised by the presence of ‘N’ characters in the DNA

sequences. For the remaining 171 protein sequence

errors, we searched for the missing protein fragments in

the corresponding DNA sequences. For errors involving

missing segments (i.e. internal insertion, N/C-terminal

extensions or suspicious segments), 89 of the 148 miss-

ing segments were detected and we therefore concluded

that the error was due to an inaccurate gene structure

prediction. In the case of sequence errors corresponding

to inserted segments (internal insertions, N/C-terminal

insertions), 16 of the 23 inserted segments were con-

served in closely related organisms, although 5 of them

had one or more stop codons. Finally, we manually veri-

fied the transcript evidence in Ensembl for all 23 inser-

tions in gene sequences with no genome errors, as well

as for the 59 unconserved deletions. Of these, 62 protein

errors were not supported by any transcript information

and 9 errors were due to the alternative splicing variants

reported for homologous genes. Only 11 (2.7%) of the

413 putative protein sequence errors were identified as

false positive predictions, since a transcript was found

corresponding to the affected sequence segment.

Detailed analysis of sequence errors leading to artifactual

AED events

To investigate whether the sequence errors leading to

artifactual events were enriched for a particular type, we

classified the errors into 7 types as described above. We

then calculated the proportion of the different error

types found in the gene triplets corresponding to the

688 predicted AED events (Figure 5). In the human

reference sequences, only 32 errors were predicted, as

might be expected since the human genes have been

very widely studied. The majority (24 out of 32) of the

human sequence errors were found at the N/C termini,

with the exception of a small number of internal

sequence segments that were labeled as being

suspicious.

When all the sequences in the gene triplets were

pooled, no significant enrichment was observed in the

frequency distribution of the different error types caus-

ing artifactual events, compared to the background dis-

tribution observed in all the sequences (as shown in

Figure 2). The goodness-of-fit was measured using a

likelihood ratio chi-square statistic (chi-square = 3.12, p-

value = 0.79). Nevertheless, different error types were

observed when the syntenic and highest similarity

homologs were considered separately. For example, arti-

factual events were observed more frequently if the syn-

tenic homolog, i.e. the gene copy that retained the

genome neighbourhood after duplication, contained sus-

picious segments. In contrast, N- and C-deletions in the

highest similarity homolog, i.e. the gene copy that was

relocated, were more likely to cause artifacts.

Figure 6 shows an example of an artifactual event

observed in the gene triplet corresponding to [Swiss-prot:

COPG_HUMAN] and the two homologs from macaque

(the full length alignment is provided in Figure S1 in Addi-

tional file 1). The COPG protein forms part of the coato-

mer complex, involved in protein transport between the

endoplasmic reticulum and the Golgi. The macaque synte-

nic homolog [Ensembl:ENSMMUP00000017291] contains

a suspicious segment and an exon deletion that artificially

increase its evolutionary distance to human, due to a low

quality segment in the genome sequence (indicated by ‘N’

characters in the gene sequence). Consequently, another

macaque protein [Ensembl:ENSMMUP00000006382] is

identified as the highest similarity homolog of human

COPG, resulting in an artifactual AED event prediction. In

fact, [Ensembl:ENSMMUP00000006382] is the ortholog of

[Uniprot:COPG2_HUMAN].

Figure 4 Effect of erroneous sequences on prediction of

asymmetrical evolution in 13 vertebrate genomes. A. The

presence of erroneous sequences give rise to a number of

artifactual AED events (shown in red). The remaining events are

defined as putative AED events (shown in blue). B. Comparison of

percentage of protein sequences predicted to contain errors and

percentage of artifactual AED events for each genome.
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The orthology prediction method used in the Ensembl

project, based on a phylogenetic gene tree approach,

finds the correct 1-to-1 orthology relationship between

the human and macaque COPG proteins. Unfortunately,

many other orthology databases are less successful. For

example, in the Inparanoid database (inparanoid.sbc.su.

se), the Ensembl human COPG and macaque COPG2

sequences are in the same orthologous cluster, while no

human ortholog is found for the macaque COPG

sequence.

Functional analysis of asymmetrical evolution events

In order to investigate the effect of filtering the erro-

neous sequences on the subsequent functional analysis

of asymmetrical evolution events, we conducted a gene

ontology (GO) term enrichment analysis. Specifically, we

investigated the 688 AED events detected in this work,

where the local syntenic homolog was observed to

evolve more rapidly than the relocated highest similarity

homolog. At this stage, we excluded 81 events where

the human reference sequence had more than one exon,

but the relocated homolog had only one exon, since

they are likely to be non-functional pseudogenes. For

comparison purposes, we used two gene lists: (i) gene

list 1 corresponding to the remaining 607 detected

Table 3 Validation of putative protein sequence errors

Putative protein errorsa Genome
errorsb

Exon
conservationc

Transcript evidence % FP errorg

Yes No Yes No No Splicing variantse FP error predictionf

Suspicious segment 223 161 62 43 19 12 3 4 1.8

Deletion 7 1 6 6 0 0 0 0 0.0

N-deletion 68 26 42 19 23 18 2 3 4.4

C-deletion 64 26 38 21 17 16 0 1 1.6

Deletion sub-total 362 214 148 89 59 46 5 8 2.9

Putative protein errors Genome errors Intron
conservationd

Transcript evidence % FP error

Yes No Yes
(stop)

No No Splicing variants FP error prediction

Insertion 22 15 7 6 (1) 1 5 2 0 0.0

N-extension 18 7 11 7 (3) 4 7 1 3 16.7

C-extension 11 6 5 3 (1) 2 4 1 0 0.0

Insertion sub-total 51 28 23 16 (5) 7 16 4 3 5.9

Total 413 242 171 100 14 62 9 11 2.7

Putative errors were estimated by analyzing the corresponding gene sequences. aThe total number of protein sequence errors included in the analysis. bThe

number of errors resulting from genome sequencing or assembly errors. cThe number of missing segments detected in the corresponding gene sequences. dThe

number of errors resulting from alternative splicing variants reported for homologous genes. eThe number of inserted sequence segments detected in the gene

sequences of homologous proteins. The number of these inserted sequence segments with at least one stop codon is given in brackets. fThe number of errors

supported by transcript evidence, i.e. false positive (FP) error predictions. gThe percentage of the total number of putative errors that were invalidated by the

analysis.

Figure 5 Characterization of sequence errors in predicted

asymmetrical evolution events. Errors are classified into 7 types

according to their position in the sequence and their nature (see

methods). The proportions of the different classes found in the

human reference sequences, the syntenic homolog (V_syn) and the

highest similarity homolog (V_sim) are shown, as well as the

proportions observed in the pooled sequences in the gene triplets.

(C-deletion = C-terminal deletion; C-extension = C-terminal

extension; N-deletion = N-terminal deletion; N-extension = N-

terminal extension; segment = suspicious sequence segment:

deletion = internal deletion; insertion = internal insertion).
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events, including both artifactual and putative true

events and (ii) gene list 2 corresponding to 250 putative

true events only (Table S4 in Additional file 1). The two

gene lists were then analyzed for enrichment of GO

terms using the AmiGO [42] web server, using the com-

plete set of human genes as the background set and

default parameters (Tables S5-6 in Additional file 1).

The results of the AmiGO analyses were also submitted

to the GO-Module [43] web server, in order to reduce

the complexity and identify ‘key’ GO terms (Table 4).

Gene list 1 was enriched in 24 key GO terms, includ-

ing a number of vertebrate specializations (e.g. anatomi-

cal structure development), but also some fundamental

eukaryotic processes (e.g. regulation of metabolic pro-

cesses, gene expression, axon guidance). For example,

the term ‘RNA biosynthetic process’ is found with a P-

value of 5E-16, involving 101 (20%) of the 607 genes in

the list. However, only 6 of these 24 key GO terms are

associated with the true events in gene list 2. Thus, the

remaining 18 (75%) enriched GO terms are probably

false positives resulting from the artifactual events.

Furthermore, and perhaps more importantly, important

key GO terms associated with the true events are not

enriched in gene list 1, notably neurogenesis related

functions. After filtering of gene triplets with erroneous

sequences, gene set 2 was enriched in 10 key terms,

including neuron differentiation functions, and response

to the environment.

Figure 7 shows an example of a true AED event

detected in the hepatoma-derived growth factor (HDGF)

protein family. The HDGF and HDGF-like family mem-

bers are characterized by a conserved PWWP domain in

the N-terminal region. In human, the HDGF protein

[Ensembl:ENSP00000349878] exhibits growth factor

properties and has been implicated in organ develop-

ment and tissue differentiation of the intestine, kidney,

liver, and cardiovascular system. In addition, the role of

HDGF in cancer biology has recently become a focus of

research, since HDGF was found to be over-expressed

in a large number of different tumor types (genecards.

org). Whereas some family members, such as HDGF

and HDGFL2, are expressed in a wide range of tissues,

the expression of others is very restricted. For example,

HDGFL1 and HDGFL4 are only expressed in testis,

although their precise functions are still unknown. We

observed an EAD event in several organisms, including

mouse and rat. For example, mouse HDGFL1

[Ensembl:ENSMUSP00000057557] on chromosome

13 is syntenic with human HDGFL1 [Ensembl:

ENSP00000230012] on chromosome 6, but mouse

HDGF [Ensembl:ENSMUSP00000005017] shares higher

sequence similarity with human HDGFL1 (58% identity

versus 53%). Although mouse HDGFL1 is specifically

expressed in testis, like human HDGFL1, the human and

mouse proteins are more divergent in the C-terminal

region and probably have different functions. In

fact, mouse HDGFL1 lacks the caspase cleavage site

identified in mouse HDGF, as well as a number of

conserved residues that are known to be phosphory-

lated (genecards.org).

Discussion
Several recent studies have highlighted the prevalence of

errors in genes predicted from genome sequences

[24-26,44], particularly in eukaryotic genes. The situa-

tion is further complicated by the fact that multiple

transcript variants are often expressed by the same gene.

Nevertheless, orthology and paralogy, which are funda-

mental concepts for most evolutionary analyses, are gen-

erally defined at the gene level. Many systems, including

Ensembl compara [45], simply select the longest tran-

scripts to represent a gene, although there is no guaran-

tee that the longest predicted transcripts in different

organisms are equivalent. Some authors have specifically

addressed these issues by defining relationships at the

transcript level [46,47] or by using processed

Figure 6 An example of an artifactual AED event. Part of the multiple sequence alignment of the human COPG protein sequence [Ensembl:

ENSP00000325002] and putative orthologs in the macaque genome. The suspicious segment is boxed in grey. For the Ensembl macaque

sequences, exons are colored alternately in black and blue. Residues overlapping splice sites are shown in red.
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transcription units, i.e. a combination of all overlapping

sequence variants in the genomic region [48]. Neverthe-

less, these remain partial solutions only and do not

resolve all problems.

These quality issues may lead to inaccurate or erro-

neous conclusions if they are integrated indiscriminately

in downstream evolutionary or functional analyses. As

an example, when annotating a new genome, gene

structure data is often transferred from the genome of a

closely related species, e.g., many chimpanzee genes in

the Ensembl database were predicted based on compari-

sons with human transcript data. These gene sequences

were then used to perform genome-wide scans for posi-

tive selection [49]. Although more positively selected

genes were identified in chimpanzees compared to

human, it has been suggested that the majority of the

signals may be due to errors in the original sequences

or in the gene alignments [50]. Thus, we have a vicious

circle, where the gene sequences that provide the start-

ing point for most evolutionary analyses are themselves

generally predicted based on evolutionary information.

Protein sequence error rates

We detected erroneous protein sequences based on dis-

crepancies in the conservation of vertebrate protein

MSAs. The sequence errors may result from (i) DNA

sequencing errors, (ii) badly predicted introns/exons,

(iii) different splicing variants predicted in different

organisms. We estimated the frequency of erroneous

sequences to be at least 41%, although some genomes

are more error-prone than others, depending on factors

such as sequencing coverage or the availability of a well

annotated genome from a closely related organism.

In this study, we only considered sequences from the

Ensembl database and we used cross-comparisons

between species to identify discrepancies. However,

Table 4 GO term enrichment analysis for artifactual and putative AED events

GO enrichment for all events GO enrichment for true events only

GO ID GO biological process P-
value

GO ID GO biological process P-
value

0032501 multicellular organismal process 4.E-43 0032501 multicellular organismal process 2.E-13

0048856 anatomical structure development 2.E-32 0050896 response to stimulus 9.E-12

0065007 biological regulation 4.E-26 0048856 anatomical structure development 3.E-09

0080090 regulation of primary metabolic process 6.E-21 0042060 wound healing 2.E-07

0071842 cellular component organization at cellular level 3.E-20 0050789 regulation of biological process 1.E-06

0060255 regulation of macromolecule metabolic process 5.E-19 0071842 cellular component organization at
cellular level

2.E-06

0051171 regulation of nitrogen compound metabolic process 5.E-19 0007596 blood coagulation 4.E-06

0032774 RNA biosynthetic process 5.E-16 0022008 neurogenesis 5.E-05

2000112 regulation of cellular macromolecule biosynthetic process 7.E-16 0006928 cellular component movement 6.E-05

0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolic
process

1.E-15 0030182 neuron differentiation 4.E-04

0010467 gene expression 4.E-13

0042060 wound healing 4.E-09

0007596 blood coagulation 2.E-08

0006810 transport 2.E-08

0007166 cell surface receptor linked signaling pathway 3.E-06

0007411 axon guidance 5.E-06

0007601 visual perception 2.E-05

0016477 cell migration 5.E-05

0030168 platelet activation 1.E-04

0006195 purine nucleotide catabolic process 1.E-04

0009207 purine ribonucleoside triphosphate catabolic process 5.E-04

0016568 chromatin modification 6.E-04

0006915 apoptosis 8.E-04

0060173 limb development 9.E-04

Comparison of GO term enrichment analysis for (i) gene list 1 corresponding to 607 predicted asymmetrical evolution events, including both artifactual and

putative true events and (ii) 25O true events obtained after filtering the erroneous sequences. GO terms for biological processes were found with P < 10-4 using

AmiGO and then filtered with GO-Module (only key terms are shown). Terms that are specific to only one gene list are highlighted in bold.
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Ensembl may produce predictions that are consistent

across organisms, i.e. may reproduce the same errors in

different genomes or propagate intron/exon structures.

Thus, our estimate of the average sequence error rate is

probably conservative. Another recent study [51]

showed that the Ensembl compara sequence prediction

method correctly identified only 55% of coding tran-

scripts exactly.

Identification of evolutionary events

Our main goal was to determine to what extent these

erroneous sequences affect subsequent evolutionary ana-

lyses. We focused on a specific event: gene duplication

and the evolutionary fate of paralogs, since gene dupli-

cation is often assumed to be the most important source

of new functions.

Since duplication events where the local copy has

evolved more rapidly may indicate unusual evolutionary

scenarios, innovations or adaptations, we specifically

searched for examples of such asymmetric evolution

events. Our approach involved the identification of

reliable AED events that could be used as a test set for

estimating the impact of sequence errors. We therefore

designed a stringent protocol where we included only

high coverage genomes and used the well studied

human genome as a reference. We then identified puta-

tive orthologs in 13 vertebrate genomes, based on either

sequence similarity or local synteny conservation. The

similarity-based method used a very simple model of

sequence evolution, in order to avoid bias towards one

particular model. Nevertheless, this model clearly over-

simplifies the complex evolutionary processes involved,

and in the future, it would be interesting to investigate

the effect of a more realistic model of sequence evolu-

tion on AED detection, once sequencing/annotation

errors have been removed. We also used a strict

Figure 7 A putative AED event. A) Multiple sequence alignment of hepatoma-derived growth factor (HDGF) and HDGF-like proteins. Black

lines indicate the two main subgroups corresponding to the duplication node in the phylogenetic tree. Known phosphorylation sites are

labeled with asterisks. B) The phylogenetic tree constructed using the Neighbour-Joining algorithm with 500 bootstraps. Bootstrap values for

each node are shown in red. The distance between human and mouse HDGF1 sequences (in blue) is longer than the distance between human

HDGF1 and mouse HDGF sequences (in green).
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definition of local synteny, which led to lower genome

coverage in the ortholog prediction step. For the detec-

tion of asymmetric evolution, we used a simple measure

of amino acid divergence and specified a high signifi-

cance threshold that would ensure only reliable predic-

tions. Nevertheless, 688 putative AED events were

identified that were then used to perform an in-depth

investigation of the effect of sequence errors.

Impact of sequence errors

We compared the syntenic and highest similarity homo-

logs and identified cases where significantly faster evolu-

tionary rates were observed in the syntenic homolog, i.e.

the gene copy that retained the genome neighbourhood

after duplication, compared to the relocated highest

similarity homolog. Initially, 688 AED events were iden-

tified, of which 81 similarity homologs were potential

retropseudogenes with a reduced exonic map. The

majority (57%) of the remaining detected events corre-

sponded to erroneous sequences and only 250 repre-

sented putative true AED events. Thus, we conclude

that care should be taken when performing genome-

wide scans to search for genes with unusual patterns,

since outlying genes are more likely to be due to arti-

facts in the input sequences than the result of true evo-

lutionary events. Furthermore, our in-depth study

revealed some of the mechanisms by which errors in the

input sequences are propagated during the event predic-

tion. For example, a badly predicted internal segment in

one of the homologs results in an increased evolutionary

distance to the human reference sequence, while a loss

in the more variable N/C-terminal regions artificially

reduces the distance. These observations provide guide-

lines for future error detection and correction strategies

that will hopefully allow us to reduce the impact of the

sequencing errors.

In asymmetric evolution, one duplicate evolves or

degrades faster than the other and often becomes func-

tionally or conditionally specialized. In this context, the

accurate detection of the ‘functional’ homologs, i.e. pro-

tein pairs that play functionally equivalent roles [52], is

critical. We have shown that orthology assignment and

the detection of important genetic events are severely

impacted by the high proportion of errors in the initial

set of protein sequences, even in high coverage gen-

omes. The errors in the initial data are accumulated and

amplified in the higher-level analyses. Our estimated

rate of 41% erroneous protein sequences leads to 57%

errors in AED event prediction and, in the subsequent

Gene Ontology (GO) functional analysis, 75% of the

enriched terms are in fact false positives.

The false positive terms in the functional analysis can

be very costly to investigate experimentally and a reduc-

tion in the false discovery rate is clearly desirable. They

are also sufficient to mask some of the true functional

enrichments. After filtering the artifactual events corre-

sponding to erroneous sequences, the remaining AED

events were enriched in a number of GO categories,

including neuron differentiation and response to exter-

nal stimuli. Interestingly, human-specific duplicates evol-

ving under adaptive natural selection also include genes

involved in neuronal and cognitive functions, as well as

response to inflammation or stress [53]. Similarly, gene

families involved in copy number variations (CNVs) are

enriched for similar categories, including interactions

with the environment, neurophysiological processes and

brain development [54]. A recent study suggested that

the relationship between CNVs and positive selection

may play an important role in the emergence and evolu-

tion of species-specific traits in primates [55]. Genes in

many of these categories are thus thought to be impor-

tant in evolutionary adaptation and to be particular tar-

gets of natural selection.

Conclusions
Up to half of all protein sequences in today’s genome

databases contain erroneous insertions, deletions or sus-

picious segments. The high error rates have profound

implications, not only for the analysis of protein func-

tions, interaction networks, biochemical pathways or

disease phenotypes, but also for our understanding of

life’s evolution.

The putative sequence errors identified here lead to a

significant number of false positives in the detection of

asymmetric evolution events, which, if ignored, are suffi-

cient to obscure their true functional significance. We

have looked at one important event, asymmetric evolu-

tion after duplication, but the effect of protein sequence

errors is likely to be similar for other types of events.

This might explain many of the contradictions observed

in many recent evolutionary studies, aggravating the

effects of differences in source data, methodology and

planning of experiments [12].

Exploitation of the new genome data is clearly chal-

lenging, due to the size of the data sets, their complexity

and the high level of noise, and the situation is not

likely to improve with low coverage genomes becoming

the norm. As a consequence, data cleaning tools and

robust statistical analyses will be essential for its reliable

interpretation. With as many as 50% erroneous

sequences, the simple removal of this data will result in

the loss of too much information. It will be necessary to

validate and correct the sequence errors and ideally,

propagate these corrections to the public databases.

Some recent efforts have been undertaken to address

these issues [19,26,47], but additional work will be

essential to reduce the impact of error and to extract

the true meaning hidden in the data.
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The alternative is an escalating process where sys-

tematic errors are accumulated at each level of the ana-

lysis, generating artificially high rates of unusual event

predictions and eventually leading to an ‘error cata-

strophe’, where the noise overwhelms the true signal.

Methods
Protein sequence data sets

Human protein coding genes were retrieved from the

Human Proteome Initiative (HPI) and Swiss-prot

databases [56], resulting in a total of 19,778 human

sequences. Each gene was then used as a query for a

BlastP [57] search in a database consisting of the pro-

teomes of 14 vertebrates (Table 1) with almost com-

plete genomes from the Ensembl (version 51)

database [36]. The Ensembl human protein sequence

with the highest similarity to the HPI query was

designated as the reference protein sequence. For

each of the 19,778 human reference sequences, poten-

tial orthologs were then identified using two different,

complementary approaches: sequence similarity and

local synteny.

Putative orthologs based on sequence similarity

For each human reference sequence, a modified version

of the PipeAlign [58] protein analysis pipeline was used

to construct a multiple sequence alignment (MSA) for

all sequences detected by the BlastP search with E < 10-

3 (maximum sequences = 500). PipeAlign integrates sev-

eral steps, including post-processing of the BlastP

results, construction of a MSA of the full-length

sequences with DbClustal [59], verification of the MSA

with RASCAL [60] and removal of unrelated sequences

with LEON [61]. In this modified version, DbClustal

was replaced by the MAFFT [62] program, since the

computational speed of MAFFT is better suited to high

throughput projects. The MSAs obtained from this pipe-

line were then annotated with structural and functional

information using MACSIMS [63], an information man-

agement system that combines knowledge-based meth-

ods with complementary ab initio sequence-based

predictions. MACSIMS integrates several types of data

in the alignment, in particular Gene Ontology annota-

tions, functional annotations and keywords from Swiss-

prot, and functional/structural domains from the Pfam

database [64].

Based on the MSA, the evolutionary pairwise distance,

d, between any two sequences was defined as the num-

ber of amino acid substitutions per site under the

assumption that the number of amino acid substitutions

at each site follows the Poisson distribution. Thus:

d = − ln
(

1 − p
)

where d is the pairwise distance and p is the propor-

tion of different amino acids aligned (dissimilarity).

Then, for each human reference sequence, Hi, the

sequences from the 13 vertebrate organisms with the

highest similarity (i.e. the smallest distance) to Hi were

identified and denoted Vn_Simi, where Vn refers to one

of the 13 vertebrate organisms (Figure S2A in Addi-

tional file 1).

Putative orthologs based on local synteny

The chromosomal localization of all genes coding for

protein sequences was obtained from the Ensembl data-

base. Locally developed software was used to identify

regions on the human chromosomes where local syn-

teny was conserved between the human genome and

each of the other 13 vertebrate genomes. The chromo-

somes in each genome are thus represented as a linear

sequence of genes. For each human reference sequence,

the local syntenic homolog was defined as outlined in

(Figure S2B in Additional file 1). For the coding gene,

Hi, at position i on the human genome, its neighbours

(Hi-1 and Hi+1) were identified. For each of the 13 verte-

brate genomes, the sequences with the highest similarity

to Hi-1 and Hi+1 were selected from the MSA as

described above, and denoted Vn_Simi-1 and Vn_Simi+1

respectively, where Vn refers to one of the 13 vertebrate

genomes. A local synteny homolog, Vn_Syni exists for

Hi and genome Vn if: (i) homologs were found in Vn

for Hi-1 and Hi+1, (ii) the separation between the highest

similarity homologs, denoted Vn_Simi-1 and Vn_Simi+1,

on the genome was less than 5 genes and (iii) a homo-

log of Hi was found on the genome between Vn_Simi-1

and Vn_Simi+1. The homolog of Hi localized between

V_Simi-1 and V_Simi+1 with the highest similarity (smal-

lest evolutionary distance) to the human reference

sequence was then defined as the syntenic homolog.

Genes with ambiguous genomic locations, such as

scaffolds etc., were discarded since the synteny relation-

ship could not be reliably established. In addition, local

or tandem duplications were excluded since the genome

contexts of the two gene copies were similar. Although

tandem duplicates should be adjacent to each other on

one chromosome, extensive gene inversions may insert

irrelevant genes into the tandem arrays. We therefore

used a stringent threshold and excluded cases where

Vn_Simi and Vn_Syni were separated on the genomes

by less than 10 genes.

Automatic detection of potential sequence errors

For each MSA corresponding to a human reference

sequence, an automatic protocol was used to detect

sequence discrepancies that may indicate gene predic-

tion errors. Different types of prediction error were
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considered, such as excluding coding exons, including

introns as part of the coding sequence, or wrongly pre-

dicting start and termination sites. The protocol is

described in detail elsewhere [37]. Briefly, the sequences

in the MSA were first clustered into more related subfa-

milies then, for each subfamily, sequences with potential

errors were identified using an empirical rule-based

approach. (i) Badly predicted exons were identified

using the RASCAL algorithm [60] as outliers or ‘suspi-

cious’ sequence segments (Figure 8A). (ii) Badly pre-

dicted start or stop sites were identified by considering

the positions of the N/C-terminal residues for each

sequence in the subfamily alignment (Figure 8B). Nor-

mal values were defined as lying within the lower and

upper quartiles of the distribution of terminal positions.

Sequences with terminal positions outside this window

were annotated as potential deletion/extension errors.

(iii) Inserted introns (Figure 8C) were detected if a sin-

gle sequence contained an insertion of more than 10

residues. (iv) Missing exons (Figure 8D) were detected if

a single sequence contained a deletion of more than 10

residues.

Each error was then classified in one of 7 different

classes: internal insertions, internal deletions, suspicious

sequence segments, extensions at the N- or C-terminus,

and deletions at the N- or C-terminus.

Validation of potential sequence errors

The errors in the protein sequences were estimated by

analysing the corresponding DNA gene sequences from

the Ensembl database. First, if the gene sequence

contained a run of ‘N’ characters, we assumed that the

predicted protein sequence error was the result of a

DNA sequencing or assembly error. Second, the gene

sequences with no ‘N’ characters were searched for the

missing protein sequence fragments. For errors corre-

sponding to internal deletions, deletions at the N- or

C- terminus or suspicious sequence segments, the miss-

ing protein fragment was extracted from a closely

related sequence in the multiple alignment. The protein

fragment was then aligned to the gene sequence from

the ENSEMBL database using the PairWise software

[65]. The fragment was considered to be present in the

gene sequence if the percent identity of the protein and

translated gene sequences was greater than a given

threshold. The threshold used here was specific to the

pair of organisms compared and was defined as the

lower quartile of the protein sequence identities for the

complete proteomes of the two organisms. A similar

protocol was used for the errors corresponding to inser-

tions in a given protein sequence, except that, in this

case, the protein fragment corresponding to the inser-

tion was aligned to the gene sequence of another closely

Figure 8 Detection of potential sequence errors. Examples of sequence discrepancies (highlighted in blue) that are identified in the

subfamily alignments. A) Potential mispredicted exons, resulting in suspicious sequence segments, are identified based on the conserved blocks

in the subfamily alignment. B) Potential start and stop site errors are predicted based on the distribution of the positions of the N/C-terminal

residues. C) Identification of a potential inserted intron, based on the presence of a single sequence with the insertion in a given subfamily. D)

Identification of a potential missing exon, based on the presence of a single sequence with a deletion in a given subfamily.
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related sequence. Finally, the transcript evidence for the

protein sequences in the Ensembl database was searched

manually for known transcripts and splicing variants.

Prediction of asymmetrical evolutionary rates

It has been suggested that, after a gene duplication

event, one duplicate generally maintains the ancestral

function while the other is free to evolve and acquire

novel functionality. This scenario implies that the pro-

tein with conserved functionality will undergo less

sequence evolution than the one exploring new func-

tionalities. To determine which of the two homologs

described above (highest sequence similarity or syntenic)

was more likely to share the same function as the

human reference sequence, we estimated the difference

between the two evolutionary distances: human refer-

ence to similarity homolog and human reference to syn-

tenic homolog. Thus, for each of the 13 vertebrate

genomes considered in this study, we have a triplet of

homologs, Hi, Vn_simi, Vn_syni, and we want to esti-

mate the difference ∆ between two distances d(Hi,

Vn_simi) and d(Hi, Vn_syni).

We used an estimator based on pairwise sequence dis-

tances similar to one defined previously, that is relatively

fast to compute and has almost the same statistical

power as the widely used maximum likelihood estimator

[66]. The distance, d, between two sequences is defined

as the number of amino acid substitutions per site under

the assumption that the number of amino acid substitu-

tions at each site follows the Poisson distribution, as

before. The variance s of the distance d is given by:

σ
2
(d) = p/

[(

1 − p
)

n
]

where p is the proportion of amino acid differences

and n is the total number of amino acids compared.

If X has two homologs Y and Z, and Y is the closest

homolog to X, an estimator for the difference in evolu-

tionary distances is:

� = d (X, Y) − d (X, Z)

The variance of the difference can be computed as:

σ
2 (�) = σ

2 (d (X, Y)) + σ
2 (d (X, Z))

− 2cov (d (X, Y) , d (X, Z))

and thus, an upper bound for the variance of the esti-

mator is:

σ
2
(�) = σ

2
(d (X, Y)) + σ

2
(d (X, Z))

Finally, we assume X,Y are significantly closer than X,

Z if:

� < −k.σ (�)

In this work, the parameter k was set to 1.96, reflect-

ing the 95% confidence level. Thus, we would expect 5%

of the tested gene triplets to falsely reject the hypothesis

of asymmetrical evolution.

Additional material

Additional file 1: Supporting figures and tables. Supporting figures

and tables for the manuscript are provided as a PDF file.

Additional file 2: Examples of erroneous protein sequences and

their validation. Example text and figures are provided as a PDF file.
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