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Cellular/Molecular

Myrip Couples the Capture of Secretory Granules by the
Actin-Rich Cell Cortex and Their Attachment to the Plasma
Membrane
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Paris Descartes, Sorbonne Paris Cité, UMR 8192, 75270 Paris cedex 06, France

Exocytosis of secretory granules (SGs) requires their delivery to the actin-rich cell cortex followed by their attachment to the plasma
membrane (PM). How these reactions are executed and coordinated is still unclear. Myrip, which is also known as Slac-2c, binds to the
SG-associated GTPase Rab27 and is thought to promote the delivery of SGs to the PM by recruiting the molecular motor myosin Va. Myrip
also interacts with actin and the exocyst complex, suggesting that it may exert multiple roles in the secretory process. By combining total
internal reflection fluorescence microscopy, single-particle tracking, a photoconversion-based assay, and mathematical modeling, we
show that, in human enterochromaffin cells, Myrip (1) inhibits a class of SG motion characterized by fast and directed movement,
suggesting that it facilitates the dissociation of SGs from microtubules; (2) enhances their motion toward the PM and the probability of SG
attachment to the PM; and (3) increases the characteristic time of immobilization at the PM, indicating that it is a component of the
molecular machinery that tether SGs to the PM. Remarkably, while the first two effects of Myrip depend on its ability to recruit myosin Va
on SGs, the third is myosin Va independent but relies on the C-terminal domain of Myrip. We conclude that Myrip couples the retention
of SGs in the cell cortex, their transport to the PM, and their attachment to the PM, and thus promotes secretion. These three steps of the
secretory process are thus intimately coordinated.

Introduction
Secretory granules (SGs) store water-soluble hormones and re-
lease them by exocytosis. A wealth of mechanistic information
has been obtained on membrane fusion, but less is known on the
recruitment of SGs at the cell periphery and their attachment to
the plasma membrane (PM), which is required for the formation
of a pool of ready-to-fuse SGs (Verhage and Sorensen, 2008). SGs
are formed at the trans-Golgi network and transported along
microtubules to the cell periphery (Rudolf et al., 2001). They
cannot be transferred directly from microtubules to the PM, but
diffuse within the actin-rich cortex until they find an attachment
site or undergo another microtubule-based run (Huet et al.,
2006). Tethering organelles to the actin cortex is thought to pro-
mote their dissociation from microtubules and their accumula-

tion at the cell periphery, and thus secretion (Seabra and
Coudrier, 2004; Darchen and Desnos, 2012). However, excessive
binding to actin restricts the mobility of SGs and their availability
for release (Desnos et al., 2003). Actin dynamics (Malacombe et
al., 2006) as well as molecular motors such as myosin Va
(MyoVa) are thought to facilitate the motion of SGs through the
actin-rich layer.

MyoVa is associated with SGs and its inhibition impairs SG
docking and secretion (Rose et al., 2003; Rudolf et al., 2003, 2011;
Varadi et al., 2005; Desnos et al., 2007b). MyoVa is recruited on
SGs by the GTPase Rab27a and Myrip (Fukuda and Kuroda,
2002; Desnos et al., 2003; Waselle et al., 2003; Imai et al., 2004).
Myrip, which is also known as Slac-2c, is expressed on SGs and
retinal melanosomes (Darchen and Desnos, 2012), and like
MyoVa, Rab27a, and Rab27b, it controls secretion (Desnos et al.,
2003; Waselle et al., 2003; Imai et al., 2004; Ivarsson et al., 2005;
Mizuno et al., 2011). Myrip interacts with Rab27:GTP via an
N-terminal helix, and with myosin VIIa or MyoVa via a central
domain (El-Amraoui et al., 2002; Fukuda and Kuroda, 2002; Des-
nos et al., 2003; Kuroda and Fukuda, 2005; Klomp et al., 2007;
Lopes et al., 2007; Ramalho et al., 2009). Interestingly, through
its C-terminal region, Myrip also interacts with sec6 and sec8,
two components of the exocyst complex, and with actin (El-
Amraoui et al., 2002; Fukuda and Kuroda, 2002; Desnos et al.,
2003; Goehring et al., 2007), suggesting that Myrip can exert
MyoVa-independent functions.
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Here, we measured the dynamics of SGs beneath the PM in
neuroendocrine cells using total internal reflection fluorescence
microscopy (TIRFM) combined with single-particle tracking and
incorporated the data into a mathematical compartment model
of SG trafficking. We found that Myrip plays a dual role in SG
dynamics. First, Myrip recruits MyoVa and promotes the reten-
tion of SGs in the actin-rich cortex and their transport toward the
PM. Second, it allows their docking at the PM. By coupling the
delivery of SGs to the PM and the docking reaction, Myrip thus
plays a key role in the secretory process.

Materials and Methods
Materials
Anti-chromogranin A/B antibodies were from Abcam; goat anti-Myrip
antibodies were from Everest Biotechnology. The anti-myosin Va
(Espreafico et al., 1992) was a gift from R. E. Cheney (University of North
Carolina, Chapel Hill, NC) or obtained from Sigma (LF-18); anti-actin
(AC-74) and anti tubulin (TUB 2.1) antibodies were from Sigma, and
anti-Myc 9B11 was from Cell Signaling Technology. Cell culture reagents
were obtained from PAA Laboratories. DNA purifications were done
using kits from Macherey-Nagel. Enzymes for molecular biology were
from New England Biolabs.

Constructs
To generate a plasmid encoding Dendra2-tagged neuropeptide-Y (NPY),
p-Dendra2C (Evrogen) was digesting using BamHI/EcoRI and sub-
cloned into pCDNA.3.1. The resultant plasmid was cut with BamHI/
NotI, and the fragment was used to replace the BamHI-NotI fragment in
pNPY-GFP to generate an in-frame fusion between NPY and Dendra2.
The sequence of inserts was confirmed by automated DNA sequencing.
pcDNA3-mycRab11b was a gift from M. Cormont (INSERM U895, Cen-
tre Méditerranéen de Médecine Moléculaire, Nice, France). Vectors en-
coding human Myc-tagged-Myrip constructs, human myosin Va, and
NPY constructs have been described previously (El-Amraoui et al., 2002;
Desnos et al., 2007b). To generate a Myrip rescue construct, three silent
mutations corresponding to nucleotides 2, 9 and 11 of Myrip-siRNA1
(sense strand) were introduced by PCR-based mutagenesis in the Myc-
tagged Myrip construct. We verified by immunofluorescence that the
expression of this rescue construct was not reduced by Myrip-siRNA1, in
contrast to that of the original Myrip construct.

Cell culture, transfection, and silencing
The BON cell line has been established from a lymph nod metastasis of a
human pancreatic carcinoid tumor (Evers et al., 1991) and were provided
by C. M. Townsend (University of Texas, Medical Branch, Galveston,
TX). In culture, a large majority of the cells extend several processes
enriched in SGs. Cells were cultured in Ham’s F-12/DMEM with 10%
FBS at 37°C under 5% CO2. Cells were plated onto collagen-coated glass
coverslips before transfection. TIRFM observations were made on
collagen-coated glass-bottom dishes (MatTEK or World Precision In-
struments). SiRNA duplexes were provided by MWG Biotech. We used
three already validated siRNAs directed against human MyoVa (MyoVa-
siRNA1,5�-GAACAAAUGUGCACUCUUUUU;MyoVa-siRNA2,5�-AA
AGUAAGGUCGUUGCUAAUU; MyoVa-siRNA3, 5�-AACUGACUAC
CUGAAUGAUGA) (Desnos et al., 2007b; Lindsay and McCaffrey, 2011)
and two siRNAs targeting Myrip (Myrip-siRNA1, 5�-UAAGUGAGCU
GAAGCAGAAUU; Myrip-siRNA2, 5�- UGGCAGUGAUUCAACAUU
U). The control siRNAs targeting EGFP or luciferase were from Eurofin
MWG Operon. Transfection of siRNAs (30 nM) was done with interferin
(Polyplus Transfection). Twenty-four hours later, cells were transfected
with plasmids using lipofectamine 2000 (Invitrogen). In some cases,
BON cells were transfected by electroporation in the presence of siRNA
(120 nM) and 24 h later with siRNAs and interferin. In brief, 1.5 � 10 6

cells were collected in 50 �l of PBS containing vector DNAs (2–5 �g),
electroporated (600 V/cm, 8 � 3 ms) using a PS10 electropulsator
(Jouan), and recovered in warm culture medium before plating. Exper-
iments were done 72 h after initiation of RNA interference. Cell extracts

were prepared in parallel for Western blot analysis for protein expression.
The blots were scanned and quantified using Image J software (rsbweb.
nih.gov/ij/). Levels of actin or tubulin were used to normalize the results
from different samples.

Coimmunoprecipitation
BON cells were transfected 2 d before the experiment with vectors en-
coding myc-tagged Myrip and GFP-MyoVa tail. Immunoprecipitation
was performed as described previously (Desnos et al., 2003) on cell ho-
mogenates prepared in 1% Triton X-100 in the presence of 2 �M latrun-
culin B (Calbiochem) to recover Myrip that otherwise bound strongly to
actin filaments. Extracts were incubated with protein G-Sepharose beads
(GE Healthcare) conjugated with required antibodies at 4°C for 2 h. After
extensive washes and elution in Laemmli sample buffer, eluates were
analyzed by SDS-PAGE and immunoblotting.

Immunofluorescence microscopy
Immunocytochemistry was performed as described previously (Desnos
et al., 2003). Secondary antibodies were coupled to Cy-3 (Jackson Immu-
noResearch Laboratories), Alexa-488, Alexa-568, or Alexa-350 (Invitro-
gen). Cells were visualized using a z-motorized Nikon inverted
microscope TE2000E equipped with a 100� objective (NA, 1.4) and a
CoolSnap ES CCD camera (Roper Scientific). When indicated, Z-series
were acquired with �z � 200 nm, and image stacks were restored using
the MetaMorph point spread function-based deconvolution software
(Molecular Devices). To evaluate the association of MyoVa with SGs,
cells were imaged using the same laser and camera settings. We first identify
SGs as NPY-monomeric red fluorescent protein (mRFP)-labeled structures
whose brightest pixel had a fluorescence intensity �1.25 times that of the
background fluorescence measured in several areas of the cell. Then, we
categorized a SG as MyoVa positive if the green fluorescence of this brightest
pixel was �1.25 times that of the background green fluorescence of this cell.

High-pressure freezing immunoelectron microscopy
BON cells were cultured on thermanox coverslips (Nunc) and fitted in a
6 mm specimen carrier for rapid freezing in a Leica HPM 100 machine
under high pressure (2100 bars). Samples were then rapidly transferred
to liquid nitrogen for storage. Cryosubstitution and embedding were
performed in a Reichert AFS apparatus (Leica), first in acetone with 0.1%
tannic acid at �90°c for 40 h with one change of solution, and then in
acetone with 2% osmium during the last 7 h. The cultures were slowly
(5°C/h) warmed to �20°C and incubated for additional hours before
being warmed (10°C/h) to 4°C. After several rinses with acetone, the
samples were warmed to room temperature and incubated in 50% ace-
tone/50% Araldite (Polysciences) for 1 h, followed by 10% acetone/90%
Araldite for 2 h. They were then incubated twice in pure Araldite for 2 h.
Coverslips were mounted on resin block and cut in parallel to the plan of
cells after removing the thermanox coverlip. Sections (80 nm thick) were
cut using a Leica Ultracut E, counterstained by incubation with 2% ura-
nyl in water for 10 min and lead citrate for 10 min. The sections were
observed in a Philips TENAI 12 (FEI).

TIRFM
TIRFM setup. BON cells were transferred into Locke’s solution contain-
ing the following (in mM): 5.6 glucose, 3.6 HCO3

�, 159.6 Cl �, 157.6 Na �,
5.6 K �, 5 HEPES-NaOH, 2.5 CaCl2, 1.2 MgCl2. TIRFM imaging was
performed on a custom setup described previously (Huet et al., 2006).
The penetration depth � (the distance along the z-axis over which fluo-
rescence declines e-fold) of the evanescent field used to excite the fluo-
rophore was set to 150 nm. Under the conditions of observation used,
one pixel corresponded to 107.5 nm. Stream acquisitions were per-
formed at 9.98 Hz for 40 – 60 s with an exposure time of 100 ms. Selective
excitation was obtained using argon laser lines at 488 and 514 nm, and
optical filters (bandpass, 500 –540 nm; high-pass, �565 nm) were used
for the emission (Melles Griot).

Image analysis. The density of fluorescent structures was evaluated
using Multidimensional Image Analysis (MIA) software (a segmentation
algorithm based on wavelets) (Racine et al., 2006) and expressed as the
number of NPY-positive structures observed in the evanescent field di-
vided by the size of the cell footprint.
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From stacks of images, two-dimensional (x–y) trajectories were ob-
tained by single-particle tracking using MIA software. Mean square dis-
placement (MSD) in the x–y plane was computed using custom routines,
and the diffusion coefficient Dxy was then calculated as Dxy � s/4, with s
being the slope of the linear fit to the first 15 points of the MSD curve. To
measure Dxy variations along a given trajectory, a rolling analysis window
of 2.5 s was used. For each position of the window, Dxy was calculated as
described above, and the obtained value was assigned to each point of the
trajectory included in this window. Since each point of the trajectory
appears in different windows, several Dxy values were assigned to each
point and finally averaged. Immobilization periods were defined as por-
tions of trajectories during which Dxy drops below a threshold value Dmin

� 5 � 10 �4 �m 2 � s �1, i.e., five times the minimal Dxy measurable with
our experimental setup (estimated from the tracking of fluorescent beads
immobilized on the coverslip) (Huet et al., 2006). As random walk tra-
jectories may also feature periods of slow motion, we used the duration of
immobilization periods as a further criterion of SG attachment. Survival
curves for immobilization times (i.e., the cumulative number of immo-
bilization events per trajectory plotted as a function of their minimum
duration) were computed for each cell and averaged over the different
cells. The best fit for the curves was obtained with the sum of two expo-
nentials, N(t) �N1 exp(�t/�1) � N2 exp(�t/�2), using SigmaPlot (Systat
Software). N1 and N2 represent the abundance of each component, and
�1 and �2 their time constants, respectively. The long-lasting component
was taken as an index of SG stalling.

Minimizing the cross talk between attachment to the PM and diffusive
periods. Based on the two characteristic times observed in survival plots
of immobilization times, we calculated a threshold value for the immo-
bilization duration to separate long-lasting immobilization periods
from the poorly defined short-lasting immobilization periods. This
threshold was calculated to minimize the cross talk between the two
populations in the survival curves. The normalized distributions for
the short (Ds(t)) and long (Dl(t)) immobilization periods are given by
the following equations:

Ds�t	 �
1

�s
exp� � t

�s
�; (1)

D l�t	 �
1

�l
exp� � t

�l
�. (2)

For a given threshold tthresh, the cross talk between the two distributions
is equal to the following:

I�tthresh	 � �
0

tthresh

D l�t	dt � �
tthresh




Ds�t	dt. (3)

By calculating the two integrals, we obtain the following:

I�tthresh	 � 1 � exp� � tthresh

�s
� � exp� � tthresh

�l
�. (4)

It is thus possible to obtain the threshold duration which minimizes the
cross talk between the two populations:

tthresh �
�s � �t

�l � �s
� ln��l

�s
� (5)

Based on this calculation, we obtained threshold durations between 6
and 8.5 s for the different experiments. Subtrajectories corresponding to
directed motion were manually selected; stalled periods include all im-
mobilization periods lasting longer than the threshold value defined
above. The remaining subtrajectories were considered as diffusive.

Detection of false positive stalling periods within simulated Brownian
trajectories and diffusing fluorescent beads. Three-dimensional random
walk trajectories were simulated as described by Huet et al. (2006). The
diffusion coefficient (25 � 10 �4 �m 2 · s�1), length of the trajectories (10
to 20 s) and time step between consecutive positions (0.1 s) were chosen

to match the values obtained for SGs. Stalling events were detected with
the approach used for SGs. The survival curves for immobilization times
were based on the simulation of 5000 trajectories.

Time-lapse stacks displaying the diffusion of latex fluorescent beads
(500 nm in diameter) within a glycerol/water mix (75– 80% of glycerol by
volume) were acquired by TIRF microscopy. The beads were tracked
using the MIA software. The average diffusion coefficient of these beads
(Dxy � 130 � 10 �4 �m 2 · s�1) was approximately five times higher than
the value measured for SGs in control conditions. However, to properly
estimate the contribution of false positive stalling events within the SG
survival curves using the analysis of the bead dynamics, it was necessary
to match the ratio between the average diffusion coefficient and the
threshold value Dmin for the beads and the SGs. Consequently, stalling
periods within bead trajectories were detected with a threshold Dmin �
25 � 10 �4 �m 2 · s�1 and not 5 � 10 �4 �m2 · s�1, as used for the SGs.
The survival curves for immobilization times were based on 69 bead
trajectories whose duration matches that of SGs (�16 s).

Estimation of the diffusion anomaly. In case of anomalous subdiffusion,
the MSD curves can be fitted by the following:

MSD  D.�t�, (6)

with � 	 1. In the logarithmic representation, Equation 1 becomes

log(MSD)  � � log��t	. (7)

Thus, the MSD curves calculated from the SG trajectories were plotted in
logarithmic representation and fitted using a linear regression, the slope
of the fit corresponding to the anomaly parameter �. For the estimation
of the diffusion anomaly during stalling and nonstalling periods, the
MSD curves were calculated for stretches of trajectories lasting �5s. A
median MSD was calculated for each cell, and the fit was performed over
the first 25 points of each MSD curve.

Measuring peripheral SG retention by photoconversion of NPY-Dendra2.
NPY was fused to Dendra2. Dendra2 is a photoactivable fluorescent
protein whose emission spectrum shifts from green to red upon brief UV
light exposure (Chudakov et al., 2007). A 405 nm diode laser (50 mW;
Laser Components) was coupled to our TIRF microscope and aligned
with the argon laser using a dichroic mirror. Two days after transfection
with NPY-Dendra2, Myrip siRNA, or Myrip constructs, the cells were
observed by TIRFM with a penetration depth of 100 nm. A 2 s exposure
to UV evanescent light was sufficient to photoconvert 64 � 8% (n � 15
cells) of the green vesicles present in the TIRFM field. Red signals three
times above the background were obtained. Increasing the photoactiva-
tion time over 2 s did not significantly increase the red signal but in-
creased the variability. After photoconversion, images were acquired for
1 min at 0.5 Hz using an exposure time of 200 ms. Dendra2 was not
significantly photoconverted by such illumination at 514 nm. Images
were quantitated using ImageJ. For each cell, the background was mea-
sured in areas devoid of SGs and subtracted to all pixel values. Cell
boundaries were manually drawn, and the total fluorescence intensity
was integrated over the depicted area. Alternatively, images were seg-
mented using MIA software, and the number of vesicles was counted on
each frame. Photobleaching was estimated on live cells by measuring the
fluorescence decay of immobile SGs, yielding an upper bound estimate of
bleaching since immobile SGs are generally attached to the PM and thus
close to the interface where the TIRF field is generated. Diffusion of
NPY-mRFP within individual SGs may also contribute to the diminution
of the fluorescence signal over time. However, this fluorescence loss is
likely to be the same under the different conditions since we found, using
electron microscopy, that Myrip siRNAs do not change the size of SGs.

Simulation of the photoconversion experiments. To simulate the photo-
conversion experiments, we built up a kinetic model in which SGs can
occupy different states: “C” for SGs localized at the cell center, “A” for
SGs in the actin cortex, and “D” for SGs attached to the PM. TIRF
microscopy does not allow imaging all the SGs present at the cell cortex
but only those which are localized in the vicinity of the glass coverslip. To
account for this limitation, we included in the model two peripheral SG
populations, only one of them being accessible by TIRF imaging.

2566 • J. Neurosci., February 15, 2012 • 32(7):2564 –2577 Huet et al. • Myrip Promotes Secretory Granule Docking



Due to the short evanescent depth used for photoconversion (�80 nm
at 405 nm) most of the photoconverted NPY-Dendra labeled SGs were
considered as docked at the PM immediately after the photoconversion.
We used this initial condition for starting our simulations. Since the
evanescent depth used for imaging is longer than the one used for pho-
toconversion (100 nm instead of 80 nm), we considered that we were
imaging all the docked SGs and 25% of the SGs located in the actin
cortex. Because this proportion pact of SGs located in the actin cortex
which can be imaged using a 100 nm evanescent depth could not be
estimated precisely, we performed simulations in which the value of pact

ranged between 0 and 50%. In all cases, we observed a biphasic behavior,
the fast phase corresponding to the equilibration between the pool at the
PM and the one in the actin, and the slow phase associated with SG
movement toward the cell interior. Varying pact from 0 and 50% only led
to a moderate change in the relative amplitude of the two phases (data
not shown).

The exchange rates between the three states were derived from the
analysis of SG dynamics by TIRF microscopy (Table 1). To estimate the
rates k1 and k1� corresponding to the transition C3A and C3A�, with
A� being the population of SGs in the actin-rich layer not visible in
TIRFM, we had to estimate the relative SG populations in the different
compartments at steady state. Based on the images obtained by electron
microscopy, we observed that about two-thirds of the SGs display a cor-
tical localization in control cells. Our analysis of SG mobility also showed
that, in control conditions, the density of SGs in the actin cortex and at
the PM are similar (A � D). Finally, we estimated the proportion of SGs
imaged by TIRF as compared to the total number of SGs in the cell. On
deconvolved wide-field images of NPY-GFP-expressing BON cells, we
counted a total number of labeled vesicles of �1500 SGs. Knowing that
we observed �150 SGs by TIRF, we considered that �10% of the total
number of labeled SGs were visible with this approach. Together, these
different results allowed estimating the steady SG populations in the
different compartments. We obtained C � 33%, A � D � 8%, and A� �
D� � 25.5%. Since k1 � k�1 * A/C and k1� � k�1 * A�/C, at steady state,
we could estimate that, in the control cells, k1 � k�1 * 0.24 and k1� �
k�1 * 0.77.

Statistical analyses
Values are given as mean � SE. The significance of differences between two
conditions was calculated with Mann–Whitney U test or Student’s t test
when data were normally distributed. For multiple comparisons, we used the
Kruskal–Wallis test or ANOVA (normal distribution), followed by Dunn’s
or Tukey’s post-tests, respectively, using GraphPad Prism version 5.04.

Results
Myrip recruits MyoVa on secretory granules
Myrip forms a complex with MyoVa and Rab27a and is therefore
thought to mediate the recruitment of MyoVa onto SGs. To test
this possibility, we measured the association of a GFP-tagged
construct comprising the globular tail of MyoVa and the exons A,
C, E and F (GFP-MyoVa tail) with SGs in an enterochromaffin
cell line (BON) derived from a human carcinoid tumor. BON
cells store various peptides and serotonin in SGs and secrete them
(Kim et al., 2001). They express Rab27a, Myrip, and MyoVa and
the three proteins are associated with SGs as in other endocrine
cells (Fig. 1) (Desnos et al., 2003, 2007b). Under control condi-
tions, 60% of the NPY-mRFP labeled SGs were decorated with a
GFP-MyoVa tail (Fig. 1A–C,H). In contrast, in cells treated with
a silencing RNA duplex (siRNA) directed to Myrip mRNA (Fig.
1G), the fraction of SGs labeled by GFP-MyoVa tail was reduced
to �20% (Fig. 1D–F,H). Moreover, in �60% of Myrip-siRNA-
treated cells, the GFP-MyoVa tail exhibited a marked soluble
cytosolic pattern without any visible enrichment on intracellular
structures (Fig. 1 I, J). Such increased cytosolic distribution was
observed only in 22% of control cells. Overall, the intensity of the
cytosolic GFP-MyoVa tail in cell regions devoid of SGs was dou-
bled in Myrip-siRNA-treated cells compared to control cells

(mean fluorescence intensity, control cells, 288 � 32; Myrip
knockdown cells, 595 � 58; p � 0.0001; n � 30 cells). The asso-
ciation of MyoVa with SGs was rescued by expressing an siRNA-
insensitive Myrip construct, arguing against an off-target effect of
Myrip siRNAs (Fig. 1H). These observations indicate that Myrip
is needed for the recruitment of MyoVa on SGs.

The intracellular distribution of SGs depends on Myrip
Next, we analyzed the effect of Myrip on the intracellular distri-
bution of SGs. In the majority of control cells, SGs accumulate at
the cell periphery and in cell extensions (Figs. 1, 2A, left). In
contrast, SGs were evenly distributed in the cytoplasm or concen-
trated near the nucleus (Fig. 2A, middle, right) in most of the
Myrip knockdown cells and in cells in which the Rab-binding
domain of Myrip (Myrip-RBD) was expressed to inhibit the
binding of endogenous Myrip to Rab27a (Fig. 2B). This effect
was first evaluated by visual inspection of cells and manual deter-
mination of the fraction of cells exhibiting at least one cell exten-
sion with a SG density higher than in the cell center (Fig. 2B). A
more quantitative analysis of the mean distance of SGs to the cell
center confirmed these results (Fig. 2C). Noteworthy is that the
effect of Myrip silencing on SG distribution was rescued by ex-
pressing a siRNA-insensitive Myrip construct (Fig. 2B,C). Fi-
nally, BON cells were imaged by TIRFM to image NPY-labeled
SGs present in the subplasmalemmal region (Huet et al., 2006;
Desnos et al., 2007b). Most of the SGs observed by TIRFM are
localized within the actin-rich cell cortex or at the PM (Oheim
and Stuhmer, 2000; Johns et al., 2001; Huet et al., 2006). Myrip
silencing and overexpression of Myrip-RBD significantly dimin-
ished the number of SGs present in the evanescent field, com-
pared with control cells (Fig. 2D). In contrast, overexpression of
full-length Myrip (Myrip-FL) but not of a C-terminally truncated
Myrip (Myrip-�C, 1– 665) had a tendency to increase SG density
in the subplasmalemmal region (Fig. 2D), suggesting that the
C-terminal region of Myrip contributes to SG retention, al-
though it is not needed for the interaction with MyoVa (Desnos
et al., 2003; Kuroda and Fukuda, 2005). We conclude that Myrip
promotes the recruitment or the retention (“capture”) of SGs
near the PM.

To characterize the effect of Myrip on SG distribution by in-
dependent means, we measured the distance of SGs to the PM by
electron microscopy. BON cells were treated for 3 d with control
siRNAs or Myrip siRNAs, fixed by high-pressure freezing and
embedded after cryosubstitution. This technique was shown to
preserve the cell architecture and the position of vesicles with
respect to the PM (Siksou et al., 2007). Electron-dense SGs were
easily identified on EM pictures (Fig. 3A), and their distance to
the PM was determined. In agreement with TIRFM data, the
number of SGs positioned within 300 nm of the PM was reduced
in Myrip knockdown cells, compared with control cells (Fig. 3B).
Interestingly, the effect of Myrip silencing on the number of SGs
very close to the PM (�50 nm) or morphologically attached to
the PM (�15 nm) was even more pronounced. Noteworthy,
Myrip silencing had no effect on the size of SGs (not shown) or on
the total number of SGs (cells treated with control siRNAs,
2.17 � 0.27 SG/�m 2, n � 32 cells; Myrip knockdown cells,
2.32 � 0.54 SG/�m 2, n � 30 cells).

In agreement with this defect in SG recruitment at the PM,
Myrip silencing reduced the secretion of serotonin in BON cells
(Fig. 2E), as it does in other neuroendocrine cells (Fukuda and
Kuroda, 2002; Desnos et al., 2003; Waselle et al., 2003; Imai et al.,
2004; Ivarsson et al., 2005; Mizuno et al., 2011).

Huet et al. • Myrip Promotes Secretory Granule Docking J. Neurosci., February 15, 2012 • 32(7):2564 –2577 • 2567



Myrip promotes the peripheral retention of SGs
To determine whether the decreased SG density beneath the PM
was due to impaired delivery or retention of SGs, we designed an
assay to measure the time spent by SGs in the evanescent field. A
405 nm laser diode was coupled to our TIRF microscope and used
to photoconvert SG-targeted NPY-Dendra2. A short UV illumi-
nation induced a green-to-red shift of the fluorescence emission
of Dendra2 in the subset of SGs present in the evanescent field
(Fig. 4A,B). In agreement with the effect of Myrip on SG density
in the TIRF area (Fig. 2D), Myrip-FL, but not Myrip-�C, in-
creased the integrated fluorescence of NPY-Dendra2 measured
immediately after photoconversion (data not shown). In con-

trast, Myrip knockdown reduced this value. Both the fluores-
cence intensity (Fig. 4C) and the number of visible SGs (Fig. 4D)
decreased over time. The decay is likely to reflect SG motion
toward the cell interior since under resting conditions secre-
tion is extremely low and cannot contribute to the observed
fluorescence decay. Myrip-FL slowed the decay of both the num-
ber of labeled SGs and fluorescence intensity, whereas Myrip siR-
NAs accelerated it, indicating that Myrip promotes the
retention of SGs at the cell periphery. Interestingly, Myrip-�C
slowed the decay of the number of SGs kept in the evanescent
field but accelerated the fluorescence loss, suggesting that the
overexpression of Myrip-�C increased the distance of the SGs to

Figure 1. Myrip recruits myosin Va onto SGs. A–F, To evaluate the association of MyoVa to SGs, BON cells were successively transfected with NPY-mRFP (B, E) and with GFP-MyoVa tail (A, D) 3 d
and 16 h before cell fixation, respectively. In addition, cells were transfected with luciferase-targeting siRNAs as a control (A–C) or with Myrip siRNA1 (D–F ). Z-stacks of epifluorescence images were
restored by deconvolution. G, Knockdown of Myrip expression. Three days after transfection of siRNAs, Myrip levels were analyzed by immunoblotting in nontransfected (NT) cells, in cells treated
with a control siRNA, with siRNAs directed to Myrip mRNA, and in cells overexpressing Myrip-FL. Myrip levels were lowered by 80 � 1.8% (Myrip-siRNA1) or by 63 � 1.8% (Myrip-siRNA2; n � 3).
The result of a typical experiment is shown. H, Shown is the percentage of NPY-mRFP-labeled SGs that were also decorated with a GFP-MyoVa tail, a construct comprising the globular tail of MyoVa
and the exons A, C, E, and F. The targeting of the GFP-MyoVa tail to SGs was reduced by Myrip silencing and rescued by expressing a siRNA1-insensitive Myrip construct (rescue) ( p �0.0001, ANOVA).
Asterisks refer to a Tukey’s post-test; ***p � 0.001; n � 15 cells from two experiments. Cells expressing the rescue construct were identified using an anti-c-Myc antibody and an Alexa-350-labeled
secondary antibody. Noteworthy is that the expression of the GFP-MyoVa tail was not reduced by Myrip silencing. I, J, Moreover, in �60% of Myrip-siRNA1-treated cells, the GFP-MyoVa tail
exhibited a marked soluble cytosolic pattern without any visible enrichment on intracellular structures. K, Coimmunoprecipitation of Myrip and myosin Va. Coimmunoprecipitation of the GFP-MyoVa
tail with myc-tagged Myrip after expression in BON cells is shown. Immunoprecipitation was done with an anti-myc antibody and immunoblotting with anti-MyoVa antibodies. One-fifteenth of cell
extracts and one-fourth of immunoprecipitates were analyzed. The positions of endogenous MyoVa and the MyoVa tail are shown by an arrowhead and an arrow, respectively. Scale bars: 5 �m.
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the PM while keeping them at the cell pe-
riphery. An increased photobleaching of
SGs could also account for the higher flu-
orescence loss observed upon expression
of Myrip-�C. SGs would bleach faster if
they were closer to the PM and therefore
exposed to a greater flux of photons.
However, this possibility seems unlikely
because the initial fluorescence intensity
of individual SGs was not modified by
Myrip-�C expression, as would be the
case if their distance to the PM was lower
(data not shown).

Using TIRF imaging, we also counted
the number of NPY-GFP-labeled SGs that
entered or left the evanescent field during
time series of TIRF images (Fig. 5A). We
observed that knocking down Myrip (Fig.
5B) increased both the rates of SG appear-
ance and disappearance. MyoVa silencing
induced similar, but less pronounced, ef-
fects (Fig. 5C). The increased rate of SG
appearance may result from the higher
density of SGs in the cell center observed
in Myrip knockdown cells. In contrast, the
increased rate of SG disappearance cannot
be accounted for by changes in the num-
ber of SGs participating in the trafficking,
but rather reflects an increase in the rate
constant that controls the movement of
SGs from the actin-rich layer to the cell
center (see the Discussion section for a
discussion of these data within the frame-
work of the model depicted in Fig. 10; for
the quantification of the different kinetic
parameters, see Table 1).

Figure 2. Myrip controls the distribution of SGs and their recruitment at the cell periphery. A, BON cells were transfected with
siRNA duplexes or myc-tagged Myrip constructs, and intracellular distribution of SGs was analyzed 3 d later. SGs were stained using
an anti-chromogranin A/B antibody or by means of NPY-GFP expression. SGs are generally enriched at the cell periphery and in
cellular extensions (left). However, upon Myrip silencing or Myrip-RBD expression, SGs are frequently scattered in the cell (middle)
or concentrated in the perinuclear region (right). B, Shown are the mean (�SE) percentages of cells with a marked enrichment of
SGs at the cell periphery observed in control conditions (NT, nontransfected cells; n � 139 cells from 4 independent experiments;
control, n � 255 cells from 6 experiments), upon expression of Myrip-RBD (n � 109 cells from 4 experiments), and upon
transfection of Myrip-siRNA1 (n � 190 cells from 6 experiments), Myrip-siRNA2 (n � 125 cells from 3 experiments), and Myrip-
siRNA1 plus an myc-tagged siRNA1-insensitive Myrip construct (rescue; n � 81 cells from 2 experiments). Inset, schematic
representation of the Myrip constructs used in this study. p � 0.0001 (ANOVA); ***p � 0.001 (Tukey’s post-test); ns, nonsignif-
icant. C, To quantify the cellular distribution of SGs, epifluorescence images of NPY-GFP-expressing cells were segmented using
MIA software. For each cell, the mean distance of the thresholded pixels to the centroid of the cell footprint was computed. The

4

graph shows the mean (�SE) of the values obtained in 10 cells
for each condition. p � 0.0388 (ANOVA). D, Myrip controls the
juxtamembrane SG density. BON cells were transfected with
an empty vector (Control, 39 cells from 2 experiments) or a
control siRNA duplex (Control-siRNA, 107 cells from 7 experi-
ments), with vectors encoding Myrip-RBD (42 cells from 2 ex-
periments), Myrip-FL, (38 cells from 2 experiments),
Myrip-�C (38 cells from 2 experiments), or with Myrip-siRNA1
(96 cells from 7 experiments) and a Myrip rescue construct (20
cells from 2 experiments); they were also cotransfected with
pNPY-mRFP to label SGs. Cells were imaged by TIRFM. Inset, A
representative TIRFM image of a BON cell expressing NPY-
mRFP. Data are expressed as the mean � SE of values ob-
tained in the different cells; p � 0.0001 (Kruskal–Wallis).
E, Effect of Myrip silencing on secretion. BON cells were treated
with control siRNAs or with Myrip-targeting siRNAs. Three
days later, they were loaded with [ 3H]serotonin, washed, and
stimulated with Locke’s solution supplemented with 3.7 mM

Ba 2� (black and white bars) for 10 min or incubated in non-
stimulating bathing medium for the same duration (dashed
bars). Released serotonin was measured in the extracellular
medium and expressed as a percentage of serotonin contained
in the cells (mean � SE of 6 –15 wells). Scale bars: 5 �m.
*p � 0.05; ***p � 0.001.
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Myrip silencing interferes with SG
motion along microtubules
To determine how Myrip controls the re-
tention of SGs at the cell periphery, we
characterized SG mobility in the subplas-
malemmal region by TIRF imaging and
single-particle tracking. The mean lateral
diffusion coefficient (Dxy), an index of the
mobility of SGs, on entire trajectories was
significantly higher in Myrip-silenced
cells (Dxy � 92.3 � 7.2 � 10�4 �m 2 � s�1;
mean � SE; 653 SGs from 10 cells) than in
control cells (Dxy � 24.3 � 5.2 � 10�4

�m 2 � s�1; mean � SE; 761 SGs from 10
cells; p � 0.007). The distribution of mean
Dxy values computed on entire trajectories
is shown in Figure 6A and indicates two
major effects of Myrip silencing: (1) an
increased proportion of SGs with a very
high Dxy value (�50 � 10�4 �m 2 � s�1)
and (2) a 50% reduction in the percentage
of almost-immobile SGs (Dxy � 5 � 10�4

�m 2 � s�1).
To further characterize the effect of

Myrip on fast-moving SGs, we manually
selected subtrajectories characterized by
fast (Dxy � 50 � 10�4 �m 2 � s�1) and
directed motion. Such trajectories are se-
verely reduced upon nocodazole treat-
ment, indicating that they correspond to
SGs moving along microtubules (Desnos
et al., 2007b). The proportion of time
spent in a directed motion was increased
from 3.8 � 0.4% in control cells to 11.5 �
1.5% in Myrip knockdown cells (mean �
SE; p � 0.002). During these periods, SG
velocity was 0.39 � 0.02 �m · s�1 in con-
trol cells and 0.63 � 0.03 �m · s�1 in
Myrip-silenced cells (mean � SE; p �
0.0002), and the distribution of velocity values was shifted to
higher values by Myrip silencing (Fig. 6B). In addition, the length
of microtubule-based runs was increased in Myrip knockdown
cells (1.49 � 0.11 �m) compared to control ones (1.15 � 0.06
�m; p � 0.04).

Myrip promotes SG attachment to the plasma membrane
Next, we focused on stalled SGs. While diffusing with an average
Dxy equal to 25 � 10�4 �m 2 · s�1 in control conditions, SGs
frequently display periods of highly restricted mobility with Dxy

values as low as 10�4 �m 2 · s�1. Several authors have suggested
that these stalling periods correspond to the attachment of SGs to
the PM (Huet et al., 2006; Desnos et al., 2007b; Nofal et al., 2007;
Karatekin et al., 2008; Yizhar and Ashery, 2008; Ostrowski et al.,
2010). Before analyzing the consequences of impairing Myrip on
this class of SG motion, we first investigated further whether
transient stalling could be used as a criterion of attachment to the
PM. The fluctuations in SG mobility were monitored by measur-
ing the variations of Dxy along the SG trajectories, using a rolling
analysis window, and immobilization periods were defined as
portions of trajectories during which the Dxy value droped below
a threshold of Dmin � 5 � 10�4 �m 2 · s�1 (Fig. 7A,B). The
choice of this threshold was driven by the observation that, within

the 2 s preceding exocytosis, most of the SGs, which are probably
attached to the PM, display a Dxy value of �5 � 10�4 �m 2 · s�1

(Desnos et al., 2007b). However, due to the stochastic nature of
Brownian motion, even purely diffusive trajectories character-
ized by an average diffusion coefficient of 10�3 �m 2 · s�1 may
exhibit short periods during which Dxy is lower than Dmin. To
distinguish such false positive stalling events from real periods of
SG attachment, it was thus necessary to set a minimum crossing
time, tmin. Therefore, we compared the distribution of immobi-
lization times between SG tracks and simulated Brownian trajec-
tories. The survival curves displayed on Figure 7C show that with
tmin set to 5 s, false positive stalling events were contributing by
�1% to the events detected for SGs. Stalling periods were also
detected on trajectories of latex beads diffusing in a glycerol/
water mix, and we confirmed that, with this minimum crossing
time, the probability of detecting stalling events was at least 100
times higher for SGs than for beads (Fig. 7C). To further substan-
tiate the fact that stalling periods reflect a constrained behavior,
we compared the anomaly of the diffusion between stalling peri-
ods longer than 5 s and the rest of SG trajectories. The anomaly
parameter � quantifies the restriction of the diffusion: the lower
the value of �, the more restricted the diffusion, with � ranging
between 0 and 1. The stalling periods were characterized by a
strong restriction of SG motion, with � � 0.4, in agreement with
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Figure 3. Ultrastructural localization of SGs in BON cells. A, Ultrathin cryosections of BON cells. BON cells were treated with
control siRNAs or with Myrip siRNAs as indicated, frozen under high pressure to protect the cytoarchitecture, and processed for
electron microscopy. Arrowheads indicate SGs close to the plasma membrane. B, Myrip silencing changed the localization of SGs.
Distribution of the values of the distance between SGs and the PM expressed as percentage of the total number of SGs detected in
each picture (n � 30 images). The data show that Myrip silencing reduced the number of SGs close to the PM (�15 nm or located
between 15 and 50 nm) and increased the number of remote SGs (�500 nm). *p � 0.05; **p � 0.01; ***p � 0.001.
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an attachment to the PM. In contrast, outside these stalling peri-
ods, SG diffusion showed only moderate restriction with � � 0.8
(Fig. 7D). Finally, using the fact that, by TIRF microscopy,
changes in SG fluorescence intensity report changes in the posi-
tion along the vertical axis, we measured the difference in the
altitude of SGs between two successive periods of immobiliza-
tion. We found that, in most of the cases, the difference was �20
nm (i.e., the resolution of our microscope in the z-axis) (Fig. 7E).
The data thus suggest that immobile SGs are at the same altitude,
i.e., at the PM. Survival curves for SG immobilization times were
best fitted with two exponentials (Fig. 7C). It is noteworthy that
both the short-lasting (characteristic time, �4 s) and the long-
lasting (characteristic time, �15 s) components were observed in
single cells and thus cannot be attributed to the heterogeneity of
the population of cells (Fig. 7C). If slow diffusion can contribute
a significant fraction of the fast component of the survival curves,
it is not the case of the slow component, which we therefore used
as a refined criterion of SG attachment to the PM.

We reported previously that MyoVa promotes SG attachment
to the PM (Desnos et al., 2007b), an effect that could be due to an
increase in either the occurrence or the duration of attachment

events. To resolve this issue, we analyzed the effect of MyoVa
silencing on the distribution of immobilization times. MyoVa
depletion reduced the occurrence of the long-lasting component
but not its characteristic time �2 (Fig. 7G, I, J). This reduction in
the occurrence of SG immobilization was observed with three
different MyoVa siRNAs, indicating that it was not due to
off-target effects. We conclude that MyoVa promotes the re-
cruitment of SGs to the PM rather than the stability of the
immobilized state.

Similarly, Myrip silencing reduced the occurrence of the long-
lasting component (Fig. 7H,K). In addition, it reduced the char-
acteristic time, �2, of this immobilization process (Fig. 7H,L). It is
noteworthy that survival curves were rescued by expressing a
siRNA-insensitive Myrip construct arguing against an off-target
effect of the siRNAs. Since Myrip silencing also reduced the num-
ber of SGs present in the TIRF area (Fig. 2D), its overall effect was
to diminish the number of attached SGs per surface area by
�65%. This conclusion is consistent with the data obtained by
EM showing a severe reduction in the number of SGs morpho-
logically attached to the PM in Myrip knockdown cells and ac-
counts for the secretory defects observed in these cells.

Figure 4. Myrip promotes the retention of SGs at the cell periphery. A, Principle of the experiment. Photoconversion of NPY-Dendra2 was used to label the subset of SGs that were close to the PM
at time 0 (when a 2 s pulse of 405 nm light was delivered via the evanescent field) and to follow their dynamics over time. The signal is expected to decrease as photoconverted SGs leave the
evanescent field area and are replaced by nonconverted ones. B, Photoconversion of NPY-Dendra2-labeled SGs. TIRF images of a cell in the green and red channels before (left) and after (right) a pulse
of 405 nm light are shown. Scale bar, 5 �m. C, Fluorescence decay depends on Myrip. Plotted is the mean (�SE) integrated intensity per 100 �m 2 of the red fluorescence over time expressed as
a percentage of the value measured just after photoconversion (time 0; n � 47 control cells, 16 Myrip knockdown cells, 57 cells overexpressing Myrip-FL, and 31 cells overexpressing Myrip-�C). D,
The graph shows the number of red SGs counted on each frame and expressed as percentage of the initial value. The curves were fitted with the sum of two exponentials. The fit obtained for controls
was significantly different from that obtained for Myrip-FL ( p � 0.0039; extra sum of squares F test), Myrip knockdown ( p � 0.0001), and Myrip-�C ( p � 0.0001).
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Myrip restricts the diffusion of SGs within the
actin-rich cortex
Next, we characterized the effect of Myrip on the mobility of SGs
when they were neither stalled nor moving along microtubules
(see Materials and Methods). During such periods, SGs display
Brownian motion and are therefore diffusing with or within the
actin-rich cortex (Fig. 7D) (Huet et al., 2006). Both Myrip and
MyoVa silencing increased the proportion of time spent by SGs in
the diffusive state (Fig. 8A) and the mobility of SGs in the diffu-
sive state (Myrip knockdown cells, Dxy � 22.6 � 1.3 � 10�4

�m 2 � s�1 vs control, 14.9 � 1.9 � 10�4 �m 2 � s�1; 10 cells, p �
0.01; MyoVa-silenced cells, Dxy � 24.5 � 2.9 � 10�4 �m 2 � s�1

vs control, 14.0 � 1.5 � 10�4 �m 2 � s�1; 16 cells, p � 0.003).
These results suggest that the Rab27/Myrip/myosin Va complex
restricts the mobility of SGs within the actin-rich cell cortex, most
likely by tethering SGs to actin filaments, to maintain SGs in the
vicinity of release sites.

The C-terminal domain of Myrip participates in SG
attachment to the plasma membrane
The above-mentioned difference between the effects of Myrip
and MyoVa silencing on the duration of long-lasting SG immo-
bilization suggested that Myrip may exert MyoVa-independent
actions. To investigate this possibility, we overexpressed Myrip,
Myrip-�C (which can interact with MyoVa), or Myrip-RBD

(which does not bind to MyoVa) into BON cells and measured
its effect on SG mobility. Overexpression of Myrip-RBD or
Myrip-�C increased the mean diffusion coefficient, Dxy, com-
puted on entire trajectories (Fig. 9A) and reduced the percentage
of SGs with very low Dxy values (�5 � 10�4 �m 2 � s�1) by �35%
compared to control cells or to cells expressing Myrip-FL (p �
0.0001, ANOVA). We then measured the duration of immobili-
zation events along trajectories and found that Myrip-RBD and
Myrip-�C reduced the occurrence of long-lasting immobiliza-
tion periods by 53 and 27%, respectively. Myrip-�C also de-
creased the characteristic time of long-lasting immobilization
compared to Myrip-FL (Fig. 9B) (p � 0.0004), suggesting that
the C-terminal region of Myrip contributes to the stability of SG
attachment at the plasma membrane.

Discussion
In this study, we identified Myrip as a factor that couples the
capture of SGs in the actin-rich cell cortex and their attachment
to the PM, a process mandatory for exocytosis. Myrip thus plays
a major role in the accumulation of SGs at the cell periphery and
in the replenishment of the releasable pool of SGs.

Inferring the functional state of SGs from their mobility
To understand SG recruitment at release sites, our approach was
to track single SGs, to analyze their motion along trajectories and
to infer their functional state from their behavior. Previous stud-
ies have shown the existence of three classes of SG motion and

Figure 5. Effect of Myrip and MyoVa on the delivery of SGs at the cell periphery. A, Principle
of the experiment. NPY-labeled SGs were imaged by TIRFM. Their appearance in the TIRF area
and their disappearance were manually monitored along time-series images. B, Quantification
of the Myrip data. Myrip silencing increased the occurrence of SG arrival at the cell periphery and
also the disappearance of SGs. The increase in SG appearance does not imply that Myrip silenc-
ing promotes SG delivery at the cell periphery (i.e., an increase in k1; see model in Fig. 10), but
rather reflects the increase in the density of SGs in the cell center (we actually see an increase in
k1C). *p � 0.05; Mann–Whitney test; n � 10 cells from 2 independent experiments. C, Quan-
tification of the MyoVa data (same as in B, but for MyoVa silencing; n � 20 cells from two
independent experiments). The effect of MyoVa knockdown is not as strong as that of Myrip
knockdown ( p � 0.07).

Figure 6. Myrip silencing changes the mobility of SGs. Single SGs were imaged by TIRFM
under resting conditions and tracked in BON cells transfected with siRNA duplexes (control,
black bars; Myrip siRNA, white bars) and pNPY-GFP. A, Shown is the distribution of Dxy values
computed on entire trajectories (n � 10 cells from 2 independent experiments; control, 761
SGs; Myrip-siRNA1, 653 SGs). Myrip silencing significantly reduced the percentage of SGs with
Dxy � 5 � 10 �4 �m 2 · s�1 that are likely attached to the PM and increased the proportion of
SGs with Dxy �50 � 10 �4 �m 2 · s�1 that are likely moving along microtubules. B, Myrip
silencing increases SG velocity on microtubules. Subtrajectories corresponding to directed mo-
tion (i.e., along microtubules) were selected. Shown is the distribution of SG velocities in control
cells (filled bars; 10 cells, 155 periods of directed motion) or in Myrip knockdown cells (open
bars; 10 cells, 250 periods of directed motion). The distribution is shifted to the right upon Myrip
silencing.
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suggested that (1) rapid and asymmetric
trajectories correspond to SGs moving
along microtubules, (2) stalled SGs are
attached to the PM, and (3) the remaining
trajectories correspond to random walks
within the actin-rich cell cortex (Huet et
al., 2006; Desnos et al., 2007b).

One difficulty is to distinguish random
walks from stalling periods. Here, we used
a method that combined a selection of im-
mobilization periods characterized by a
low Dxy value with the analysis of their
durations to provide an index of SG con-
finement. Analyzing the distribution of
immobilization times helped to distin-
guish attachment (the long-lasting com-
ponent of the survival curves) and slow
random walk. Subtrajectories selected by
Dxy thresholding and longer than 5 s were
characterized by a nonlinear relationship
between MSD and time, indicating a sub-
diffusive behavior. This is in agreement
with our previous finding that these peri-
ods feature a negative autocorrelation of
the motion along the z-axis, suggesting
that during these periods, SGs do not
move freely but are attached (Desnos et
al., 2007b). SG immobilization could re-
sult from binding to other structures than
the PM, especially to actin filaments.
However, actin structures are not immo-
bile (Desnos et al., 2007b) (our unpub-
lished observations), and thus cannot
support stable SG immobilization. Fur-
thermore, we found that SGs that un-

Figure 7. Myrip promotes SG attachment to the plasma membrane. A, B, Example of a single SG trajectory and detection of
immobilization periods. The x–y displacement of a single SG is shown in A. The initial point of the trajectory is depicted by a red dot.
The Dxy values were computed along the trajectory using a rolling analysis window and plotted against time in B. Below a threshold
value Dmin � 5 � 10 �4 �m 2 · s�1 (red line), SGs were considered immobile. In this example, the SG displayed a constrained
behavior during two subtrajectories. Period 2 was categorized as an immobilization period. C, The cumulative distribution of the
number of immobilization events identified in control trajectories (filled circles, 32 cells) is plotted as a function of the minimum
duration of immobilization. The best fit was obtained with the sum of two exponentials, indicating the existence of two different
processes (black line, slow component; blue line, fast component). A similar distribution is found in single cells; an example is
shown in gray. Ninety-nine percent of the immobilization periods detected in simulated Brownian trajectories (red) and fluores-
cent bead trajectories (green) were shorter than 5 s, and their distribution can be fitted by a single exponential. D, Box plot of the
anomaly coefficient, which reports the restriction of SG diffusion. The coefficient has a value of 1 in purely diffusive trajectories. Five
hundred and eighteen stalled periods (longer than 5 s) and 396 nonstalled periods from 10 cells were analyzed. E, The trace shows
the motion of a single SG along the z-axis. Sections of the trajectory depicted in red correspond to periods of immobilization in the
x–y plane. Horizontal bars report the mean altitude of the SG during these two periods. The histogram shows the distribution of the
�z values between successive immobilization periods, as measured in 114 trajectories from seven cells. F, Knockdown of MyoVa
expression. Three days after transfection of siRNAs, MyoVa levels were analyzed by immunoblotting in cells treated with a control
siRNA, MyoVa-siRNA2, or MyoVa-siRNA3. The result of a typical experiment is shown. For MyoVa-siRNA1 see the study by Desnos
et al. (2007b). G, MyoVa silencing decreases the occurrence but not the duration of docking periods. BON cells were transfected
with NPY-GFP and siRNAs targeting MyoVa and imaged by TIRFM (n � 32 control cells, 19 MyoVa-siRNA1 cells, 11 MyoVa-siRNA2
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cells, and 12 MyoVa-siRNA3 cells from 3 independent experi-
ments with 1500 – 4000 trajectories per condition). Immobi-
lization periods were detected as described in B. Shown is the
logarithmic representation of the cumulative distribution of
the number of immobilization events plotted as a function of
their duration. The mean duration of trajectories was �16 s in
control cells and �13 s in MyoVa knockdown cells. H, Myrip
silencing decreases both the occurrence and the duration of
docking periods (same as in G but for Myrip knockdown cells;
n � 32 control cells, 30 Myrip-siRNA1 cells, and 20 rescue cells
from 2– 4 independent experiments, with 2500 –3000 trajec-
tories per condition). Note that both the intercept and the
slope of the slow component of the distribution are affected by
Myrip silencing. The mean duration of trajectories was �18 s
in control cells, �12 s in Myrip knockdown cells, and �16 s in
rescue cells. I–L, The histograms show the values (mean�SE,
calculated in each cell and averaged over the different cells) of
the occurrence (i.e., the intercept of the fit curve with the
y-axis) and the characteristic time of the slow component of
the distribution of immobilization times; p � 0.0006 (MyoVa,
occurrence), p � 0.98 (MyoVa, characteristic time), p �
0.0001 (Myrip, occurrence), and p � 0.0017 (Myrip, charac-
teristic time; Kruskal–Wallis test). Asterisks indicate the re-
sults of a Dunn’s multiple comparison test. Similar values were
obtained by fitting the averaged distribution of immobiliza-
tion times shown in G and H. *p � 0.05; **p � 0.01; ***p �
0.001.
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dergo multiple immobilization periods during their trajectory
generally immobilize at the same altitude. As actin filaments are
present at different altitudes, this observation also suggests that
SGs immobilize at the PM. We think that this approach provides
a robust criterion of SG attachment to the PM.

SG mobility is high in BON cells compared to primary neu-
roendocrine cells such as adrenal chromaffin cells and pancreatic

 cells (Degtyar et al., 2007; Michael et al., 2007). As we can
collect many examples of the different possible behaviors and
transitions between different classes of motion, this particular
feature of BON cells facilitates the analysis of SG recruitment at
exocytotic sites.

A compartment model to analyze Myrip-dependent SG
trafficking
Our data indicate that Myrip has profound effects on SG distri-
bution, mobility, and membrane attachment. To evaluate the
different parameters controlling SG dynamics at the cell cortex,
we designed a simple compartment model to describe SG delivery
to the PM (Fig. 10A). The model posits that SGs are transported
from the cell center (C) to the cell periphery (most likely along
microtubules) and then enter a thin (�1 SG diameter) actin-rich
layer (A) into which they diffuse until they find an attachment site
at the PM (D). As suggested by Huet et al. (2006), we considered
that the transition C3D is not allowed, i.e., that SGs coming
from the cell center cannot reach the PM directly. The values of A
(0.22 � 0.025 SGs/�m 2) (Table 1) and D (0.22 � 0.025 SGs/

�m 2) were derived from the density of SGs observed by TIRFM
(density � A � D) and from the proportion of the time spent in
the stalled or diffusive states, as deduced from the analysis of Dxy

along trajectories (Figs. 7, 8). At steady state, the number of SGs
arriving in the TIRF area should be similar to the number of SGs
exiting the TIRF field; hence, k�1A � k1C. Consistently, SG ap-
pearance and disappearance rates were found to be similar (Fig.
5). From the rate of SG disappearance (k�1A) and the measured
value of A, we obtained k�1 � 0.016 � 0.002 s�1. Similarly, at
steady state, the number of SGs diffusing in the cell cortex that
immobilize at the PM is compensated by a similar number of SGs
that come apart. Thus, k2A � k�2D. The detachment rate con-
stant k�2 determines the characteristic lifetime, �, of the immo-
bilized state (� � 1/k�2), which we inferred from the survival
curves shown in Figure 7 (number of stalled SGs still immobilized
after a time t). The exponential fit to the slow component of these
curves gave a value for k�2 (k�2 � 0.056 � 0.007 s�1), and hence
for k2, the rate constant of SG attachment to the PM [k2 � k�2D/
A � 0.082 � 0.012 s�1].

Using this compartment model, we simulated the photocon-
version experiment shown in Figure 4 (Fig. 10B). Both the exper-
imental and simulated curves display a biphasic behavior which
can be well fitted with the sum of two exponential components.
The fast one (characteristic time, 6.5 s, compared with 5.9 s for
the experimental curve) represents the equilibration of A and D

Figure 8. Effect of Myrip and MyoVa on the time spent in diffusive or immobile states. BON
cells were transfected with siRNA duplexes (control, black; Myrip siRNA, white; MyoVa siRNA,
gray) and pNPY-GFP and imaged by TIRFM. Dxy values were computed along single trajectories.
Subtrajectories corresponding to directed movements (manually selected) or to stalled periods
(Dxy � 5 � 10 �4 �m 2 � s �1 for �6 – 8.5 s according to the conditions; see Materials and
Methods) were identified. The remaining parts of the trajectories were considered diffusive. A,
B, Proportion of time spent in the diffusive (A) or immobile (B) state for SGs from control, Myrip
knockdown cells, and MyoVa knockdown cells (10 –20 cells per condition). The mean length of
trajectories was �17s in control cells, 14 s in MyoVa knockdown cells, and 10 s in Myrip knock-
down cells. *p � 0.05; **p � 0.01; ***p � 0.001.

Figure 9. The C-terminal domain of Myrip plays a role in SG immobilization. A, Effect of
Myrip constructs on overall SG mobility. BON cells were transfected with NPY-GFP and Myrip-
RBD, Myrip-FL or Myrip-�C and imaged by TIRFM. SG trajectories were tracked, and Dxy values
were computed on entire trajectories. Shown are the means (�SE) of the values obtained for 34
control cells (from 4 experiments) or 30 cells overexpressing Myrip constructs (n � 3 experi-
ments). p � 0.0011 (Kruskal–Wallis test). B, Truncated Myrip constructs reduced long-lasting
SG immobilization. A rolling window was used to calculate Dxy values along SG trajectories and
to detect immobilization portions of trajectories with a Dxy value inferior to 5 � 10 �4

�m 2 � s �1. Shown is the logarithmic representation of the cumulative distribution of the
number of immobilization events plotted as a function of their duration. The occurrence of the
long-lasting component was lower in Myrip-RBD- and Myrip-�C-expressing cells than in con-
trol cells or Myrip-FL-expressing cells ( p�0.0002, extra sum of squares F test). The slope of this
component was also higher in Myrip-�C- than in Myrip-FL-expressing cells ( p � 0.0004).
*p � 0.05.
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pools, while the slow one (characteristic time, �130 s, compared
with �75 s for the experimental curve) represents the exit of SGs
from the actin-rich layer. Given the cell-to-cell dispersion of the
experimental data and the fact that the simulations did not in-
clude any fitted parameter but rather used characteristics directly
derived from independent experimental approaches, the simula-
tions appear to follow reasonably well the experimental data,
arguing for the validity of our compartment model.

The time spent by a SG in the actin-rich layer [1/(k2 � k�1)] is
about 10 s, similar to the time spent in the immobile state. From
our photoactivation data, we also obtained the overall time spent
in the juxtamembrane region, a value close to 60 s. Therefore,
after microtubule-dependent delivery (long-range search), SGs
perform an average of two successful local searches for an attach-
ment site at the PM before leaving the juxtamembrane area.

The consequences of Myrip and MyoVa knockdown on SG
dynamics at the cell cortex were analyzed using the same com-
partment model (Table 1). Myrip silencing induced a marked
increase in k�1 and k�2 values and a decrease in k2 values, indi-
cating decreased retention in the actin-rich cell cortex, decreased
transport toward attachment sites at the PM, and lowered stabil-
ity of SG attachment. Lowering MyoVa levels induced a slight

increase in k�1 and a decrease in k2, but no significant change in
the rate of SG detachment from the PM. Therefore, we conclude
that the effects of Myrip can be partly accounted for by the re-
cruitment of MyoVa and that Myrip also exerts a MyoVa-
independent role in SG attachment to the PM. In addition, the
effect of Myrip and MyoVa on k2 suggest that the motor activity
of MyoVa promotes the delivery of SGs at the PM, and therefore
that MyoVa does not merely act as a tether.

Myrip and MyoVa mediate the retention of SGs at the cell
periphery
Our observations demonstrate that Myrip and MyoVa mediate
the retention of SGs at the cell periphery. Three mechanisms are
likely involved. First, Myrip mediates the association of SGs with
the actin-rich layer. This conclusion is supported by the increase
in the rate constant k�1 and the increased mobility of the SGs that
were diffusing within the actin-rich layer observed in Myrip
knockdown cells. Both MyoVa (Desnos et al., 2007b) and Myrip
may mediate the association of SGs with actin filaments. The
C-terminal region of Myrip, which directly interacts with F-actin
(Fukuda and Kuroda, 2002; Desnos et al., 2003), contributes to
the restriction in SG mobility during diffusive periods (see Re-
sults) (Fig. 9), suggesting that Myrip directly tethers SGs to actin.

The second mechanism that contributes to SG retention at the
cell periphery is suggested by the effect of Myrip on SG motion
along microtubules. SGs move faster along MTs in the absence of
Myrip (present study) or MyoVa (Desnos et al., 2007b), suggest-
ing that powering SG motion along microtubules is made more
difficult in the actin-rich environment by the interaction of
Myrip or MyoVa with F-actin. This interaction may therefore
promote the detachment of the newly arrived SGs from microtu-
bules. This capture mechanism involving dissociation from mi-
crotubules and retention in the actin-rich layer is likely to have
broad implications in the polarized distribution of various organ-
elles, such as melanosomes, calcium stores, or recycling endo-
somes (Desnos et al., 2007a; Wagner et al., 2011).

The third mechanism underlying SG retention in the subplas-
malemmal region is the attachment of SGs to the PM. The prob-
ability of SG attachment to the PM (the A-to-D transition in
Figure 10) is decreased in both Myrip and MyoVa knockdown
cells, indicating that the two proteins promote SG delivery to
release sites. This effect is probably due to the motor activity of
MyoVa directed toward the PM, where F-actin barbed ends are
enriched. In addition, we observed a specific effect of Myrip de-

Table 1. The dynamics of SGs quantified according to the model depicted in
Figure 10

Control SiRNA MyoVa SiRNA1 Myrip SiRNA

Density (SG/�m 2) 0.44 � 0.038 0.23 � 0.023** 0.35 � 0.032
Docked (%) 50.7 � 3.1 35.6 � 3.7** 24.4 � 2.4***
D (SG/�m 2) 0.22 � 0.025 0.08 � 0.013*** 0.08 � 0.011**
A (SG/�m 2) 0.22 � 0.025 0.15 � 0.016 0.26 � 0.028
k2 (s �1) 0.082 � 0.012 0.045 � 0.012* 0.040 � 0.006*
k�2 (s �1) 0.056 � 0.004 0.064 � 0.01 0.088 � 0.009***
k�1 (s �1) 0.016 � 0.002 0.022 � 0.002** 0.036 � 0.005**
k1C (SG/�m 2/s) 0.0033 � 0.001 0.0027 � 0.0002 0.0087 � 0.001**
N (cells) 22 12 10

SG density refers to the number of SGs detected by TIRFM. The density of SGs attached to the PM (D) or diffusing in
the actin-rich layer (A) were derived from SG density and from the percentage of time spent in the stalled (immobile
for more than 6 – 8.5 s; see Materials and Methods) or in the diffusive state (Figure 8). The undocking rate constant
k�2 was derived from the exponential fit to the survival curves shown in Figure 7 (slow component of the curves).
The rates of SG appearance (k1C) and disappearance (k�1A) from the TIRF area were measured as depicted in Figure
5. Since A is known, we could obtain k�1. Finally, at the steady state, k2A � k�2D; we thus obtained a value for k2 ,
the rate constant of SG attachment to the PM. Data are expressed as the mean � SE of values obtained in the
different cells. *p � 0.05; **p � 0.01; ***p � 0.001.

Figure 10. Model of SG delivery at the cell periphery. A, SGs may be attached to the PM (D)
or located in the actin-rich juxtamembrane region (A) or in the cell center (C). Straight yellow
lines represent microtubules along which SGs travel to reach or to leave the cell periphery. Thin
lines represent the actin filament network. Transitions between the three states C, A, and D are
governed by the constants k1, k�1, k2, and k�2. In agreement with previous findings (Huet et
al., 2006), the transition between C and D is forbidden: SGs must dissociate from MTs and diffuse
for a while within the actin cortex before they can attach at the PM. See Table 1 for a quantifi-
cation of the rate constant values. Since the characteristic residency time at the cell periphery
(A � D, �60 s) is longer than the sum of the residency time in A (�15s) and in D (�15s), we
conclude that SGs can undergo several local searches and successful membrane attachment
periods before going back to C. B, Simulation of the photoconversion experiments. Shown is the
comparison of the photoconversion experiment (control condition as in Fig. 5D, fitted with 2
exponentials; solid black line) and a simulation (gray) based on the model shown in A (for
details, see Materials and Methods). The fast component reflects the equilibration between SGs
attached to the PM and SGs diffusing in the actin-rich layer. The slow component represents the
exit of SGs from the actin-rich layer.
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pletion on the stability of SG immobilization at the PM, indicat-
ing that Myrip, but not MyoVa, is a component of the attachment
machinery. This effect is mediated by the C-terminal region of
Myrip since overexpression of Myrip-�C but not of full-length
Myrip reduced the stability of SG immobilization.

Mizuno et al. (2011) previously characterized the effect of
Myrip on the trafficking and exocytosis of SGs in insulin-
secreting cells. In agreement with previous studies (Waselle et al.,
2003; Ivarsson et al., 2005) and this report, they found that Myrip
silencing reduced insulin secretion and SG recruitment at the cell
periphery. Based on the effect of Myrip overexpression on the
accumulation of SGs in the actin-rich layer, they suggested that
Myrip only acts by tethering SGs to the actin-rich layer, via
MyoVa. However, this observation supports the conclusion that
Myrip tethers SGs to actin filaments (Desnos et al., 2003; Kuroda
and Fukuda, 2005) (present study), but does not contradict the
proposed additional role of Myrip in SG docking at the PM.

A direct role for Myrip in SG attachment to the PM
The fact that Myrip silencing and Myrip-�C, but not MyoVa,
modify the duration of immobilization events indicates that the
C-terminal region of Myrip is involved in the attachment of SGs
to the PM. This region of Myrip interacts with components of the
exocyst (Goehring et al., 2007), a multimeric protein complex
involved in tethering reactions between membrane compart-
ments. The exocyst targets several transport vesicles to the PM
(Lipschutz and Mostov, 2002; He and Guo, 2009), and prelimi-
nary evidence supports its role in SG docking (Tsuboi et al.,
2005). The reported effect of the C-terminal region of Myrip on
SG secretion and melanosome distribution (Waselle et al., 2003;
Imai et al., 2004; Ramalho et al., 2009) may therefore be related to
the Myrip/exocyst interaction. Future studies will have to test the
possibility that the exocyst complex mediates the effect of Myrip
on SG docking. The SNARE proteins SNAP25 and syntaxin-1, as
well as the syntaxin-1 partner Munc18 and the vesicular protein
synaptotagmin-1, have also been implicated in SG docking at the
PM (Toonen et al., 2006; de Wit et al., 2009). A key issue is to
determine the relationship among Myrip, the exocyst, and this
SNARE-based docking complex. One possibility is that Myrip
mediates the first interaction with the PM, in concert with the
large exocyst complex, and that SNAREs and synaptotagmins
then assemble to mediate short-range interactions between SGs
and the PM and prime SGs for exocytosis. The fact that previously
immobilized SGs undergo a 20 nm step toward the PM (Kara-
tekin et al., 2008) or a small lateral movement (Degtyar et al.,
2007) shortly before fusion supports this possibility and suggests
that different-sized tethering complexes are sequentially formed
during the secretory process (Karatekin et al., 2008).
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