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Introduction:

The obligatory restoration of blood flow following an ischemic episod is well associated with the so called "reperfusion injury" responsible for tissue injury and ultimately to cell death in part related to the production of a burst in reactive oxygen species within minutes of reperfusion [START_REF] Yellon | Myocardial reperfusion injury[END_REF][START_REF] Murphy | Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury[END_REF]. However, and despite a low tension in oxygen, a significant reactive oxygen species generation during the ischemic phase was also reported and associated with reperfusion-induced cell death [START_REF] Becker | Generation of superoxide in cardiomyocytes during ischemia before reperfusion[END_REF][START_REF] Robin | Oxidant stress during simulated ischemia primes cardiomyocytes for cell death during reperfusion[END_REF].

One mechanism prominent in this injury is an increase in permeability of the mitochondrial membranes due to opening of the mitochondrial permeability transition pore (mPTP) greatly enhanced by adenine nucleotide depletion, calcium influx, elevated phosphate and oxidative stress [START_REF] Halestrap | What is the mitochondrial permeability transition pore?[END_REF]. Conversely, the increase in resistance to mPTP opening with ischemic or pharmacological induced pre-and post-conditionings is an obvious effective target for cardioprotection [START_REF] Halestrap | Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection[END_REF][START_REF] Obame | Cardioprotective effect of morphine and a blocker of glycogen synthase kinase 3 beta, SB216763 [3-(2,4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5dione], via inhibition of the mitochondrial permeability transition pore[END_REF][START_REF] Morin | Inhibition of mitochondrial membrane permeability as a putative pharmacological target for cardioprotection[END_REF][START_REF] Ovize | Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology[END_REF] and drugs that decrease oxidative stress usually inhibit mPTP opening [START_REF] Adlam | Targeting an antioxidant to mitochondria decreases cardiac ischemiareperfusion injury[END_REF][START_REF] Javadov | Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart[END_REF][START_REF] Townsend | Urocortin prevents mitochondrial permeability transition in response to reperfusion injury indirectly by reducing oxidative stress[END_REF]. However, and despite extensive research, the exact mechanisms linking the temporal sequence of reactive oxygen species production, membrane alterations, mPTP opening and cell death still remain partly unclear. Many authors strongly suggest that oxidative stress is the link between excessive calcium influx, inorganic phosphate accumulation and mPTP opening seen under conditions such as ischemia/reperfusion [START_REF] Kowaltowski | Mitochondrial permeability transition and oxidative stress[END_REF][START_REF] Di Lisa | CaPful of mechanisms regulating the mitochondrial permeability transition[END_REF] . Otherwise, it is well demonstrated that reactive oxygen species production in isolated cardiomyocytes during hypoxia is involved in cell death [START_REF] Robin | Oxidant stress during simulated ischemia primes cardiomyocytes for cell death during reperfusion[END_REF] but there is no information to date about the effect of this production on mPTP opening. We hypothesized that reactive oxygen species production during hypoxia might play a role on mPTP opening following hypoxia/reoxygenation. Therefore, we designed an in vitro model of hypoxia/reoxygenation in freshly isolated adult rat cardiomyocytes in order (1) to evaluate sequentially and simultaneously the kinetics of reactive oxygen species generation, mPTP opening and cell death during hypoxia/reoxygenation using fluorescent dyes and (2) to investigate the roles of various types of reactive oxygen species which participate to mPTP opening and cell death following hypoxia/reoxygenation.

Materials and methods:

All animals procedures used in this study were in accordance with the European Community Council Directive (86-609/87-848 EEC) and recommendations of the French Ministère de l'Agriculture.

Isolation of Adult cardiomyocytes.

Adult rat ventricular cardiomyocytes were obtained from hearts of male Wistar rats (260-300g) as described previously by the Alliance for Cellular Signaling (AfCS) (Procedure protocols: PP0000012; http://www.signaling-gateway.org). Briefly, animals were anesthetized with sodium pentobarbital (50mg/kg IP) and heparinized and their hearts were removed into an ice-cold Ca 2+ free perfusion buffer (mM: NaCl 113, KCl 4.7, KH 2 PO 4 0.6, Na 2 HPO 4 0.6, MgSO 4 1.2, NaHCO 3 12, KHCO 3 10, HEPES 10, taurine 30, 2,3-butanedione monoxime 10, glucose 5.5 at pH 7.4). The hearts were retrogradely-perfused at constant pressure on a Langendorff apparatus with the perfusion buffer for 3min at 37°C then switched to a digestion buffer containing Ca 2+ (12.5µM), liberase TM (0.1mg/ml; Roche diagnostics, Meylan, France) and trypsin (0.14mg/ml, Sigma, Saint-Quentin Fallavier, France). After digestion, the left ventricle was minced, filtered and allowed to sediment by gravity. The cellular pellet was washed several times with a perfusion buffer containing 5% bovine calf serum (Gibco, Invitrogen corporation, Cergy-Pontoise, France) and increasing concentrations of Ca 2+ (µM: 62, 112, 212, 500, 1000). Cells were plated in 35mm Petri dishes precoated with laminin (10µg/ml) and containing M199 (Invitrogen, Cergy-Pontoise, France). Cells were allowed to attach for 2 h in humidified 5%CO 2 -95% air at 37°C and then washed once to remove unattached cells before being used.

Hypoxia/reoxygenation in adult rat cardiomyocytes.

Petri dishes containing adherent contracting cells were mounted on a heated (37°C) perfusion chamber (Warner Instruments Inc, Hamden, CT). A pump was used to perfuse Tyrode's modified solution at a rate of 0.5 ml/min. The chamber was connected to a gas bottle diffusing a constant stream of O 2 (21%); N 2 (74%) and CO 2 (5%) maintaining a partial O 2 pressure at 21%. pO 2 within the chamber was measured continuously using an optical fiber phosphorescence quenching method (Ocean Optics, Inc., Dunedin, FL). The cardiomyocytes were paced to beat by field stimulation (5ms; 0.5Hz, Warner Instruments Inc.).

In all experiments, cardiomyocytes were perfused and equilibrated with the Tyrode's modified solution for 15min. To simulate ischemia, the perfusion was stopped and cardiomyocytes were exposed for varying duration (0.5, 1, 2 and 3 h) to a hypoxic medium maintaining pO 2 <1%. This medium consisted of a glucosefree Tyrode's modified solution (pH=7.4) supplemented with 20mM of 2-deoxyglucose and bubbled with 100%N 2 . In some experiments, Tyrode's modified solution was adjusted to pH=6.4. The gas mixture infused into the chamber was replaced by a constant stream of N 2 (100%). At the end of the ischemic period, reoxygenation was induced by restoring rapidly the Tyrode's flow and 21% O 2 in the chamber.

In separate experiments, cardiomyocytes were treated either with cyclosporin A (1µM; Sigma) or with antioxidants mixture containing 2-mercaptopropionylglycine (400µM; Sigma) and 1, 10-phenanthroline (10µM; Sigma). Cyclosporin A was introduced 15 min before the end of hypoxia and maintained during the first 10min of reoxygenation while antioxidants were added according to 3 different experimental protocols: (1) throughout the experiment, (2) during hypoxia or (3) 15 min before the end of hypoxia and during the first 10min of reoxygenation.

mPTP opening and cell death in cardiomyocytes.

Direct assessment of mPTP opening in cardiomyocytes was made by means of the established loading procedure of the cells with calcein acetoxymethyl ester (calcein-AM) and CoCl 2 (Sigma) resulting in mitochondrial localization of calcein fluorescence [START_REF] Petronilli | Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence[END_REF]. Briefly, cells were loaded with 1µM calcein-AM at 37°C for 30min in M199 containing a mixture of insulin-transferrine-selenium (100µl, Sigma). Calcein-AM generates free fluorescent intracellular calcein upon cleavage of the ester bound. CoCl 2 was then added to the medium resulting in quenching of cytosolic calcein fluorescence while intramitochondrial calcein allows visualization of mitochondria as bright fluorescent bodies. Subsequently, cardiomyocytes were washed free of calcein-AM and CoCl 2 and incubated in the Tyrode's modified solution.

To determine cell death, cardiomyocytes were co-loaded with propidium iodide (PI, 2.5µM; Sigma) which permeates only the damaged cells [START_REF] Lemasters | Blebbing, free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes[END_REF].

Detection of intracellular oxidant generation.

Intracellular oxidants were evaluated by measuring changes in fluorescence of two intracellular fluorescent probes, dihydroethidium (DHE, 5µM; Molecular probes Invitrogen Co.) and 2',7'-dichlorofluorescin diacetate (DCFH-DA, 5µM, Molecular probes, Invitrogen Co.). In distinct experiments, cardiomyocytes were equilibrated for 15min with the Tyrode's modified solution containing DHE or DCFH-DA to achieve loading of the fluorochromes, which were also added to the hypoxic and reoxygenation media. DHE permeates cell membrane easily and can be directly oxidized by reactive oxygen species , more specifically here superoxide anion (O 2 ˙ˉ) [START_REF] Vanden Hoek | Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion[END_REF][START_REF] Lam | Changes in reactive oxygen species begin early during replicative aging of Saccharomyces cerevisiae cells[END_REF] to red fluorescent ethidium which is trapped in the nucleus by intercalation into DNA (Eth-DNA), further amplifying its fluorescence [START_REF] Laurindo | Assessment of superoxide production and NADPH oxidase activity by HPLC analysis of dihydroethidium oxidation products[END_REF]. DCFH-DA enters the cells where esterases cleave the acetate group, trapping the reduced probe (DCFH) intracellularly. The latter is readily oxidized by reactive oxygen species , particularly hydrogen peroxide (H 2 O 2 ) and hydroxyl radical (˙OH) [START_REF] Vanden Hoek | Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion[END_REF][START_REF] Possel | 2,7-Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation[END_REF][START_REF] Wang | Role of mitochondrial reactive oxygen species in hypoxia-dependent increase in intracellular calcium in pulmonary artery myocytes[END_REF] yielding to the fluorescent product dichlorofluorescein (DCF).

Data acquisition and analysis.

The perfusion chamber was mounted on an Olympus IX-81 motorized inverted fluorescent microscope equipped with a mercury lamp as a source of light for epifluorescent illumination, a shutter, filter wheel and appropriate excitation and emission filters. For detection of calcein fluorescence, a 460 to 490 nm excitation and a 510nm emission filters were used. PI fluorescence was excited at 520 to 550 nm and recorded at 580 nm. Eth-DNA fluorescence was measured using 545 nm excitation and 605 nm emission filters while DCF fluorescence was detected using 495 nm and 520 nm wavelengths for excitation and emission, respectively. Fluorescent images were acquired using a 12-bit cooled CC12 Hamamatsu slowscanning PC-controlled camera (Hamamatsu, Hamamatsu city, Japan). Data were obtained and analyzed using Cell-M software (Olympus, Rungis, France).

In some experiments, images were acquired every minute during both hypoxia and reoxygenation periods. For all other experiments, images were obtained every 15min during the first 135min of the experiment (end of hypoxia). During reoxygenation, images were registered every 5 min until the end of the protocol for DHE experiments while for DCF, images were recorded every min throughout the first 5min and then every 5min for the remaining duration of the experiment.

Fluorescence was integrated over a region of interest (~80µm 2 ) for each cardiomyocyte and the background was identified as an area without cells. For Intensity values of Eth-DNA and DCF, after background subtraction and normalization according to the initial fluorescence value were either listed as arbitrary units or reported as percent of the maximum value achieved during control experiments.

Statistical analysis.

Results are reported as means ± S.E.M. Statistical significance was determined using one-way ANOVA for T 50 mPTP and T 50 PI and a two-way ANOVA for intensity profiles followed in all cases by student's t-test. Significance was accepted when P<0.05.

Results:

3.1. mPTP opening and cell death in adult rat cardiomyocytes subjected to hypoxia/reoxygenation depends on the duration of hypoxia. Compared with normoxic cells perfused with Tyrode's modified solution under 21%O 2 for 5h, cardiomyocytes subject to 1, 2 and 3h of hypoxia, but not 0.5h showed a significant decrease in calcein fluorescence during reoxygenation. This decrease was more rapid when the duration of hypoxia was increased.

Consequently, T 50 mPTP (Fig. 1B) and the percentage of cells with non-opened mPTP (cardiomyocytes that maintained their calcein fluorescence at the end of reoxygenation, Fig. 1C) decreased with longer duration of hypoxia. In fact, after 1h of hypoxia 10.20±0.92% of cardiomyocytes maintained their calcein fluorescence and hence their mPTP closed at the end of the reoxygenation period, but all of them totally lost this fluorescence following both 2 and 3h of hypoxia (Fig. 1C). However, we observed that 2h of hypoxia without reoxygenation had no effect on the decrease in calcein fluorescence whereas 14.29±0.22% of cardiomyocytes had already lost their calcein fluorescence after 3h of hypoxia. For these reasons, 2h was considered as the optimal duration of hypoxia to be used all over this study. Since no significant evolution in calcein fluorescence intensity was observed during 2h of hypoxia, all the figures illustrating the changes in calcein fluorescence intensity displayed only the variations during reoxygenation, (i.e., equilibration and hypoxic periods were omitted for clarity). Once the time of hypoxia has been fixed, sequential cardiomyocytes mortality was quantified by cell staining with PI. When the cardiomyocytes were co-loaded with calcein, CoCl 2 and PI, the decrease in calcein fluorescence during reoxygenation was coupled with a simultaneous increase in nuclear labeling by PI, indicating plasma membrane permeabilization and cell death. As illustrated in Fig. 2A, after 2h of hypoxia, 100% of cell death was attained following ~1h of reoxygenation. This loss of viability was preceded by mPTP opening as evaluated by loss in calcein fluorescence. In these conditions, T 50 mPTP was 30.62±0.06min and T 50 PI was 42.50±0.79min.

Cyclosporin A (1µM), which is known to inhibit mPTP opening through a direct effect on cyclophilin D and to protect myocardium against ischemia/reperfusion, increased T 50 mPTP by~2 fold, from 30.62±0.66min to 64.8±1.36min (p<0.05, Fig. 2B) and the percentage of cells with non-opened mPTP at the end of reoxygenation from 1.58±0.03% to 22.09±0.53% (P<0.05). In addition, cyclosporin A concomitantly delayed and prevented nuclear staining by PI (T 50 PI: 110.5±2.69min), indicating that cyclosporin A also reduced hypoxia/reoxygenationinduced cell death.

Interestingly, on each experiment, we observed two types of calcein fluorescence signal kinetics among cardiomyocytes in the same field (Fig. 3A). Some cells exhibited an abrupt (~2min) and complete drop of calcein fluorescence, while others showed a gradual and slow decrease in this fluorescence. These observations are consistent with two modes of mPTP opening i.e, transient (reversible) and long-lasting (irreversible) as previously described [START_REF] Petronilli | Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence[END_REF][START_REF] Sharov | Cyclosporine A attenuates mitochondrial permeability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure[END_REF]. However, the dependence of these modes of mPTP opening on the duration of hypoxia is described to our knowledge for the first time in the present study. As shown in Fig. 3B, the percentage of cardiomyocytes displaying a rapid mPTP opening increased on the detrimental of those presenting a slow opening when lengthening the duration of the hypoxic insult. Treatment of cardiomyocytes with 1µM cyclosporin A also changed the dynamic of calcein efflux. Indeed, cyclosporin A increased by 58±3% the cells displaying a gradual process as compared to control while the percentage of cells exhibiting rapid mPTP opening decreased by 28±3% as compared to control confirming the involvement of mPTP opening in this phenomenon.

Reactive oxygen species production during hypoxia plays a key role on mPTP opening at reoxygenation.

In separate experiments, cardiomyocytes were co-loaded either with DHE, calcein-AM and CoCl2 or with DCFH-DA and PI and reactive oxygen species production was assessed after 0.5, 1 and 2h of hypoxia. As shown in Table 1, significant increases in both Eth-DNA and DCF fluorescence were detected when increasing the duration of hypoxia. These experiments revealed a 4 fold increase in Eth-DNA and 6 fold increase in DCF production at the end of 2h hypoxia as compared to 0.5h of hypoxia, respectively (P<0.05). A rapid increase in bothfluorescence was observed during the last 15min of hypoxia when cardiomyocytes were subjected to 2h of hypoxia (Fig 4). We have no clear explanation for this effect but [START_REF] Guarnieri | Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart[END_REF] have demonstrated that hypoxia induced loss of cellular components of the antioxidant system protecting cells from reactive oxygen species formation.

This may create conditions accelerating reactive oxygen species production at the end of the hypoxic period.

A large decrease in Eth-DNA fluorescence intensity was associated with the first minutes of reoxygenation. DCF fluorescence increased rapidly and transiently within the first minutes of reoxygenation (~20% increase within 5min of reoxygenation as compared to the corresponding levels at the end of hypoxia, P<0.05).Then, the fluorescence decreased progressively which could represent either escape of the oxidized probe from the cell, possibly as a result of cell death, or intracellular reduction of the oxidized probe [START_REF] Duranteau | Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes[END_REF].

To determine the significance and link between the oxidant stress during hypoxia and mPTP opening at reoxygenation, cardiomyocytes were subjected to hypoxia/reoxygenation in the presence of antioxidant agents (association of 400µM 2-mercaptopropionylglycine and 10µM phenanthroline, effective concentrations of these antioxidants reported previously [START_REF] Becker | Generation of superoxide in cardiomyocytes during ischemia before reperfusion[END_REF] administered either throughout the experiment, or during reoxygenation, or during hypoxia. These antioxidants were chosen for their specific activity against ˙OH and H 2 O 2 . Indeed, 2-mercaptopropionylglycine, a cell permeable synthetic glutathione analog enhances the scavenging of H 2 O 2 [START_REF] Bolli | Demonstration of free radical generation in "stunned" myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert-butyl nitrone[END_REF], and has a slight effect as a superoxide scavenger [START_REF] Dikalov | Determination of rate constants of the reactions of thiols with superoxide radical by electron paramagnetic resonance: critical remarks on spectrophotometric approaches[END_REF]. phenanthroline binds ferrous iron and thus reduces its availability as a catalyst in the Fenton reaction, responsible for ˙OH formation [START_REF] Thomas | Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation[END_REF].

As shown in Fig. 4A, cardiomyocytes exhibited significantly less Eth-DNA fluorescence at the end of the ischemic challenge when they were treated with antioxidants administered either throughout the experiment (60±7% vs.100±2% in control, P<0.05) or during hypoxia (58±6% vs. 100±2% in control, P<0.05). Control experiments were associated with an initial abrupt drop in Eth-DNA fluorescence during the first minutes of reoxygenation followed by a constant decrease in this fluorescence, also observed when antioxidants were added at reoxygenation. In contrast, antioxidants introduced throughout the experiment or during hypoxia prevented the initial abrupt drop in Eth-DNA fluorescence during the first minutes of reoxygenation and maintained at a higher level this fluorescence as compared to control. As shown in Fig. 4B, increases in DCF fluorescence during hypoxia and reoxygenation were significantly attenuated by addition of antioxidants either throughout the experiment or during hypoxia but not when added only at reoxygenation. Knowing that DCFH could be oxidized by intracellular heme compounds, we evaluated the effect of phenanthroline alone on the DCF signal during hypoxia. We observed that phenanthroline slightly decreased DCF signal at the end of hypoxia as compared to control (data not shown). Therefore, DCF signal observed during hypoxia is related to the reaction of DCFH with reactive oxygen species and not to the oxidation of DCFH by heme.

These variations in reactive oxygen species generation in the presence of antioxidants were associated with concomitant changes in calcein and PI fluorescence. As compared with control experiments, cells treated with antioxidants throughout the experiment or during hypoxia demonstrated a significant right shift of the curves representing the decrease in calcein fluorescence at reoxygenation (Fig. 5A). Accordingly, T 50 mPTP was significantly delayed, while antioxidants introduced at reoxygenation had no effect on the time for mPTP opening. In a parallel manner, antioxidants administered throughout the experiment or during hypoxia partially prevented cell death as shown by PI labeling (fig. 5B). Consequently, T 50 PI as well as the percentage of cells with nonopened mPTP at the end of 2h reoxygenation were significantly increased in these conditions (table 2).

These findings led us to conclude that ischemic oxidant stress level reached after 2h of hypoxia is necessary to prime the cardiomyocytes for mPTP opening and to induce their death at reoxygenation. By preventing reactive oxygen species generation during hypoxia, antioxidants therefore protect the cells against the reactive oxygen species burst at reoxygenation and prevent both mPTP opening and cell death.

Cyclosporin A, mPTP opening and reactive oxygen species production during hypoxia/reoxygenation.

As mentioned before (Fig. 2), when cardiomyocytes were reoxygenated in the presence of cyclosporin A, calcein was retained by mitochondria, T 50 mPTP increased and cell death was delayed as compared to control. The effect of cyclosporin A on reactive oxygen species formation was also evaluated. During hypoxia and in the presence of cyclosporin A, oxidation of both DHE and DCFH were comparable to control levels (Fig. 6 and7). As illustrated in Fig. 6, cyclosporin A at reoxygenation did not prevent the abrupt drop in Eth-DNA fluorescence during the first minutes of reoxygenation but maintained Eth-DNA fluorescence thereafter.

Moreover, DCF fluorescence displayed a biphasic pattern of reactive oxygen species production at reoxygenation in the presence of cyclosporin A (Fig. 7) i.e, a similar increase in DCF fluorescence was observed in the presence or in the absence of cyclosporin A during the first 10min of reoxygenation but this fluorescence was shifted to the left thereafter, in the presence of cyclosporin A as compared to control. Taken together, these results suggest that cyclosporin A maintained O 2 ˙ˉ production and decreased ˙OH and/or H 2 O 2 formation during reoxygenation.

Discussion:

The present study established a cause-effect relationship between the reactive oxygen species produced during hypoxia/reoxygenation, mPTP opening and subsequent cell death at reoxygenation and emphasized the major importance of ˙OH and/or H 2 O 2 production throughout hypoxia on this effect.

To achieve these conclusions, we used a model of isolated beating adult rat cardiomyocytes subjected to hypoxia/reoxygenation to evaluate repeatedly and simultaneously as a function of time mPTP opening, cell death and/or reactive oxygen species production. These cardiomyocytes were exposed to an environment as close as possible to that experienced by cardiac cells during myocardial ischemia/reperfusion. It is closer to this pathological situation than other models using TMRM photoexcitability [START_REF] Hausenloy | Preconditioning protects by inhibiting the mitochondrial permeability transition[END_REF][START_REF] Ruiz-Meana | Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes[END_REF] permeabilization of cellular membrane in the presence of high Ca 2+ concentration [START_REF] Seguchi | Propagation of Ca2+ release in cardiac myocytes: role of mitochondria[END_REF] or exposure of cells to pro-oxidant agents [START_REF] Park | Bradykinin prevents reperfusion injury by targeting mitochondrial permeability transition pore through glycogen synthase kinase 3beta[END_REF]. Furthermore, this model depends on contractile activity of the cells as neither mPTP opening nor cell death was observed in the absence of electrical stimulation. A plausible explanation is that the part of metabolic cost for contractile activity involves Ca 2+ and glucose availability [START_REF] Haworth | Metabolic cost of the stimulated beating of isolated adult rat heart cells in suspension[END_REF]Geisbuhler et al., 1983). It has been demonstrated that reducing oxygen and glucose concentrations of the hypoxic perfusate resulted in poorer recovery of the cardiomyocytes [START_REF] Geisbuhler | Lactate does not enhance anoxia/reoxygenation damage in adult rat cardiac myocytes[END_REF][START_REF] Poizat | Is oxygen supply sufficient to induce normoxic conditions in isolated rat heart?[END_REF]. This led us to use a metabolic blocker, 2-deoxy-D-glucose to limit glucose supply available to the cells.

As cardiomyocytes maintained under normoxic conditions for~5h showed no significant changes in calcein fluorescence, the observed response to hypoxia/reoxygenation cannot be explained by a time-effect. Furthermore, this study showed that the duration of hypoxia was proportional to the percentage of cells exhibiting mPTP opening and cell death at the end of reoxygenation. However, hypoxia alone was not sufficient to induce mPTP opening.

Our data showed that mPTP opening precedes cell death confirming that it is a major causative event for cell death. In addition, we observed that mPTP opening occurs at least with two different kinetic modes, i.e., rapid and slow openings already reported by other investigators [START_REF] Griffiths | Protective effects of low and high doses of cyclosporin A against reoxygenation injury in isolated rat cardiomyocytes are associated with differential effects on mitochondrial calcium levels[END_REF][START_REF] Kim | Reactive oxygen species, but not Ca2+ overloading, trigger pH-and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion[END_REF]. The rapid kinetic phase is usually accompanied by a phase of cell shortening associated with a rapid and full loss of calcein fluorescence and it corresponds to a long lasting opening of mPTP then followed by a rapid cell death. The slow kinetic phase corresponds to a transient opening of mPTP and consists in a slow and gradual loss of calcein fluorescence at reoxygenation not followed by a rapid cell death that occurred only when mPTP opening became sustained. [START_REF] Kim | Reactive oxygen species, but not Ca2+ overloading, trigger pH-and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion[END_REF] associated this transient opening to a partial depletion of ATP leading to inhibition of Ca 2+ cellular pumps.

A major result of the present study is the demonstration that reactive oxygen species produced during hypoxia play a crucial and necessary role for mPTP opening and hypoxia/reoxygenation related injury. This is not in conflict with several studies showing that a burst of oxidant occurs during the first few minutes after reperfusion of the ischemic myocardium [START_REF] Ambrosio | Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow[END_REF][START_REF] Flaherty | Reperfusion injury[END_REF][START_REF] Piper | The first minutes of reperfusion: a window of opportunity for cardioprotection[END_REF] but it shows that the oxidant stress begins during hypoxia prior to the onset of reoxygenation. However, the immediate effects of this oxidant stress are not lethal since cardiac cell death does not increase during hypoxia. It seems that reactive oxygen species produced during hypoxia predispose cardiomyocytes to reoxygenation injury through their progressive depletion of antioxidant capacity [START_REF] Ceconi | New insights on myocardial pyridine nucleotides and thiol redox state in ischemia and reperfusion damage[END_REF].

The use of two different intracellular probes (DHE and DCFH-DA) permitted us to evaluate which reactive oxygen species were more specifically involved in cardiomyocytes injury during hypoxia/reoxygenation. Oxidation of DCFH is indicative of H 2 O 2 or ˙OH formation, while oxidation of DHE provided a measure of O 2 ˙ˉ formation [START_REF] Vanden Hoek | Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion[END_REF][START_REF] Dikalov | Measurement of reactive oxygen species in cardiovascular studies[END_REF]. It should be noted that a severe production of ˙OH can affect Eth-DNA complex stability and decreases fluorescence [START_REF] Vanden Hoek | Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion[END_REF]. In line with this, we observed an abrupt drop in the Eth-DNA fluorescence coupled with H 2 O 2 and ˙OH production during the first few minutes of reoxygenation as attested by a transient increase in DCF fluorescence. Moreover, our experiments showed that significant levels of reactive oxygen species, more particularly H 2 O 2 and ˙OH were generated during hypoxia prior to reoxygenation. This might be paradoxical, as the ischemic conditions include a low pO 2 that might limit the production of oxyradicals, but increasing number of evidence supports this concept [START_REF] Becker | Generation of superoxide in cardiomyocytes during ischemia before reperfusion[END_REF][START_REF] Robin | Oxidant stress during simulated ischemia primes cardiomyocytes for cell death during reperfusion[END_REF][START_REF] Duranteau | Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes[END_REF]. One explanation could be that highly reduced components of the electron transfer chain promote electron leak to residual O 2 resulting in reactive oxygen species production [START_REF] Opie | Reperfusion injury and its pharmacologic modification[END_REF] which can be accentuated by the loss of cellular components of the antioxidant system. In this regard, the present study confirms that increasing the time of hypoxia is directly related to an increasing oxidant generation, even before reoxygenation, leading to a more intense reoxygenation injury represented here by mPTP opening and cell death.

Two lines of evidence support here the important role of reactive oxygen species generation during hypoxia in cardiomyocytes injury. First, when antioxidants preferentially targeting against H 2 O 2 and ˙OH are available during the hypoxic period, the production of these species is inhibited during this period, as detected by DCF. Superoxide anion generation was also slightly lowered, more particularly during the last 15min of hypoxia. Furthermore, antioxidants available during hypoxia blunted the abrupt fall in Eth-DNA fluorescence detected during the first minutes of reoxygenation probably due to less ˙OH generation as illustrated by DCF signal reduction. This was accompanied by a significant delay for mPTP opening and decrease in cell death, as reflected by the rise in the percentage of cells with non-opened mPTP. In contrast to the decreased production of ˙OH and H 2 O 2 , the delay in mPTP opening was associated with maintenance of O˙ˉ2 production at reoxygenation similar to the level observed in cells under normoxic conditions (data not shown). This is in accordance with observations of other investigators who described O˙ˉ2 production in mitochondria and cardiomyocytes under normal conditions and during reoxygenation following hypoxia [START_REF] Sheu | Superoxide flashes: illuminating new insights into cardiac ischemia/reperfusion injury[END_REF][START_REF] Wang | Superoxide flashes in single mitochondria[END_REF]. Thus, this O 2 ˙ˉ production, that accompanied mPTP inhibition, may reflect a better functioning of the respiratory chain and thus cell viability, suggesting a cardioprotective effect. Second, antioxidants administered 15min before the end of hypoxia and during the first 10min of reoxygenation neither interfered with the profile of oxidant generation nor affected the time for mPTP opening. Therefore, reactive oxygen species production during hypoxia is necessary for promoting the reoxygenation burst. This absence of effect of antioxidants added few minutes before reoxygenation could be due to the lack of sufficient time to act before the reoxygenation burst. In either case, these findings reinforce the importance of the oxidant stress during hypoxia. It is conceivable that hypoxic reactive oxygen species predispose the cells for reoxygenation stress by eroding cellular antioxidants defenses, thereby leaving the cell more vulnerable to oxidant generation at reoxygenation [START_REF] Becker | New concepts in reactive oxygen species and cardiovascular reperfusion physiology[END_REF][START_REF] Robin | Oxidant stress during simulated ischemia primes cardiomyocytes for cell death during reperfusion[END_REF]. The present study demonstrates that hypoxic reactive oxygen species directly triggers or prime the cells for mPTP opening at reoxygenation. It should be noted that increased reactive oxygen species production is not the only mechanism to explain damage upon reperfusion. In fact, cellular damages caused by ischemia/reperfusion probably result from multiple factors [START_REF] Yellon | Myocardial reperfusion injury[END_REF]. However, this study demonstrates that reactive oxygen species produced during hypoxia, and not only those produced at reperfusion, are a major contributor to the damages observed at reperfusion, represented here by mPTP opening. This conclusion is consistent with previous observations that protective strategies like pre-conditioning [START_REF] Di Lisa | Mitochondria and cardioprotection[END_REF][START_REF] Peterson | Improved survival of mesenchymal stromal cell after hypoxia preconditioning: Role of oxidative stress[END_REF] and therapeutic hypothermia [START_REF] Riess | Reduced reactive O2 species formation and preserved mitochondrial NADH and [Ca2+] levels during short-term 17 degrees C ischemia in intact hearts[END_REF][START_REF] Tissier | The small chill: mild hypothermia for cardioprotection?[END_REF] confer their protection by attenuating reactive oxygen species production during ischemia. It would also explain why clinical trials using antioxidants [START_REF] Farbstein | Antioxidant vitamins and their use in preventing cardiovascular disease[END_REF] failed to show clear benefit when treatments are administered only at reperfusion. Finally, cyclosporin A and other molecules interacting with cyclophilin-D can inhibit mPTP opening directly, independently of reactive oxygen species generation [START_REF] Halestrap | Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection[END_REF][START_REF] Kim | Reactive oxygen species, but not Ca2+ overloading, trigger pH-and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion[END_REF]. In the present study, cyclosporin A prevented mPTP opening despite reactive oxygen species formation during hypoxia and increased the percentage of cardiomyocytes that displayed gradual mPTP opening on the detriment of those with rapid opening. We observed the same profiles of mPTP opening in the presence of cardioprotective agents acting through other pharmacological mechanisms such as GSK-3β inhibition [START_REF] Obame | Cardioprotective effect of morphine and a blocker of glycogen synthase kinase 3 beta, SB216763 [3-(2,4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5dione], via inhibition of the mitochondrial permeability transition pore[END_REF] or Translocator protein modulation [START_REF] Schaller | TRO40303, a new cardioprotective compound, inhibits mitochondrial permeability transition[END_REF]. In this regard, O˙ˉ2 production during reoxygenation under cyclosporin A was comparable to that observed with antioxidants reflecting also an improvement in cell viability. As with all in vitro models, the current results should be interpreted within the constraints of limitations and may not be directly comparable with those obtained in vivo. One of these limitations is the lack of factors that in vivo pathological conditions affect cardiomyocyte function such as inflammatory mediators or reactive oxygen species produced by other types of cells. These factors are absent in the isolated cardiomyocyte model and may contribute to increase the damage at reperfusion in intact hearts.

Conclusions

This study emphasizes the role and the link between reactive oxygen species production during hypoxia and mPTP opening and subsequent cell death at reoxygenation. We demonstrated that increasing the time of hypoxia is directly related to increasing oxidant generation and that production of ˙OH and H 2 O 2 during hypoxia is necessary to induce mPTP opening and cell death at reoxygenation. Additional understanding of the role of ischemic oxidant generation is necessary for the development of appropriate biomarkers to predict the outcome in acute myocardial infarction in patients [START_REF] Lorgis | The free oxygen radicals test (FORT) to assess circulating oxidative stress in patients with acute myocardial infarction[END_REF] and treatment strategies to limit ischemia/reperfusion injuries. 
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  each experiment, we calculated the global response observed by averaging the fluorescence changes obtained from all the cardiomyocytes in the field (40-50 cells). The curves presented in the figures correspond to the mean of 3-6 independent experiments. For calcein experiments, intensity values were normalized according to the initial fluorescence values after subtracting background. Moreover, we calculated the average time to mPTP opening (T 50 mPTP) in each experiment by measuring the reoxygenation time necessary to reach 50% decrease in calcein fluorescence intensity for each cell with opened mPTP in the field.PI fluorescence intensity minus background was normalized to 100% cell death, as obtained at the end of each experiment after addition of Triton (10%) to permeabilize all cells and the average time for 50% cell death (T 50 PI) was calculated.

Fig

  Fig.1A illustrated the decrease in calcein fluorescence, representing mPTP

  However, neither the decrease in Eth-DNA nor the increases in DCF during the first minutes of reoxygenation were attenuated by cyclosporin A. Taken together, these results support the conclusion that cyclosporin A delays mPTP opening and cell death without interfering with oxidant generation during hypoxia/reoxygenation.
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 1 Fig. 1: Duration of hypoxia and mPTP opening.
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 2 Fig. 2: Cyclosporin A delayed mPTP opening and reduced cell death in isolated
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 3 Fig. 3: Two kinetic profiles of mPTP opening during reoxygenation were recorded
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Cells were subjected to 2h hypoxia followed by reoxygenation in the presence or in the absence of 1µM cyclosporin A (CsA) added 15 min before the end of hypoxia and during the first 10min of reoxygenation. DCFH-DA was added to the equilibration, hypoxia and reoxygenation media. Curve per condition, presented as percent of maximum control value was calculated by averaging 3-6 experiments.

Traces per experiment were obtained by evaluating 40-45 single traces of cardiomyocytes contained in a single field. Each point of the curve is the mean ±S.E.M.