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based on sinusoid-like curve decomposition and eigenvector-guided interpolation.

Introduction

In To X-ray computed tomography (CT), sparse sampling and detector gaps are two typical cases of sinogram incompleteness [START_REF] Kak | Principles of Computerized Tomographic imaging[END_REF][START_REF] Prince | Constrained sinogram restoration for limited-angle tomography[END_REF][START_REF] Joseph | View sampling requirements in fan beam computed tomography[END_REF][START_REF] Ohnesorge | Efficient correction for CT image artifacts caused by objects extending outside the scan field of view[END_REF][START_REF] Maltz | CT truncation artifact removal using water-equivalent thicknesses derived from truncated projection data[END_REF][START_REF] Xu | Statistical projection completion in X-ray CT using consistency conditions[END_REF][START_REF] Chen | Mathematical models for local non-texture inpaintings[END_REF]. Sparse sampling with limited projections of views has wide applications in fast scanning (~4-10s) such as cardiac CT and neonate CT examination [START_REF] Prince | Constrained sinogram restoration for limited-angle tomography[END_REF][START_REF] Joseph | View sampling requirements in fan beam computed tomography[END_REF]. Detector gaps in sinogram are generally caused by physical damage of CT detectors along some specific projection views [START_REF] Ohnesorge | Efficient correction for CT image artifacts caused by objects extending outside the scan field of view[END_REF][START_REF] Maltz | CT truncation artifact removal using water-equivalent thicknesses derived from truncated projection data[END_REF][START_REF] Xu | Statistical projection completion in X-ray CT using consistency conditions[END_REF]. However, sinogram data missing from sparse sampling and detector gaps often lead to degraded CT images with severe streak or ring artifacts. suppress these artifacts, many approaches have been proposed in the last decade. They are generally classified as inpainting-like and statistical methods. Typical inpainting-like techniques include TV (total variation) inpainting [START_REF] Chen | Mathematical models for local non-texture inpaintings[END_REF][START_REF] Xue | Metal artifact reduction in dual energy CT by sinogram segmentation based on active contour model and TV inpainting[END_REF], partial differential equation (PDE) based inpainting [START_REF] Gu | X-ray CT metal artifacts reduction through curvature based sinogram inpainting[END_REF][START_REF] Kostler | Adaptive variational sinogram interpolation of sparsely sampled CT data[END_REF] and directional interpolation [START_REF] Bertram | Directional view interpolation for compensation of sparse angular sampling in cone-beam CT[END_REF]. In some of these methods such as in [START_REF] Constantino | Sinogram recovery for sparse angle tomography using sinusoidal Hough transform[END_REF][START_REF] Zamyatin | Extension of the reconstruction field of view and truncation correction using sinogram decomposition[END_REF][START_REF] Chityala | Artifact reduction in truncated CT using sinogram completion[END_REF], the inherent property of sinusoid-like curve (S-curve) composition is exploited to restore the incomplete sinograms. The second category of methods, which has been higly developped in the literature, makes use of statistical methods with prior constraints to suppress these artifacts. Some approaches such as maximum likelihood expectation maximization (MLEM) [START_REF] Oehler | Statistical image reconstruction for inconsistent CT projection data[END_REF][START_REF] Zbijewski | Statistical reconstruction for x-ray CT systems with non-continuous detectors[END_REF], Bayesian based EM optimization [START_REF] Lemmens | Suppression of metal artifacts in CT using a reconstruction procedure that combines MAP and projection completion[END_REF] and TV-based compressed sensing (CS) reconstructions [START_REF] Sidky | Image reconstruction in circular cone-beam computed tomography by constrained total-variation minimization[END_REF][START_REF] Duan | Few-view projection reconstruction with an iterative reconstruction re-projection algorithm a TV constraint[END_REF][START_REF] Ritschl | A new approach to limited angle tomography using the compressed sensing framework[END_REF][START_REF] Tang | Performance Comparison Between Total Variation (TV)-Based Compressed Sensing and Statistical Iterative Reconstruction Algorithms[END_REF], were found to be efficient in improving the reconstructed images in the presence of sparse sampling and detector gaps. It was noted in [START_REF] Zbijewski | Statistical reconstruction for x-ray CT systems with non-continuous detectors[END_REF] that statistical reconstruction allows suppression of the artifacts brought on by the asymmetric detector gaps, but remains inefficient to remove the artifacts brought on by the symmetric detector gaps. In [START_REF] Zamyatin | Extension of the reconstruction field of view and truncation correction using sinogram decomposition[END_REF][START_REF] Chityala | Artifact reduction in truncated CT using sinogram completion[END_REF], the intensities of the unmeasured points were set to the minimum intensities of the known intensities along the decomposed S-curves. This method was shown to be effective in the case of external truncation because the high attenuation tissues are always located within the internal field of view [START_REF] Chityala | Artifact reduction in truncated CT using sinogram completion[END_REF]. Nevertheless, this method might not work in the cases of detector gaps and sparse sampling, in which the missing sinogram data correspond to tissues or structures for which there is a high attenuation. In

Method: am decomposition

the 2D fan-beam CT geometry as illustrated in Fig. 1: , O Q isocenter of FOV and X-ray source this paper, with an aim to provide effective sinogram completion for sparse sampling and detector gaps, we proposed a new strategy of inpainting, which includes three steps:S-curve decomposition, sinusoid fitting and eigenvector-guided interpolation, respectively. The first step is performed to determine the family of S-curves that goes through each unmeasured sinogram point [START_REF] Constantino | Sinogram recovery for sparse angle tomography using sinusoidal Hough transform[END_REF][START_REF] Zamyatin | Extension of the reconstruction field of view and truncation correction using sinogram decomposition[END_REF][START_REF] Chityala | Artifact reduction in truncated CT using sinogram completion[END_REF]. In the second step, a sinusoid fitting method is applied to retrieve the S-curves that go through each sinogram point with unmeasured intensity. Finally, to estimate the unmeasured sinogram intensities, an eigenvector-guided interpolation is realized to determine the S-curve to be used for interpolation. This process is described in section 2. In section 3, sparse sampling and symmetric detector gaps under 2D fan-beam CT geometry are then simulated to validate the effectiveness of the proposed method and Compute Unified Device Architecture (CUDA) based parallelization is performed to accelerate the sinusoid fitting and interpolation operations [START_REF] Kharlamov | Image Denoising Tech. Rep[END_REF][START_REF][END_REF][START_REF]Accelerating MATLAB with CUDA Using MEX Files[END_REF][START_REF]GPU Acceleration in MATLAB[END_REF]. Section 4 provides a qualitative and quantitative evaluation of the method as well as a comparison with two other inpainting methods and a CS iterative reconstruction algorithm. Results show that better performances can be reached with our approach in the cases of sparse sampling and detector gaps. Section 5, finally,concludes on the relevance of the method.

A. Geometry and sinogr

Let consider the notations listed in Table 1 and If R de te source-to-isocenter distance, the circul trajectory of Q can be given by: no s the ar ur ( ) ( cos , sin
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-, with V and D denoting the total projection nu ec sion, Eq. ( 2), t deno s the integral path along each ray, which leads to the sinogram intensity at point ( , ) mber and the half det tor dimen respectively. In te β γ . From [START_REF] Zamyatin | Extension of the reconstruction field of view and truncation correction using sinogram decomposition[END_REF], we know that each point in the reconstructed image uniquely corresponds to one specifi rve in sinogram space, and the sinogram data c S-cu g to the superposition of all the S-curves. 
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is from the path of the X-ray beam MN , and the point X moves from M to N as ϕ varies from 2 ϕ to 1 ϕ . Then from the set of all the po in ints MN , we can termine a set S-curves ( , ) S de of β γ going thro h po t ( , ) ug in β γ in the sinogram space (as illust d in Fig. 3):
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B. The method:

S-point ( , )

β γ lies within a group of S-curves ( , )

S β γ

Each unmeasured , so the interpolation of each S-curve going through the poin ) t ( , β γ will lead to one estimation. Theref all the S-curves going through the point ( , ) ore β γ should be jointl idered to estimate the intensity at ( , ) y cons β γ . We thus developed thus an eigenvecto ed interpolation to estimate the intensities of the S-points erform this interpolation, we r-guid . To p set a patch (as the red rectangle in Fig. 3) P centered at the current unmeasured point. Then, taking into account the local sinogram structure, the tensor product matrix T for patch P is calculated in Eq.( 9) as the convolution of a kernel K(•) and the tensor production of the partial differentia on matrix of P : ti [START_REF] Gu | X-ray CT metal artifacts reduction through curvature based sinogram inpainting[END_REF] where, ( ) ) uuuuuu r e will also not damage the region consistency because the eigenvalues of T tend to be equal in this ca
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We applied the Jacobi rotation method [27 o calculate the eigenvalues of th s ] t e symmetric ock matrix [START_REF] Bertram | Directional view interpolation for compensation of sparse angular sampling in cone-beam CT[END_REF] bl T to and identify the eigenvector associated with the smallest eigenvalue. The least-square method is used find the interpolated S-curve with the closest direction to the vector S ( , β γ uuuuuuuuu r e . In this least-square method, we define each feature line in the sinogram coordinate as: In summary, we outline the steps in the proposed approach as follows:

Step1: Compute a family of S-curv 

Experiment Settings

periments were conducted on fan-beam clinical data to test the proposed approach. The 2D dataset was acquired on a Siemens Somatom scanner. Shown in Fig. 6 (a), the original complete sinogram data is from one pelvis scanning of a 56-year-old male patient. The scanning protocol is 100 mAs, 120kVp, 6 mm slice-thickness, 256 radial samples and 360 angular samples. The source circle radius and the detector-center distance are 816 mm and 408mm. The target image size is 512 512 × . The acquired sinogram was normalized, corrected for attenuation and scatter and then rebinned to parallel format. We applied a Filtered Back Projection (FBP) reconstruction algorithm with a Ramp kernel to build the image (Fig. 6 (d)) from the original complete sinogram (Fig. 6 (a)). As illustrated in Fig. 6 (b) and (c), sparse sampling and detector gaps are respectively simulated. In the case of sparse view sampling, projection data contains 90 views on the 360. Fig. 6 (c) illustrates the simulated detector gaps, in which two 10 detector gaps are symmetrically located on each side of the center-of-detector. Fig. 6 (e) and (f) show the reconstructed images from these two sinograms. We can see in Fig. 6 that the data missing from sparse sampling and detector gaps significantly degrades the reconstruction by introducing severe cyclic and streak artifacts in the reconstructed images. We can note that the data missing from sparse sampling and detector gaps leads to degraded reconstructions with severe cyclic and streak artifacts.

We then compare then our approach with two other inpainting methods which are linear interpolation and TV inpainting. For all the inpainted sinograms, the FBP algorithm is applied with a Ramp filter to obtain the reconstructed images.

Linear interpolation estimates the unmeasured sinogram data using a linear weighting that is inversely proportional to the spatial distance between the known data and unmeasured data. Based on [START_REF] Kothe | Edge and junction detection with an improved structure tensor[END_REF], 1-D linear interpolation along both the projection view and the detector ordinate are applied to interpolate the missing data for sparse sampling and detector gaps, respectively.

TV inpainting estimates the unknown data by computing the numerical solution to the partial differential equation (PDE) [START_REF] Chen | Mathematical models for local non-texture inpaintings[END_REF]. The PDE equation includes a positive shifting parameter to avoid zero denominator, and a time parameter to determine the maximum iteration to inpaint all the missing points.

We also compare the reconstruction results from the proposed inpainting with the TV-based CS statistical algorithm in [START_REF] Sidky | Image reconstruction in circular cone-beam computed tomography by constrained total-variation minimization[END_REF][START_REF] Duan | Few-view projection reconstruction with an iterative reconstruction re-projection algorithm a TV constraint[END_REF][START_REF] Ritschl | A new approach to limited angle tomography using the compressed sensing framework[END_REF][START_REF] Tang | Performance Comparison Between Total Variation (TV)-Based Compressed Sensing and Statistical Iterative Reconstruction Algorithms[END_REF]. In this method, the artifact suppressed CT image μ is obtained by minimizing the energy function that combines the data consistency term in sinogram space with the TV term in image space:

2 l 1 l ( ) ( ) 1 ˆarg max( ( )) 2 T TV g A D g A U β μ μ μ = - - + μ (11) ( ) ( ) 2 2 2 ( ) TV h v j j j U ε μ μ μ = Δ + Δ + ∑ (12)
where, g is the measured projection sinogram data, is the system matrix and A D is the diagonal covariance matrix. Matrixes and A D can be determined well from the fan-beam CT geometry. h j μ Δ and v j μ Δ denote the linear operators corresponding to the horizontal and vertical first order differences at pixel j, respectively. ε is a small positive number introduced to avoid a zero denominator. Parameter β controls the trade-off between the data consistency and the TV terms.

In the experiments, the parameters involved in the different methods are set to minimize the mean square error (MSE) on the sinogram. The parameter β in TV-based CS reconstruction is set using the rule of MSE minimization on the reconstructed images. The MSE value for the inpainted sinogram ( g MSE ) and the reconstructed images ( MSE ) are respectively given by Eqs. ( 13) and ( 14):

μ 2 1 ( o g j j g ) j MSE g g N = - ∑ (13) 2 1 ( o j j j MSE N μ μ ) μ μ = - ∑ (14) 
where, g N and N μ denote the total element numbers in the sinograms and the reconstructed images, respectively. g and o g denote the inpainted sinograms and the original complete sonogram respectively, In our approach, to limit the computational costs, we choose equidistantly discretized S-curves in the estimation of each of the unmeasured points. Patch size P has to be suitably set to characterize local sinogram textures. It has to be larger than the original gaps to guarantee the original known intensity information is used for inpainting. Nevertheless a too large Patch may include many non-local distributed structures, and might cause a failure in characterizing the local intensities. Additionally, a large P increases the computationnal costs of the eigenvalues and eigenvectors. Therefore, the size definition of P should consequently take into account the practical distribution of the missing data in sinogram. We also found the proposed approach was not sensitive to the size of P . No visual difference could be detected if we changed the patch size from 7x7 to 15x15 for the case of sparse sampling.

A GPU implementation using the Compute Unified Device Architecture (CUDA) framework was applied to accelerate the process of fitting and interpolation of all the S-curves on each unmeasured points. Routinely, the CUDA computation model is broken down into a host (CPU) and the device (GPU), both of which are connected by PCI-E bus. Threads, blocks and grids make up of the physical structure of a CUDA multithreading frame [START_REF] Kharlamov | Image Denoising Tech. Rep[END_REF][START_REF][END_REF][START_REF]Accelerating MATLAB with CUDA Using MEX Files[END_REF][START_REF]GPU Acceleration in MATLAB[END_REF]. Once the data enter device memory and are ready to be processed, kernel functions are called to fit and interpolate the S-curves simultaneously. The algorithms have been written in C language using the MATLAB release R2006b and NVIDIA CUDA libraries and were run on a PC with an Inter Xeon processor, GHZ, 8G RAM and GPU (NVIDIA GTX465).

2 ×

Results

Experiments on a sparse sampling sinogram

Parameter setting for the different methods are listed in Table . 2. Fig. 7 (a)-(c) show the inpainted sinograms from linear interpolation, TV inpainting and the proposed inpainting method. The delineated ROIs in Fig. 7 (a)-(c) are zoomed in Fig. 7 (a1)-(c1). Fig. 7 (d1) provides the corresponding zoomed ROI of the original reference sinogram of Fig. 6 (a). These enlarged regions show that our proposed method can lead to a better restoration of the sinogram textures. Fig. 8 (a)-(c) display the reconstructed images from the inpainted sinograms of Fig. 7 (a)-(c). We can still note that the proposed inpainting provide a better reconstruction with more effective artifact-suppression and structure-preservation than with the other methods. The iterative TV-based CS reconstruction in Fig. 8 (d) also demonstrates a good artifact-suppression property. Comparing with the TV-based CS reconstruction, the proposed approach provides a reconstruction with comparable artifact-suppression, and a better preservation of fine structures. Fig. 9 plots the profiles along the 245 th rows in the reconstructed images of Fig. 8. This graph confirms the performance of our approach by showing better agreement with the reference image (Fig. 6 (d)) than is found with the other methods. The MSE computed for both the inpainted sinograms and the reconstructed images are given in Table . 3 for each method. The figures confirms the supremacy of our approach with a MSE that is the lowest in the set of all methods.

Method Parameter settings

Linear interpolation [START_REF] Kothe | Edge and junction detection with an improved structure tensor[END_REF] 5 points in each symmetric side are used in the interpolation TV inpainting [START_REF] Chen | Mathematical models for local non-texture inpaintings[END_REF] Inpainting time: 300; Positive shifting parameter : Table 3. MSE of the inpainted sinograms and reconstructed images of Fig. 7 and Fig. 8 respectively

Method

Parameter settings

Linear interpolation [START_REF] Kothe | Edge and junction detection with an improved structure tensor[END_REF] 5 points in each symmetric side are used in interpolation TV inpainting [START_REF] Chen | Mathematical models for local non-texture inpaintings[END_REF] Inpainting times: 300; Positive shifting parameter : 

Computation costs:

The computation cost (in CPU seconds) for different methods are listed in Table 6. As to the methods of linear interpolation, TV inpainting, and the proposed method, the total computation time includes both the inpainting and FBP reconstructions. For TV-based CS reconstruction, the computation time relates just to the reconstruction process. We can see that more computation costs are required for the TV-based CS method and our proposed method. Moreover, when considering the sparse sampling and detector gap, this computational costs increased with the number of unmeasured data to be estimated. 

Conclusion

In Ho this paper, a new sinogram inpainting strategy is proposed to suppress the artifacts brought by sparse sampling and detector gaps in CT. This strategy includes S-curve based sinogram discretization, sinusoid fitting and eigenvector-guided interpolation. A CUDA-based parallelization is applied to accelerate the processing. Experiments on real fan-beam scanning data show that the proposed completion strategy can lead to improved CT imaging in the two cases of sparse view sampling and symmetric detector gaps.

wever, from the above inpainting and reconstruction results from Fig. 7-Fig. 12, we can still observe some error estimation in the inpainted sinograms from the proposed approach. One reason for this might be that the interpolation must rely on the remaining known data along each decomposed S-curve to complete the S-curves with missing data. Therefore in the cases with too much missing data (very low sampling ratios or very large detector gaps), performance of the method would be lowered. Another limit is the computation time that still remains relative high even when using CUDA acceleration. Further work will be devoted to the estimation of more accurate intensity information, the extension of the method to 3D cone-beam CT scan, and reducing the computation time.
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 5 Fig. 5 illustrates the process of estimating one specific unmeasured point.

Fig. 6 .

 6 Fig.6. Reconstruction of incomplete sinograms. (a), original complete sinogram; (b), simulated sinogram with a sparse sampling: 90 projection views on 360 are available; (c), simulated sinogram containing 2 symmetric detector gaps: two 10 row detector gaps are located at each side of the center-of-detector; (d), image reconstructed from the complete sinogram in (a); (e), image reconstructed from the sparse sampling sinogram in (c); (f), image reconstructed from the sinogram including detector gaps in (d).We can note that the data missing from sparse sampling and detector gaps leads to degraded reconstructions with severe cyclic and streak artifacts.

  μ and o μ denote the reconstructed images from the inpainted sinogram and the reference reconstructed image (Fig. 6(d)) from the original complete sinogram .g o g

Table 2 .Fig. 7 .

 27 Fig.7. Inpainting results in the experiment of sparse sampling after application of (a), the linear interpolation; (b), the TV inpainting method in [7]; (c), our proposed method; (a1)-(c1): Zoomed ROI from (a)-(c); (d1) is the zoomed region from the original complete reference sinogram in Fig.6 (a).

Fig. 8 .

 8 Fig.8. Reconstruction results in the experiment of sparse sampling. (a)-(c), from the corresponding inpainted sinograms in Fig.7 (a)-(c) and (d) from the TV-based CS method.We can note that the proposed inpainting can lead to reconstruction with better artifact-suppression and structure-preservation than the other inpainting methods, and reconstruction comparable to the TV-based CS reconstruction can be obtained from the inpainted sinogram using the proposed method.

Fig. 10 .

 10 Fig.10. Inpainting results in the experiment of symmetric detector gaps. Sinogram restoration using (a), the linear interpolation; (b), the TV inpainting method in [7]; (c), the proposed method; (a1)-(c1): zoomed ROIs from (a)-(c); (d1) is the zoomed region from the original complete reference sinogram in Fig.6 (a).

Table 5 .

 5 Fig.11. Reconstruction results in the experiment of symmetric detector gaps. (a)-(c), from the inpainted sinograms in Fig.10 (a)-(c); (d), from the TV-based CS reconstruction.We can note that the proposed inpainting can lead to reconstruction (Fig.11 (c)) with better artifact-suppression and structure-preservation than other inpainting methods and the iterative CS reconstruction.

  Fig.12. Illustration of the profiles along the 100 th row in the reconstructed images in Fig.11
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  Table 6 also shows that CUDA parallelization led to nearly 40-fold acceleration.

		Linear				
	Sparse sampling	1.02	22.16	452.68	18021.42	14298.47
	Detector gaps	0.98	13.96	750.71	28800.28	14298.47

Table 6 .

 6 CPU computation cost (in CPU seconds) for different methods.
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Experiment on detector gaps

 [START_REF] Zbijewski | Statistical reconstruction for x-ray CT systems with non-continuous detectors[END_REF], Zbijewski et al. tested the application of the iterative reconstruction algorithm in the case of an incomplete CT sinogram with non-continuous detectors. The authors pointed out that, although the method was able to reconstruct artifact-free images from sinograms containing asymmetric detector gaps, the iterative algorithm was inefficient in suppressing artifacts when sinograms contained symmetric detector gaps. We applied our proposed inpainting to suppress the artifacts in Fig. 6 (f), which were caused by symmetric detector gaps in the sinogram and compared the results with those obtained from the 2 inpainting methods and the TV-based CS reconstruction algorithm. The parameter settings for the different methods are provided in Table. [START_REF] Ohnesorge | Efficient correction for CT image artifacts caused by objects extending outside the scan field of view[END_REF].

Fig. 10 (a)-(c) show the completed sinograms from linear interpolation, TV inpainting and our proposed inpainting method and the zoomed ROIs in Fig. 10 (a)-(c) are displayed in Fig. 10 (a1)-(c1). Fig. 10 (d1) displays the corresponding zoomed region in the original complete sinogram. Keeping the original complete sinogram (Fig. 6 (a)) as the reference, we can observe in Fig. 10 that linear interpolation and TV inpainting fail to restore the original sinogram textures, while our proposed method allows a better restoration of sinogram textures. Fig. 11 (a)-(c) depict the reconstructed images from the corresponding inpainted sonograms in Fig. 10 (a)-(c). We can observe that, with respect to the reference reconstruction in Fig. 6 (d), the proposed inpainting method still give a reconstruction with less artifacts than the other inpainting methods. Fig. 11 (d) shows the images from the TV-based CS reconstruction algorithm. We can note that the TV constraint leads to smooth structures without significantly improved artifact suppression. Compared with the TV-based CS reconstruction, the proposed approach is more efficient (Fig. 11 (c)) in suppressing ring artifacts, and preserving original structures.

.12 plots the profiles along the 100 th row in the reconstructed image of Fig. 11. As previously observed with sparse sampling sinograms, the proposed approach behaves in the same way and provides a reconstruction result that is in better conformity with the reference image than are the results obtained with the other methods. MSE computed on the inpainted sinogram and the reconstructed images (and given in Table 5) also confirms these results.