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Abstract 

Background

Electrotransfer can be obtained by the successive delivery of a high voltage short duration pulse 

(HV) inducing membrane destabilization then a low voltage long duration pulse (LV) allowing 

DNA  electrophoresis  (HVLV  mode).  Pluronic  L64  (L64)  has  permeabilizing  properties  and 

amplifies  expression  of  DNA.  We wondered  whether  L64 could  have  an  adjuvant  effect  on 

transfection by electrotransfer and whether the sequence L64 injection then application of a LV 

pulse could induce transfection comparable to that observed with the HVLV mode. 

Methods

In vitro, we used fluorescence-activated cell sorting to evaluate the CHO cell transfection by a 

plasmid  coding  GFP,  and  permeabilization  to  propidium  iodide.  In  vivo, the  transfection 

efficiency of mice tibial cranial muscle was evaluated by optical imaging using a plasmid DNA 

encoding luciferase. For the same animals, permeabilization indices were evaluated by magnetic 

resonance imaging from the uptake of a T1 contrast agent. 

Results

Using the HVLV mode,  transfection  efficiency was low  in  vitro on CHO cells  but  high for 

muscles  in  vivo.  Pre-treatment  by L64 increased  transfection  efficiency of  electrotransfer  for 

CHO cells but not for the muscle. In mice muscles the L64 amplified the expression of DNA. 

Nevertheless, neither  transgene expression nor permeability indices were further amplified by 

subsequent delivery of one LV pulse.

Conclusion

A major finding is that the nature of the membrane modification induced by electric pulses is not 

comparable to the one mediated by L64. The electrophoretic LV pulse does not induce additive 

effects to that of L64 for transfection improvement.  

 

Key words: poloxamer; electrotransfer; MRI; luminescence; permeability; transfection 
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1 Introduction

Transfection of muscle using electric field application was developed in 1998 [1, 2] and is now a 

well-known, efficient procedure [3-6] but whose mechanisms remains largely unknown [7]. In 

addition, electrotransfer safety needs improvement, studies having shown that it induces an 

inflammation for 2 weeks after treatment [8] and can induce pain when high current intensities 

are applied [9, 10]. It has been proposed that electric field efficiency for DNA transfer through 

cell membranes results from two effects: (i) membrane modification as evidenced by its 

permeabilization to small molecules and (ii) DNA electrophoresis [11]. On the muscle model in  

vivo we have shown that the two effects can be combined by using the successive delivery of one 

high-voltage (HV) short-duration pulse, which is exclusively permeabilizing, and a low-voltage 

(LV) pulse of long duration, which is not permeabilizing but can induce DNA electrophoresis 

(HVLV mode) [12, 13]. Such a procedure is now also practically used for the transfection of 

other tissues than muscle [14-16]. More recently various copolymers of polyethylene oxide and 

polypropylene oxide have been shown to be efficient agents for improving muscle transfection 

[17-19] to a level comparable to that of electrotransfer [20]. These copolymers are chemically 

neutral and do not interact with DNA [21]. Physical studies with membrane models or liposomes 

showed that these copolymers interact with lipids with their more hydrophobic part, 

polypropylene oxide [21-23]. However, observation of labeled copolymers and DNA incubated 

with cells did not allow evidencing the copolymer at the level of the cell membrane, but rather 

inside the cells as macromolecular clusters [24, 25]. Moreover, copolymers were shown to 

improve transfection by acting on DNA nuclear import and its transcription through NFkB 

activation [26]. Among these copolymers, we chose the pluronic L64, which exhibits cell 

permeabilizing properties on artificial membranes [21, 27], on cells in vitro [28], and in vivo [20]. 

In a previous study, we had compared muscle transfection and permeabilization, either mediated 

by the pluronic L64 or electrotransfer [20]. In this study, we combined both pluronic L64 and 

electrotransfer. To obtain further insights, the present study aimed to determine whether pluronic 

L64, by its effects on nuclear import of DNA and its transcription, could have an adjuvant effect 

on transfection by electrotransfer. This had been shown on CHO cells in vitro [24], but had not 

been studied in vivo on a muscle model. This effect of pluronic L64 has also been demonstrated 

for in vitro transfection by a cationic polymer, polyethyleneimine [29]. 
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Another question was does permeabilizing properties of the pluronic L64 can be compared to that 

of the electric field ? 

It had been shown in previous studies on the muscle model that the order of the sequence HVLV 

was critical to amplify DNA transfection. Under conditions of these studies one HV or one LV 

pulse alone have no effect on DNA transfection as compared to simple DNA injection. For an 

efficient transfection amplification, DNA may be injected either before or after the HV pulse, and 

before the LV pulse, which is consistent with a direct effect of the LV pulse on DNA, i.e. 

electrophoresis [13]. It was also shown that the LV pulse was efficient only after the HV pulse 

had been applied, indicating that DNA electrophoresis is useful only when the cell membrane is 

in a modified state [12, 13]. Therefore, we investigated wether the same behaviour could be 

observed when the membrane modified state was induced by the pluronic L64. For that, we 

compared the HVLV mode to the delivery of pluronic L64 followed by a LV pulse (L64LV 

mode).

In summary we investigated, whether the pluronic L64 combined with electric pulses could 

improve gene transfection efficiency, and whether its permeabilizing property could be compared 

to permeabilization induced by electric field application. For this purpose we performed 

experiments in vitro on CHO cells and in vivo on muscle, in which transfection and 

permeabilization to small molecules were evaluated. In both cases, for the HVLV procedure HV 

was a brief high-voltage pulse, permeabilizing but not transfecting, and LV a long-duration pulse, 

not permeabilizing but allowing DNA electrophoresis.  
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2 Materials and Methods 

2.1 Plasmid DNA 

The pVAX2 construct was a pVAX1 plasmid (Invitrogen, Carlsbad, CA) in which the promoter 

was replaced by the pCMVβ plasmid promoter (Clontech, Palo Alto, CA). The pVAX2-luc plas-

mid was a 4.6 kb vector encoding a cytosolic firefly luciferase plus protein (luc+) subcloned in 

the pVAX2 backbone. The expression vector pEGFP-C1 was a 4.7 kb plasmid containing the 

gene coding the Green Fluorescent Protein (GFP) under the control of the CMV promoter. It was 

obtained from Clontech. The plasmid DNA was purified from E. coli  transformed cells using en-

do-free Qiagen Gigaprep kits (Qiagen, Courtaboeuf, France), and then diluted in saline (0.9% 

NaCl). The quality of the plasmid was assessed by calculating the ratio of light absorption (260 

nm/280 nm) and by visualization on ethidium bromide-stained 1% agarose gel. Plasmid DNA 

was supercoiled for at least 80% of the preparation. Light absorption at 260 nm was used to de-

termine DNA concentration.

2.2 Polymer

Pluronic L64 (Fluka, Sigma-Aldrich, L'Isle-d'Abeau Chesnes, Saint-Quentin Fallavier, France) is 

a copolymer of propylene oxide (PO) and ethylene oxide (EO). Its formula is (EO)13(PO)30(EO)13. 

For in vivo experiments, pluronic L64 solutions were prepared on the day of the experiment as 

described previously [20]. The final injected solution (30 µL) contained: 4.8 µg of DNA, 3.33 

µmoles of Gd-DOTA and 0 or 0.25% pluronic L64, according to the experiment. We chose the 

concentration of 0.25% in pluronic L64 because we previously showed that this concentration 

was optimal for transfection amplification in the mice muscle [20]. 
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2.3 In vitro experiments

2.3.1 Cell culture

Chinese hamster ovary (CHO) cells were grown in Eagle’s minimum essential medium (EMEM; 

Gibco-Invitrogen, Carlsbad, CA, USA) supplemented with 8% fetal calf serum (Gibco), 

100 units/ml of penicillin and 1 mg/ml of streptomycin (Gibco-Invitrogen), 0.58 mg/ml of L-

glutamine (Eurobio, France) and vitamins (vitamin solutions from Ginco-Invitrogen, see 

manufacturer for composition). The cells were maintained in a 5% CO2 humidified incubator at 

37 °C (Jouan, Saint-Herblain, France).

2.3.2 Electric pulse delivery in vitro

Electrotransfection was performed using a CNRS cell electropulsator (Jouan, Saint-Herblain, 

France). Alternatively, for high-voltage and low-voltage electrical conditions a Cliniporator 

generator (IGEA, Carpi, Italy) was used. Stainless steel flat parallel electrodes 2 cm in length set 

4 mm apart were used. For all experiments in vitro (as in vivo) electric field intensity was 

estimated as the voltage divided by the distance between the plate electrodes. Electropulsation 

was applied on 500,000 CHO cells suspended in 100 µl of pulsation buffer (10 mM K2HPO4/ 

KH2PO4 buffer, 1 mM MgCl2, 250 mM sucrose, pH 7.4, conductivity 1.6 mS/cm) to which was 

added 1 µl of plasmid DNA pEGFP-C1 solution (1µg/µl). Several electrical parameters were 

tested as described in table 1.  After pulsation the cells were transferred to a 35 mm Petri dish 

with 1.5 ml of growth medium and kept at 37 °C in a 5% CO2 atmosphere. 

For experiments with Pluronic L64 0.25%, cell pre-treatment, electropulsation was carried out on 

adherent CHO cells plated on a 24-well plate at a density of 50,000 cells per well 16 h before 

experiments, according to a procedure described previously [24]. Briefly, electropulsation was 

carried out directly in the well on adherent cells with stainless steel flat parallel electrodes (length 

1 cm, set 1 cm apart). The electric field intensity used for optimal transfection was lower than for 

cell suspension because of the larger size of adherent cells. Conditions tested are described in 

table 1. For all experiments transfection efficiency was given as the percentage of fluorescent 

cells expressing the GFP and the average fluorescence level of positive cells was determined with 

a BD FACSCAN flow cytometer (BD Biosciences) 24 h after transfection. 

6



Transfection vs permeabilization relationship

2.3.3 Electropermeabilization of cell suspension in vitro

Electropermeabilization was studied with pulse conditions identical to the one used for 

electrotransfection of cells in suspension. The pulsation buffer contained 100 µM of propidium 

iodide (PI, Sigma Chemical Co. St. Louis, USA) and no plasmid DNA. Directly after 

electropulsation, cells were transferred to 300 µL of PBS and analyzed by flow cytometry with a 

BD FACSCAN flow cytometer (BD Biosciences). The efficiency of permeabilization was 

reported as the percentage of PI positive fluorescent cells and the average fluorescence level of 

these cells.

Cell suspension 

500 000 cells/100 µl, 

1 µg DNA

Adherent cells 50 000 

cells/well pretreated 

L64, 1 µg DNA
Control : incubation with DNA only Control
ETs: 10 x 700 V/cm, 5 msec., 1 Hz ETs
ETa: 10 x 500 V/cm, 5 msec., 1 Hz ETa
HV1 : 1300 V/cm, 0.1 msec. HV1

10HV1 : 10 x 1300 V/cm, 0.1 msec., 

1 Hz

10HV1

LV0 : 80 V/cm, 200 msec. LV0

LV : 80 V/cm, 500 msec. LV LV
HV1LV: HV then LV 

Delay between pulses 0.1 sec

HV1LV

10 HV1LV : 10 HV then LV 10HV1LV

Table 1: Different modalities of electric pulses delivery used in vitro. For all experiments, 

temperature was set at 37°C.

2.3.4 Cell viability

Cell viability was measured by monitoring cell growth through coloration with crystal violet [30]. 

After staining with crystal violet and cells lysis the absorbance at 590 nm was measured with a 

spectrophotometer (Pharmacia Biotech). The viability was expressed by the percentage of 

coloration obtained as compared to cells treated in the same way but without application of an 

electric field.
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2.4 In vivo experiments

2.4.1 Animals

In vivo studies were carried out on 6–8-week-old female BalbC/J mice (Janvier, Le Genest-Saint-

Isle, France).  Before all procedures (treatment and imaging), animals were anesthetized by intra-

peritoneal injection of ketamine and xylazine (Bayer Pharma, Puteaux, France) (100 mg/kg and 

10 mg/kg, respectively). The studies were conducted following the recommendations of the 

European Convention for the Protection of Vertebrate Animals used for Experimentation, and the 

local Ethics Committee on Animal Care and Experimentation.

2.4.2 General experimental procedure and electric pulse delivery in vivo 

For each experiment, the tibial cranial muscle was injected longitudinally with 30 µl of a solution 

containing DNA coding the firefly luciferase (4.8 µg) and the Gd-DOTA (3.33 µmoles) with or 

without pluronic L64 (as previously described) by means of an insulin syringe (MYINJECTOR 

29Gx1/2, Terumo, Leuven, Belgium). MRI measurements were performed at day 3 and optical 

imaging at day 7 after injection. In a few experiments only DNA was injected and consequently 

only measurement of transfection by optical imaging was performed. When required electric 

pulses were delivered 20 s after plasmid DNA injection through two stainless steel plate 

electrodes (10 × 20 mm), placed 4 mm apart at each side of the mouse leg. Electrical contact with 

the shaved leg skin was ensured by means of a conductive gel (Aquasonic 100, Parker 

Laboratories, Fairfield, New Jersey, USA). Electric pulses were generated by a Cliniporator 

electropulsator (IGEA, Carpi, Italy). Several electrical parameters were tested as described in the 

table 2. Our procedure of electrotransfer ET that we named standard was used as an efficient 

condition in many of our previous studies studies [12, 13, 20]. The HVLV condition was derived 

from our study of 2002 [13] but with a LV of 500 msec. duration in order to accentuate 

electrophoretic effect. These optimal conditions for the muscle are different from those used on 

CHO cells in vitro because of a different threshold for permeabilization. Indeed we have shown 

in a previous study that 8 pulses of 600 V/cm (1 msec.) at 1 Hz were lesional for the muscle. 

Thus 10 pulses of 700 V/cm 5 msec. at 1 Hz are not adapted to muscle transfection whether they 

are optimal for CHO cells [31]. 
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Tibial cranial muscle 4.8 µg DNA

 + 3.33 µmoles Gd-DOTA 

MRI and Optical imaging

Tibial cranial muscle 4.8 µg DNA 

Only optical imaging

ET: 8 x 190 V/cm, 20 msec., 2 Hz ET120 : 8 x 120 V/cm, 20 msec., 2 Hz
HV : 800 V/cm, 0.1 msec. HV : 800 V/cm, 0.1 msec.
LV : 80 V/cm, 500 msec. L64ET120 : injection of pluronic L64 with 

DNA 15 minutes before ET120
HVLV : HV then 0.5 sec later LV L64HV: injection of pluronic L64 with DNA 

just before HV
L64: injection of pluronic L64 with DNA L64: injection of pluronic L64 with DNA
L64LV: injection of pluronic L64 with DNA 

just before LV delivery

DNA: simple DNA injection

DNA:  Simple DNA injection

Table 2:  Different modalities of electric pulses delivery used in vivo.

2.4.4 MRI acquisition

MRI examinations were performed with a 7 T vertical wide-bore magnet (Bruker) equipped with 

a standard proton micro-imaging probe and ParaVision 2.1.1 software. Mice were housed and 

kept upright using a custom-made support of diameter 38 mm. The two hind limbs were 

positioned symmetrically and examined simultaneously in transversal planes using a T1-weighted 

spin-echo sequence with the following parameters: repetition time (TR) 600 msec., echo time (TE) 

10 msec., 12 contiguous slices of thickness 1 mm, field of view 30 mm, spatial resolution 

117 × 117 µm² in-plane and acquisition time 20.3 min. The slice centered on the largest signal of 

interest was chosen for T1 and T2 measurements, using a single slice spin-echo sequence with the 

following parameters: TR 3000, 2000, 1200, 800, 600, 500, 400 and 300 msec., eight echoes, first 

echo at TE 9 msec., echo spacing 8 msec., field of view 30 mm, in-plane spatial resolution 117 × 

234 µm², section thickness 1.5 mm and acquisition time 18.5 min.
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2.4.5 MRI processing 

The assay Gd-DOTA trapped in tibialis muscle was obtained from T1-weighted images. 

We used two parameters to characterize this uptake: the volume of enhanced T1 MRI signal 

(permeabilized volume) and the concentration of the contrast agent Gd-DOTA in this volume, 

calculated from T1 values. In brief, the permeabilized volume is correlated to the number of 

muscle fibers that are permeabilized, and the concentration of contrast agent to the amount of 

compound taken up by those fibers.

The volume labeled by the Gd-DOTA and the concentration of Gd-DOTA in this volume were 

evaluated as described previously [20].

2.4.6 In vivo optical imaging of luciferase activity

Luciferin potassium salt (SYNCHEM, Felsberg/Altenburg, Germany) diluted in PBS was 

injected locally into the tibial cranial muscle at a dose of 100 μg/40 μl, which is in large excess 

relative to the amount of luciferase [32]. Optical imaging was performed with a cooled intensified 

charge-coupled device (CCD) camera (Biospace, Photo Imager, Paris, France) placed in a black 

box. Luminescence level was measured in ROI corresponding to the tibial cranial muscle as 

described previously [20]. ROIs were very similar from one experiment to another. We opted to 

take the mean values in cpm of all the measurements for 10 min after the start of acquisition [32]. 

2.4.7 Statistical analysis of in vivo results

Because of the non-Gaussian distribution of the results, we used nonparametric tests: Kruskal-

Wallis nonparametric variance analysis of the measured parameters and pairwise Wilcoxon test 

for comparisons between treatments. In addition, we used the Spearman correlation test to check 

for correlations between some parameters. Statistical program used were Statview (SAS Institute 

inc) and R (the R foundation for Statistical Computing).
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3 Results

First transfection and permeabilization experiments were performed in vitro on CHO cells then in 

vivo on the mice tibial cranial muscle.

3.1 In vitro CHO model  

3.1.1 Transfection and cell viability

As expected, electrotransfer applied in appropriate conditions for CHO cells in suspension (ETs: 

10x700 V/cm, 5 msec.) allowed for a significant transfection. However, the pulse combination 

HVLV mode, which was shown to be very efficient for muscle transfection, had a low efficacy 

on CHO cells in vitro (Fig. 1A) even though HV1 (1300 V/cm, 0.1 msec.) electric field intensity 

was well above the threshold to permeabilize cells [33] and LV (80 V/cm, 500 msec.) was at a 

level and duration sufficient to induce DNA electrophoresis [34].

Transfection

Figure 1 
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However using 10 HV1 pulses allowed a significant transfection which was not obtained with one 

HV1 (data not shown). The addition of a LV pulse to the 10 HV1 pulses did not improve the 

transfection. The patterns for the percent of cell transfected or the mean fluorescence intensity per 

cell were similar. Co-incubation of DNA and pluronic L64 with CHO cells did not result in cell 
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Transfection vs permeabilization relationship

transfection (data not shown), as observed by other authors with COS7 cells [18]. However, pre-

treatment of adherent CHO cells with pluronic L64 at 0.25 % improved transfection by 

electrotransfer (Eta: 10x500 V/cm, 5 msec., 1 Hz) (Fig. 1 B). But, this pre-treatment followed by 

delivery of a low voltage pulse of long duration (80 V/cm, 200 or 500 msec.) did not induce a 

detectable transfection. Also, as expected, LV alone did not induce transfection. 

For all these experiments, cell viability was of about 60 % after electrotransfer (ETa or ETs) and 

more than 80 % for all other conditions (Fig. 1C and 1D).

3.1.3 Permeabilization

The percentage of cells permeabilized in vitro (Fig. 2) increased after ETs or pulse combination 

HV1LV. As expected, LV did not increase the percentage of cells permeabilized to propidium 

iodide (data not shown). 

The mean propidium iodide intensity in cells was much lower after HV1LV than after ETs for 

both series of experiments (Fig. 2).   

We did not study the permeabilizing effect of pluronic L64 in vitro, since it had no effect on 

transfection when co-incubated with DNA and CHO cells (data not shown). However, such a 

permeabilising effect in vitro had been shown previously [35]. Also, we have not studied the 

permeabilization to propidium iodide under the conditions of figure 1B, since we had previously 

shown that pre-treatment with 0.05 %  pluronic L64 was not related to an increased 

permeabilization [24]. 
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3.2 In vivo muscle model 

3.2.1 In vivo muscle transfection

Previous studies had shown that in vivo luminescence was a reliable index of the luciferase 

reporter gene transfection level [32, 36]. As shown in Fig. 3A, with an injected amount of 4.8 µg 

DNA, the luciferase transgene expression (luminescence) was significantly increased by either 

standard electrotransfer (ET, 8 × 190 V/cm, 20 msec., 2 Hz) or pulse combination (HVLV: HV 

800 V/cm, 0.1 msec. then LV 80 V/cm, 500 msec.) at a comparable level, relative to the simple 

DNA injection (DNA). As expected, electrotransfer with HV or LV alone had no significant 

effect on transfection level (Fig. 3A HV, LV). Pulse combination with a LV of 300 msec. was 

less efficient than with an LV of 500 msec. (data not shown). Luminescence after DNA co-

injection with pluronic L64 at 0.25% was also significantly increased relative to luminescence 

after simple DNA injection (Fig. 3A, L64). However, in this group of experiments this 

luminescence value was significantly lower than after pulse combination (HVLV). Delivery of 

one LV pulse after co-injection of DNA and pluronic L64 had no effect on the transfection level 

(Fig. 3A, L64LV). We hypothesised that pluronic L64 muscle fiber internalisation and 

consequently its amplification effect on DNA expression could be favored by a permeabilizing 

HV pulse. However, delivering an HV pulse before or after co-injection of DNA and 

pluronic L64 had no detectable transfecting effect. Similarly, combining LV or HV pulse with a 

lower concentration of 0.1% pluronic L64 had no transfecting effect (data not shown). 

3

4

5

6

7

8

lo
g(

Lu
m

i)

Fig 3

B

2

3

4

5

6

7

lo
g(

lu
m

i)

** *

DNA                HV            L64ET120
ET120            L64              L64HV

A

DNA HV LV ET HVLV L64 L64LV

**** ****
*

#
230 646

260 212

326 287

2 697 992
4 013 343

1 356 432
1 027 538

49 125

247 533

96 240

285 509

189 435

127 589

13



Transfection vs permeabilization relationship

In order to know if as in vitro, in vivo pre-treatment of muscle with pluronic L64 can improve 

transfection level we performed another series of experiments (Fig 3B). We assumed that with a 

mild electrotransfer condition (8x120 V/cm, 20 msec., 2 Hz) amplification effect of the pluronic 

L64 on DNA expression could be more easily detected. However, pluronic L64 was unable to 

improve transfection when injected 15 minutes before DNA and a mild electrotransfer condition 

((Fig. 3 B, L64ET120) or an HV pulse (Fig. 3 B, L64HV). 

3.2.2 in vivo   muscle permeabilization  

3.2.2.1 - Distribution of the Gd-DOTA in the tibial cranial muscle

Figure 4

L64 0.25% HV

ET HVLV L64LV

Electrodes position 
on one leg

Figure 4 shows characteristic T1-weighted images. Gd-DOTA as DNA and pluronic L64 were 

injected locally into muscle (see Materials and Methods). We see that the distribution of the 

contrast agent in the tibial cranial muscle zone is localized and relatively homogenous after 

pluronic L64 (0.25 %) or HV treatment. By contrast, this distribution of the Gd-DOTA uptake is 

heterogeneous and enlarged after standard ET as well as after HVLV delivery.  For L64 (0.25 %) 

injection then LV application distribution of Gd-DOTA seems similar to the one obtained with 

L64 alone.
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3.2.2.2 - Permeabilized volume (VGd)

As shown in Figure 5A, relative to the simple DNA injection, pulse combination (HV 800 V/cm, 

0.1 msec. then LV 80 V/cm, 500 msec.: HVLV), standard electrotransfer (8 ×190 V/cm, 20 m, 

2 Hz: ET) and DNA co-injection with pluronic L64 at 0.25% (L64) induced a significant increase 

in the volume permeabilized to Gd-DOTA. This increase in the permeabilized volume was higher 

for standard electrotransfer or HVLV relative to that induced by DNA co-injection with 

pluronic L64. Electrotransfer with HV alone induced a slight, non significant increase in the 

permeabilized volume. Just as for transgene expression (luminescence), the use of LV alone had 

no significant effect, nor did the delivery of one LV pulse after co-injection of DNA with 

pluronic L64 0.25%. Similarly, we did not observe any effect on the permeabilized volume of 

HV or LV combination with pluronic L64 0.1% (data not shown).

3.2.2.3 - Concentration of the Gd-DOTA in the permeabilized volume (CGd)

Effects of the different treatments on the concentration of the contrast agent (CGd) in the 

permeabilized volume were less obvious. Mean values for ET, HVLV and pluronic L64 were 

higher than for simple DNA injection, but not significantly. Just as for the permeabilized volume 

and transfection level, the CGd after DNA coinjection with pluronic L64 0.25 % was not modified 

by the delivery of an LV pulse (Fig. 5 B).
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3.2.3 Relations between “permeabilization” and transfection

With the muscle model in vivo it was possible to study statistically the relations between 

transfection and permeabilization parameters measured on the same mice [20].

The strength of the correlation between the permeabilzed volume to Gd-DOTA (VGd) or the 

concentration of Gd-DOTA in this volume (CGd) and transgene expression (luminescence) was 

established using the nonparametric Spearman test. From this test, considering all studied groups, 

we found a correlation coefficient (rho) between luminescence and VGd of 0.718, which was 

statistically very significant (p < 0.0001), as shown in Table 3. To improve the analysis, we 

treated different sub-groups separately. These results show that with three modalities of DNA 

transfection inducing muscle fibre permeabilization, i.e L64, ET, HVLV, the level of transfection 

was correlated to the volume permeabilized to Gd-DOTA. The correlation with the concentration 

of Gd-DOTA in the permeabilized volume was lower but also significant.

Table 3. Correlations between luminescence and volume permeabilized to Gd-DOTA (VGd) 

or concentration of Gd-DOTA in the permeabilized volume (CGd). V2

Correlation coefficient (rho)

Treatment group VGd vs. luminescence CGd vs. luminescence

All groups n = 139 0.713 (p < 0.0001) 0.336 (p = 0.0022)

DNA, L64, L64LV. n = 49 0.443 (p = 0.0022) 0.449 (p = 0.0019)

DNA, ET, HVLV  n = 81 0.644 (p < 0.0001) 0.368 (p = 0.0009)

DNA, ET. n = 51 0.713 (p < 0.0001) 0.436 (p = 0.0021)

DNA, HVLV n = 55 0.706 (p < 0.0001) 0.328 (p = 0.0160)

DNA, HV, LV n = 53 0.209 (p = 0.1314) 0.345 (p = 0.0128)
Rho: strength of the link between the paired values (0 no relation, 1 and −1 perfect 

correlation; 1: direct, −1: inverse); n: number of paired values; p: statistical significance.
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Fig 6 provides a graphic depiction of the relation between luminescence, our index of muscle 

transfection and the muscle volume permeabilized to Gd-DOTA (VGd). Top right: scatter plot for 

electrotransfer by the standard (ET) or pulse combination (HVLV) procedure. Bottom left: scatter 

plot for DNA injection or DNA injection followed by an HV or LV pulse. Center: scatter plot for 

DNA coinjection with pluronic L64 followed or not followed by an LV pulse.

3

4

5

6

7

lo
g(

lu
m

i)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
logV

L64LV
L64
HVLV
ET
LV
HV
DNA

Figure 6

4 Discussion 

In this study we compared transfection and permeabilization in vitro and in vivo with different 

modalities of electric pulse delivery with or without association of pluronic L64 (L64). Our in  

vitro model was CHO cells and the in vivo model was the mouse tibial cranial muscle. In both 

models we confirmed a high level of transfection associated with permeabilization to small mo-

lecules with a series of electric pulses in conditions previously defined [11, 33], which we term 

standard electrotransfer (ET). However, using a combination of one high-voltage short-duration 

(HV) and one low-voltage long-duration (LV) pulses, the HVLV mode [12, 37], we found that 

transfection efficiency was low in vitro on CHO cells but high for muscles in vivo, at a level sim-

ilar to standard electrotransfer ET. 

We will first discuss the combination of HV and LV pulses and then go on to analyze results for 

the association of pluronic L64 and the electric field.
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4.1 HVLV   in vitro   

In vitro, HV1LV did not induce many transfected cells even though a great number of cells were 

permeabilized to propidium iodide (PI). However, the mean PI fluorescence level per cell was 

much lower than with the ETs condition. In these conditions DNA electrophoresis by LV is inef-

fective and thus pointless. Other studies showed an effect of HVLV mode in vitro. Sukharev et al 

[37] who proposed the pulse combination (HVLV) approach showed electrotransfection effi-

ciency on a different cell type (simian cos cell) and with very different parameters (HV : 4-7 

kV/cm, 10-20 µsec; LV 0.2-0.5 kV/cm, 1-10 msec.).  Cepurniene et al with conditions closer to 

ours, found a low percent of GFP positive cells, which is similar to our results [38].  Using a 

more sensitive reporter gene such as luciferase they revealed a clear effect of HVLV on transfec-

tion. Although the detection sensitivity of transfected cells could be improved with HVLV in the 

present study, the mean level of “permeabilization” per cell remained low compared to the stand-

ard condition ETs (10 x 700 V/cm, 5 msec., 1 Hz) (see Fig 1). In summary, the high number of 

weakly permeabilized cells after one HV1 pulse (1300 V/cm, 0.1 msec.) was not increased by 

adding one LV pulse (80 V/cm, 500 msec.) and nor was the permeabilization level.  In a study of 

Pavlin et al. the high voltage treatment is given by four HV pulses of 200 µs duration with amp-

litude of 1.0 kV/cm [39]. In our study increasing the number of HV1 pulses to 10 allowed indu-

cing a clear cell transfection associated to increased permeabilization.  Application of one LV 

pulse after the 10 HV1 pulses had no significant effect either for permeability or for transfection. 

This lack of effect could be related to the level of DNA concentration. Indeed, it was shown with 

CHO cells that transfection obtained with HV pulses could be increased by a subsequent LV 

pulse only at DNA concentration below 10 µg/ml [39, 40]. For higher DNA concentration, elec-

trophoretic improvement might not be needed as a result of there being sufficient DNA interac-

tion with the cell membrane.

4.2 HVLV   in vivo   

We had shown in previous studies on muscle, and confirm here, that one HV (800 V/cm, 0.1 

msec.) or one LV pulse (80 V/cm, 500 msec.) alone does not greatly improve transfection relative 

to simple DNA injection [12, 13]. The high transfecting condition HVLV led to a significant in-

crease in the volume permeabilized to the contrast T1 agent Gd-DOTA (VGd).  The concentration 

of Gd-DOTA (CGd) in this volume was increased but non significantly. Overall, the uptake of Gd-

DOTA (VGd*CGd) was increased. These results mean that LV not only induce DNA electrophores-

is but also enhances the permeabilizing effect of HV as observed in our previous studies [12, 13]. 
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It is not possible here to determine whether the increased uptake of Gd-DOTA is related to an in-

crease in the membrane permeability coefficient or to a longer duration of the permeabilized 

state. However, in one study based on the pore theory of electropermeabilization it was suggested 

that in the pulse combination procedure (HVLV) the long-duration low-voltage pulse LV could 

stabilize the pores created by the HV pulse [41]. 

4.3 HVLV   in   vivo vs  . in   vitro  

A better transfection in muscle by HVLV compared to that obtained in vitro may results from the 

additive effect of LV on membrane permeabilization by HV. The required LV field intensity in  

vitro on CHO cells to obtain synergy between HV and LV for increasing membrane permeabiliz-

ation may need to be higher. This seems possible since the threshold electric field intensity to 

permeabilize CHO cells is close to 300 V/cm [33] whether it would be close to 100 V/cm for 

muscle fibers [11]. To note that for muscle fibers a threshold of 200 V/cm was found with 8 

pulses of 0.1 msec. at 1 Hz [42]. However, it was shown on CHO cells that the necessary electric 

field intensity for electroporation of a given fraction of cells was decreasing with pulses of longer 

duration [43]. Consistently, in the present study delivering 8 pulses of 190 V/cm and 20 msec. 

duration at 2 Hz was clearly above the threshold for permeabilization and transfection. 

Another hypothesis is that injected DNA that is transfected is in a particular compartment [44] 

that may be close to fiber membrane (as in T tubule….) [45].  Also, cell nuclei are closer to the 

cell membrane than for CHO cells. Thus small electrophoretic movements of DNA induced by 

LV may be more efficient than in vitro. It was shown in vitro that LV pulse after HV pulse in-

creased transfection efficiency only for low concentration [40]. It is assumed by the authors that 

there is low local concentration in vivo.  However the plasmid solution injected into muscle was 

highly concentrated (160 µg/ml) and we do not know how DNA is distributed in this tissues.

 

4.4 Pluronic     L64   in vivo vs. in vitro  

The purpose of our study was also to compare electric field effects with those of pluronic L64 

and their combination. From the literature, it is known that pluronic L64 is inefficient in vitro but 

allows muscle transfection to be improved in vivo when co-injected with DNA [18], as confirmed 

by our study. Thus, it was shown to improve gene expression in vivo in the muscle where a basal 

transfection occurs by simple DNA injection [46]. The proposed mechanism is that pluronic L64 

favors nuclear import of cytoplamic DNA and its transcription via activation of the NFkB 

pathway [29]. For this to happen it is necessary that DNA crosses the plasma membrane. This 
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occurs in the muscle, since a simple DNA injection allows fiber transfection [46]. However,this 

apparently does not occur in vitro by coincubation of DNA and pluronic L64 with CHO cells. It 

is also necessary to have DNA with consensus sequences for NFkB, which was shown for the 

CMV promoter of plasmid DNA that we used [47].

4.5 Pre-treatment with Pluronic L64   vs  .   ET  

One of our aims in undertaking this study was to assess the possibility that the pluronic L64, by 

its effects on nuclear import of DNA and its transcription, could amplify transfection by 

electrotransfer in muscle in vivo as we have shown in vitro with CHO cells in a previous study 

[24]. In vitro pre-treatment of CHO cells with pluronic L64 0.25 % allowed improvement of 

transfection by standard electrotransfer (10 x 500 V/cm, 5 msec., 1 Hz) whereas in vivo, muscle 

pre-treatment with 0.25% before a mild electrotransfer (8 pulses 120 V/cm, 20 msec., 2 Hz) did 

not improve transfection. A first hypothesis is that interaction of pluronic L64 with muscle fiber 

membrane and its subsequent internalization is not the same as with CHO cells. Another 

hypothesis is that electrotransfer alone is able to activate the NFkB pathway. Consequently, any 

additional effect of pluronic L64 is reduced or null. Such an activation of NFkB by ET is 

possible, since it is known that this procedure induces an inflammation [8, 20, 48], and thus an 

activation of the NFkB pathway [49]. In our previous in vitro study we observed that 

electrotransfer was more efficient using a plasmid with NFkB consensus sequences [24] (see Fig 

6 of this article). Lastly, a slight improvement in transfection by pluronic L64 as observed with 

CHO cells in vitro (less than twofold increase) is difficult to detect in vivo owing to a variation of 

about one log between data in the same group. 

4.6 Comparison between membrane destabilization with Pluronic     L64 and HV  

Another question was whether membrane destabilization induced by pluronic L64 could be 

equivalent to that induced by HV, and consequently whether we could evidence any synergy 

between pluronic L64 and LV as we observed between HV and LV for transfection and 

permeabilization of the muscle. We found that pre-treatment by pluronic L64 before an LV pulse 

was inefficient both in vitro and in vivo. In vitro it could be expected since LV or pluronic L64 

alone does not lead to DNA transfection. In vivo, the delivery of one LV pulse after pluronic L64 

administration did not further amplify the transfection level, the muscle volume permeabilized to 

Gd-DOTA and the concentration of Gd-DOTA relative to pluronic L64 alone, in contrast to what 

was observed with delivery of LV after HV. It is thus clear that pluronic L64 do not induce 
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membrane modifications similar to those obtained by the delivery of an HV electric pulse. Even 

though, pluronic L64 is able to create pores in phospholipid membranes, this destabilisation is 

more than likely not of the same nature as the one by an electric field. First pluronic L64 might 

cover the phospholipid heads, masking the charges at the surface of the membrane. Second, 

insertion of pluronic L64 might not induce charge distribution modification as opposed to 

electrotransfer.

We showed in our previous study [24] that on CHO cells in vitro, pluronic L64 induced 

permeabilization to propidium iodide (PI), but at a lower level than with ETa (10 pulses of 500 

V/cm, 5msec. at 1 Hz). In pre-treatment experiments, i.e CHO cells incubated with pluronic L64 

followed by ETa, the permeabilization to PI was similar to that obtained with ETa alone. This 

confirms that the nature of membrane modification induced by electric pulses is therefore not 

comparable to that obtained by pluronic L64, and these effects are not additives. Alimi-Guez et  

al. also showed that gene transfection was not related to membrane permeabilization using non-

permeabilizing copolymer [28]. In addition, other authors have shown that permeabilization 

induced by cationic polymer or cationic lipids is a side effect not related to transfection [50]. 

DNA electrophoresis by LV could improve transfection by favoring DNA interaction with the 

membrane or its movement through the membrane. As shown in vitro it seems that DNA 

interaction with the membrane is favored by electrophoresis for a given state induced by the 

electric field [51]. Our experiment shows that such a state cannot be induced by the pluronic L64. 

Another effect of DNA electrophoresis on transfection could be to modify its biodistribution in 

such a way that it would reach a higher concentration near the membrane. We have seen that this 

effect was non significant in vitro with the DNA concentration used. In vivo, in the muscle such 

an effect was also non detectable.  Indeed LV did not improve significantly DNA transfection. 

4.7 Correlations between transfection and permeabilization indices 

In vivo, we observed a positive correlation between the permeabilized volume VGd and transgene 

expression (luminescence) for pluronic L64 and for ET (8 pulses of 190 V/cm and 20 msec. at 2 

Hz) confirming our previous results [20]. The same significant correlation was evidenced with 

HVLV. Permeabilization to small molecules is an index of membrane modification associated 

with transfection. But DNA transfer probably does not occur by passive diffusion as it does for 

small molecules. In vitro we had no such possibility of statistical analysis. However, we observed 

that a minimal level of membrane modification, as evidenced by its permeabilization to 

propidium iodide, was necessary for transfection by electric pulse delivery. From present 
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knowledge on in vitro gene transfer it is also probable that electroporation does not allow DNA 

transfer by passive diffusion [7].

In conclusion, the main finding of the present study is that the nature of membrane modification 

induced by permeabilizing electric pulses differs from that induced by pluronicL64. The 

electrophoretic LV pulse does not induce additive effects to the transfection mediated by pluronic 

L64. This indicates that DNA electrophoresis would only favour DNA interaction with 

membranes modified by permeabilizing electric pulses but not with membranes permeabilized by 

pluronic L64. In addition, the possible effect of DNA electrophoresis on its tissue biodistribution 

had no significant effect.
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Figures Captions

Figure 1

CHO cells in vitro. Effect of different electric pulse delivery modalities and of pre-

treatment with pluronic L64 on Transfection and Viability.

CHO cells in suspension or adherent were electrotransfected with a plasmid coding the Green 

Fluorescent Protein (GFP). 

Group designations on the abscissa are for ETs: 10 pulses of 700 V/cm , 5 msec. duration at 

1 Hz.  ETa:  10 pulses of 500 V/cm, 5 msec. at 1 Hz. HV1: 1 pulse of 1300 V/cm, 0.1 msec.. 

HV1LV: the combination of high voltage and low voltage electrical conditions with LV: 1 pulse 

of 80V/cm, 500 msec.. LV: low voltage alone. 10 HV1LV: ten HV1 pulses then one LV pulse. 10 

HV1: ten HV1 pulses. The control group corresponds to simple DNA incubation with CHO cells. 

LV0: 1 pulse of 80 V/cm, 200 msec..

Transfection

Panel A cell suspension 

The percentage of GFP positive cells is represented with histograms on the left axis. This is the 

percent of viable cells transfected. The level of fluorescence (AU: arbitrary units) in the 

population of fluorescent cells is represented with squares on the right axis. Each experiment was 

performed three times in triplicate, and a minimum of 5000 cells were counted with cytometry. 

Six to nine experiments were performed and four for control. The error bars are the standard 

deviation. Statistical comparisons between the different treatments were made using a PLSD 

Fisher test.  Significance of the difference relative to control for the percent of GFP positive cells 

and the mean fluorescence intensity per cell: ** p<0.01 *** p< 0.001 
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Panel B adherent cells

Before transfection adherent cells were treated (grey histograms) or not treated (white 

histograms: control) with 0.25% L64. The percentage of GFP positive cells is represented with 

histograms on the left axis. The level of fluorescence (AU: arbitrary units) in the population of 

fluorescent cells is represented with squares on the right axis. Error bars represent the standard 

deviation. Each experiment was performed from two to four times in duplicate and a minimum of 

5000 cells were counted by cytometry. The error bars are the standard deviation. Statistical 

comparisons between the different treatments were made using a PLSD Fisher test. For 

electrotransfer we observed a significant difference between cells pretreated by the pluronic L64 

0.25 % and cells not pretreated for the percent of GFP positive cells ** p<0.01.

Cell viability

Column levels represent the mean percent of viable cells relative to the total number of cells. The 

error bars are the standard deviation. N=6 to 9.

Panel C cells suspension

Panel D adherent cells: Gray column design experiment without pluronic. White column design 

experiments with adherent cells pretreated by pluronic L64, 16 h before electric pulses delivery. 

 

Figure 2

Permeabilization of CHO cells to propidium iodide 

CHO cells in suspension were electropermeabilized in the presence of the fluorescent probe 

propidium iodide (PI). Several electrical conditions were tested: standard electropermeabilization 

(ETs:  10 pulses of 700 V/cm, 5 msec, 1 Hz), high voltage electrical parameters (HV1: 1 pulse of 

1300 V/cm, 0.1 msec.), the combination of high voltage and low voltage electrical conditions 

(HV1LV, LV: 1 pulse of 80V/cm, 500 msec.) and finally low voltage alone (LV). Non treated 

cells which are only incubated with PI are represented as control. The percentage of PI positive 

cells is represented with histograms on the left axis. The level of fluorescence (AU: arbitrary 

units) in the population of fluorescent cells is represented with squares on the right axis. Values 

are the mean of 3 to 9 experiment performed in triplicate and a minimum of 5000 cells were 

counted by cytometry. The error bars are the standard deviation. Significance of the difference 

relative to control for PI positive cells and the mean fluorescence intensity per cell: *** p<0.001. 

The level of fluorescence did not differ significantly from the control for the HV1LV group.
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Fig 3

Effect of pluronic L64 and / or electric field on transfection levels in vivo.

The distribution of values for each treatment are represented by box plot i.e out of the box 

smallest and maximum values (10 % and 90 %) then in the box the lower quartile, median and 

upper quartile.

 A Tibial cranial muscle in vivo. Effect of different electric pulse delivery modalities on 

transfection . The mean value of the luminescence in cpm/min is given near each box. Group 

designations on the abscissa are for injection of free DNA (DNA); DNA then HV (HV); DNA 

then LV (LV); DNA then ET (ET); DNA then HVLV (HVLV); DNA and L64 0.25% (L64); 

DNA and L64 0.25% then LV (L64LV). With HV 800 V/cm, 0.1 msec., LV 80 V/cm, 500 msec.; 

HVLV one HV pulse followed 0.5 s later by one LV pulse; ET 8 pulses of 190 V/cm, 20 msec. at 

2 Hz. The number of muscle for each treatment is of 12 to 33. Statistical significance of the 

difference relative to injection of free DNA : **** p < 0.0001, * p < 0.05; relative to HVLV: # p 

< 0.05

B Tibial cranial muscle in vivo: Effect of muscle pre-treatment with L64 0.25% injection 

before a mild electrotransfer or an HV pulse. The mean value of the luminescence in cpm/min 

is given near each box. Group designations on the abscissa are for injection of free DNA (DNA); 

DNA then mild electrotransfer (ET120); DNA then HV (HV); DNA and L64 0.25% (L64); Pre-

treatment with L64 0.25% then mild electrotransfer (L64ET120); Pre-treatment with L64 0.25% 

then HV (L64HV). With HV 800 V/cm, 0.1 msec.; ET120 8 pulses of 120 V/cm, 20 msec. at 2 

Hz. The number of muscle for each treatment was of 10. Statistical significance of the difference 

relative to injection of free DNA : ** p < 0.01, * p < 0.05

Fig 4.

Characteristic T1-weighted images of Gd-DOTA distribution in the tibial cranial muscle. 

Mouse leg axial section as visualized by MRI at day 3 after injection in the tibial cranial muscle 

of Gd-DOTA with DNA and pluronic L64 0.25 % (L64 0.25 %), DNA followed by delivery of 

one pulse 800 V/cm, 0.1 msec. (HV), DNA followed by delivery of 8 pulses, 190 V/cm, 20 

msec., 2 Hz (ET) , DNA followed by delivery of 1 pulse 800 V/cm, 0.1 msec. and 0.5 sec later 1 

pulse 80 V/cm, 500 msec. (HVLV) and DNA co-injected with pluronic L64 0.25 % followed by 

delivery of 1 pulse 80 V/cm, 500 msec. (L64LV).  The Gd-DOTA trapped in muscle fibers is 
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visualized by the bright zone near the tibia bone and is indicated by an arrow. On the leg section 

HVLV approximate position of the two electrodes is indicated by two white bars. 

Fig 5. 

Effect of pluronic L64 and / or electric field on permeabilization in vivo 

The distribution of values for each treatment are represented by box plot i.e out of the box 

smallest and maximum values (10 % and 90 %) then in the box the lower quartile, median and 

upper quartile.

A  Tibial cranial muscle volume permeabilized to the MRI contrast agent Gd-DOTA 

The mean value of the volume in µl is given near each box. Group designations on the abscissa 

are for injection of free DNA (DNA); DNA then HV (HV); DNA then LV (LV); DNA then ET 

(ET); DNA then HVLV (HVLV); DNA and L64 0.25% (L64); DNA and L64 0.25% then LV 

(L64LV). With HV 800 V/cm; 0.1 msec., LV 80 V/cm, 500 msec.; HVLV one pulse HV 

followed 0.5 s later by one LV pulse; ET 8 pulses of 190 V/cm, 20 msec. at 2 Hz; Statistical 

significance of the difference relative to injection of free DNA : **** p < 0.0001, *** p < 0.001, 

** p < 0.01; relative to HVLV: #### p < 0.0001

B Concentration of the MRI contrast agent Gd-DOTA in the tibial cranial muscle volume 

permeabilized 

The mean value of the concentration in nanomoles is given near each box plot. Group 

designations on the abscissa are for injection of free DNA (DNA); DNA then HV (HV); DNA 

then LV (LV); DNA then ET (ET); DNA then HVLV (HVLV); DNA and L64 0.25% (L64); 

DNA and L64 0.25% then LV (L64LV). With HV 800 V/cm; 0.1 msec., LV 80 V/cm, 500 msec.; 

HVLV one pulse HV followed 0.5 s later by one LV pulse; ET 8 pulses of 190 V/cm, 20 msec. at 

2 Hz; There was no significant difference for any group relative to injection of free DNA.

Fig 6. 

Correlation between luminescence and volume permeabilized to Gd-DOTA.

Log values of the luminescence and corresponding permeabilized volume to Gd-DOTA of 

muscle in paired optical imaging and MRI experiments for all the mice studied. Each color 

corresponds to one treatment. Group designation: for injection of free DNA (DNA); DNA then 
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HV (HV); DNA then LV (LV); DNA then ET (ET); DNA then HVLV (HVLV); DNA and L64 

0.25% (L64); DNA and L64 0.25% then LV (L64LV). With HV 800 V/cm; 0.1 msec., LV 80 

V/cm, 500 msec.; HVLV one pulse HV followed 0.5 s later by one LV pulse; ET 8 pulses of 190 

V/cm, 20 msec. at 2 Hz.
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