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Abstract

The x-ray exposure to patients has become a major concern in Computed Tomography (CT) and minimizing the radiation exposure

has been one of the major efforts in CT field. Due to the plenty high-attenuation tissues in human chest, under low dose scan

protocols, thoracic low-dose CT (LDCT) images tend to be severely degraded by excessive mottled noise and non-stationary streak

artifacts. Their removal is rather a challenging task because the streak artifacts with directional prominence are often hard to be well

discriminated from the attenuation information of normal tissues. This paper describes a two-step processing scheme called Artifact“
Suppressed Large-scale Nonlocal Means  (AS-LNLM) for suppressing both noise and artifacts in thoracic LDCT images. Specific”
scale and direction properties were exploited to discriminate the noise and artifacts from image structures. Parallel implementation

has been introduced to speed up the whole processing by more than 100 times. Phantom and patient CT images were both acquired

for evaluation purpose. Comparative qualitative and quantitative analyses were both performed that allows concluding on the

efficacy of our method in improving thoracic LDCT data.
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Introduction

The lung and bronchus cancer is a leading cause of cancer death in the United States with a mortality rate that amounts to 29  1 .% [ ]
Computed tomography (CT) is widely used for lung cancer screening because it is more sensitive than chest radiography in the detection

of small nodules and lung carcinoma at an early stage 2 3 . Nevertheless, a trouble spot is the x-ray dose delivered by the scanner. It is[ – ]
indeed given to be relatively high (5 15mSv), which may be dangerous at more or less long term for patients having to pass several CT–
examinations over a certain period of time. Thus to limit the radiation dose, low-dose computed tomography (LDCT) could be applied for

screening in patients at high risk for developing lung cancer 4 . Low dose CT can be achieved by decreasing the milliamperage and the[ ]
voltage 5 6 , which, however, leads to a degraded signal to noise ratio 7 11 . This is due to a severe increase of the quantum and[ – ] [ – ]
electronic noise. As a consequence, reconstructed images appear degraded by the presence of mottled noise and pronounced streak artifacts

4 8 . It might be difficult, thus for radiologists to distinguish between benign and malignant nodules on LDCT. A recent report of the[ – ]
American Society of Clinical Oncology emphasizes that the number of false-positive in the detection of lung nodules, was high for

individuals who underwent lung cancer screening with low-dose computed tomography (LDCT): 21  after a first LDCT scan, and 33% %
after a second one 7 .[ ]

The streak artifacts, taking the appearance of directional patterns, are often prominent in thoracic LDCT images and on structures that

have extremely high attenuation. Their suppression is rather challenging due to their orientation prominences, which are often similar to

those of structures that have normal attenuation. Many methods have been proposed to improve the quality of thoracic LDCT images,

which can be roughly divided into two categories: Raw data-based and post-processing techniques.

The first one refers to raw data-based techniques which directly locate in the projection space. Raw data-based techniques improve the

LDCT reconstruction by restoring the projected raw data or iterative solving a prior-regularized energy function 8 13 . Researches in this[ – ]
direction are however always limited by the difficulty to access the well-formatted CT projection data and the high involved computation

cost 8 13 .[ – ]
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Post-processing techniques are applied directly on the reconstructed image data but because the mottled noise and non-stationary

artifacts in LDCT images can not be well modeled into a generic distribution, it is often difficult to well differentiate between

noise/artifacts and anatomical/pathological data 14 20 . Different techniques have been proposed for improving the quality of LDCT[ – ]
images. For instance, a hybrid approach, making use of low-pass and directional filters for segmented both non-structured and structured

regions, has been described in 14 . In 15 , a filter named SharpView CT applies a multi frequency analysis to divide the image into[ ] [ ]
several sub-bands and separately process them before re-combination. In 16 , a feature-dependent operation was used to reduce noise and[ ]
streak artifacts around the thoracic inlet by applying different processing on different structures. A diffusion filter modulated by local

neighboring information, was applied in 17  and 18  to process thoracic LDCT images. In 19 , a Hybrid anisotropic Diffusion filter with a[ ] [ ] [ ]
Continuous Switch (HDCS) exploited local eigenvalue information to determine the local feature shape and apply a differentiated

enhancing diffusion process. In 20 , a weighted intensity averaging over large-scale neighborhoods (WIA-LN) was proposed for[ ]
processing abdominal LDCT images, which can be deemed as a large-scale nonlocal means (LNLM) 21 23 . The weighted large-scale[ – ]
averaging in the LNLM method relies on the information redundancy property within a local neighborhood to suppress mottled noise

without obvious loss of image details. Nevertheless, as also pointed out in 20 , the LNLM method is not effective in suppressing the[ ]
non-stationary streak artifacts in thoracic CT images.

This paper describes an Artifact Suppressed Large-scale Non Local Means (AS-LNLM) method to process thoracic LDCT images. It

exploits scale and directional properties for suppressing noise and artifacts and relies on a two stage processing scheme. The first one aims

at suppressing streak artifacts in the LDCT images by applying a directional 1-D nonlinear diffusion in the stationary wavelet domain. The

second stage makes then use of a LNLM filtering for denoising the artifact suppressed images (Section II). To reduce the computational

complexity, a multithreading implementation has been carried out that take advantage of the Compute Unified Device Architecture

(CUDA) 24 27 . In sections III and IV, experiments were both conducted on a 2D thoracic anthropomorphic phantom and real data[ – ]
acquired from a Siemens 16 detector rows CT. A first qualitative comparison with the latest iterative algorithm developed by GE company

is presented. A qualitative and quantitative study is then performed on the thoracic phantom and a comparison with the HDCS filter 19  is[ ]
provided. Results are lastly given on real data with an expert-based evaluation, which shows the proposed method achieved effective

noise/artifact reduction in thoracic LDCT images with little compromise in contrast.

The list of abbreviations below will be used thereafter:

LDCT Low-dose CT
HDCT High-dose CT
HDCS Hybrid Diffusion filter with a Continuous Switch in [19 ]
LNLM Large-scale Nonlocal Means in [20 ]
AS-LNLM Artifact Suppressed Large-scale Nonlocal Means
CUDA Compute Unified Device Architecture

Methods
The Original LNLM Method

The Non Local Means (NLM) Filter, originally introduced by Buades  21  for 2D image denoising, relies on the informationet al. [ ]
redundancy within a neighbourhood. The basic idea is to replace the value of a pixel by the weighted average of pixels located in a search

neighborhood window of size . Each weight expresses the similarity in intensity between the central pixel in the window and eachN

neighboring pixel and is given by the pair-wise difference between patches surrounding each pair of considered pixels. Some adaptations

have been proposed for optimizing the estimation of this pixel considering the selection of the most relevant pixels in the search

neighborhood 22 , the block-wise computation 23  or a large scale neighborhood 20 .[ ] [ ] [ ]

We consider here our adaptation of the NLM filter that is Large scale Non-Linear Means Filter (LNLM) 20 . Let  and  denoting the[ ] f f ̂
intensities of pixel  before and after processing, the LNLM method can be outlined as follows:i

(1)

(2)

where,  is the search neighborhood centered at pixel  the pixels located in the neighborhood of  characterizes the pair-wiseN i, j i. w

similarity measure between the two patches  and  surrounding pixel  and , respectively. We define ( ) and  ( ) as the two pixeln n i j v n v n

intensity vectors which include all the pixels in the two patches  and , respectively. The  in (2) is calculated as the attenuating functionn n w

of the Gaussian-weighted distance  between the two patches  and . | | denotes the pixel number in , and is used as an n n n

normalization parameter to make the processing independent of the different size settings of  denotes the standard deviation of then. α
Gaussian kernel. Parameter  is used to control the smoothing effect in the attenuating exponent function in (2). The application of theh
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LNLM method is based on the assumption that in clinical CT images the pixels representing different tissue attenuation often distribute

over a large scale, ad pixels of similar surrounding distribution have a higher probability to belong to the same tissues. The main

contribution of 20  has been to demonstrate that the weighted intensity averaging within large searching neighborhood (such as 81 81 or[ ] ×
161 161 ) can lead to effective suppression of the mottled noise in low-dose abdominal CT images. It has been shown in 20  that, with× N [ ]
up to one fifth of the routine tube current setting, clinically acceptable abdominal LDCT images can be obtained by using this LNLM

method.

The Proposed AS-LNLM Method

It was pointed out in 20  that the LNLM method was not effective in suppressing the streak artifacts in thoracic LDCT images because[ ]
the directional patterns of streak artifacts often prevent an effective suppression. To overcome this, we devised a two-step processing

AS-LNLM that applies different artifact/noise reduction in different scales. In this method (outlined in Fig. 1), the streak artifacts in LDCT

images are pre-suppressed in wavelet domain by directional 1-D nonlinear diffusions before the LNLM operation. To preserve the position

invariance for each decomposed 2D subband, here the translation-invariant Stationary Wavelet Transform (SWT) is used 28 . Compared[ ]
to the familiar discrete wavelet transform, at each scale in SWT the translation-invariance does not perform downsampling, but otherwise

upsamples the filter coefficients by a factor of two 28 29 . The Haar wavelet is used in SWT for it is fast and found to suffer less from the[ – ]
so-called ringing  or pseudo-Gibbs artifacts when compared to other wavelets with wider filter bases 30 31 .“ ” [ – ]

To achieve effective artifact suppression, the 1-D nonlinear diffusions are applied along the directions orthotropic to the high

frequency orientations in the decomposed 2D wavelet subbands. For the high frequency subbands of  and  (horizontal and vertical), wef f

perform 1D column-wise and row-wise nonlinear diffusions ((4) (5)). To suppress artifacts in the diagonal high frequency subbands , we– f

sequentially perform the 1D column-wise and row-wise nonlinear diffusions through ((6) (7)). The whole processing includes the–
following (3) (11):–

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

In (3), at each scale  in SWT, the original LDCT image  is decomposed into three high frequency 2D subbands (:,:, ), (:,:, ), (:,:, s f [f s f s f s

) and one low frequency 2D subband (:,:, ). In (4) (7),  denotes the total decomposition scales, and  and  denote respectively thef s – S C R

column and row dimensions for each decomposed 2D subbands. In (8)  represents the 1-D nonlinear diffusions applied on each extractedφ
1D column or row data  with the scale-space variable  in the diffusion process 30 . Defined as a monotonically decreasing function of theI t [ ]
gradient , function  is set as the divergence function exp( (| ( )|/ ) ) with  controlling the tradeoff between artifact-suppression and∇I c − ∇I t K 2 K

edge-preservation 32 . In (9), with the original low frequency subband  and the three processed high frequency subbands ,  and , the[ ] f f ̃ f ̃ f ̃
Inverse Stationary Wavelet Transform (ISWT) is carried out to provide the artifact-suppressed image . The final restored image  can bef ̃ f ̂
then obtained through the application of LNLM (equations (10) (11)) of .– f ̃

Fig. 2 illustrates the decomposition of the high frequency components for a LDCT image and depicts in the table (between Fig. 2(2)

and (3) the directions for the applied nonlinear diffusions and also the high frequency components in decomposed subbands. The nonlinear

diffusions were applied based on (4) (8) with 200, 2, 10 iterations and an increment equal to 0.05. Fig. 2(1) and (2) display the– K= S=
decomposed wavelet subbands for a thoracic HDCT image and LDCT image, respectively. In Fig. 2(2), we can see that, with respect to the
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illustration of HDCT image in Fig. 2(1), the streak artifacts in LDCT images are much more prominent (with higher amplitudes) in the

decomposed high frequency subbands (Fig. 2(2) (b2)-(d2) and (f2)-(h2)) than in the decomposed low frequency subbands (Fig. 2(2) (a2)

and (e2)). It can be observed in Fig. 2(3) that the high frequency artifact components were notably suppressed through the developed

wavelet domain directional 1D nonlinear diffusions

Experiment settings

Approval of this study was granted by our institutional review board. One anthropomorphic phantom and 25 patients have been

involved in the experiments. The study, including the data collection and processing, was conducted according to the authorized protocol.

All the 25 patients have given their written consent to the participation and received remuneration for it. A non-conflict of interest for this

work was declared. CT images were acquired on a multi-detector row Siemens Somatom Sensation 16 CT scanner.

The thoracic phantom is an anatomical model of a human chest torso (Fig. 3). Its size is 43 40 48 cm and its measurements are the× ×
following: chest size 94 cm, height 45 cm and weight 18 kg. The inner components consists of mediastinum (heart, trachea), pulmonary

vasculature and an abdomen block. The thickness of the chest wall is based on measurements of clinical data, and the soft tissue substitute

material and synthetic bones have x-ray absorption rates close to those of human tissues.

The patient cohort includes 9 women and 16 men with an average age of 64 years (age range: 52 71 years). 8 of all the patients have–
verified lung cancer with lesions in the range 5mm-12mm.

For both phantom and patient experiments, the LDCT images were collected by using the reduced 30 mAs (routine clinical mAs

setting is 120mAs) under chest scanning mode. For each phantom and patient scan, 40 slices were collected. Other scanning parameters

were: kVp, 120; Slice thickness, 2 mm; Gantry rotation time, 0.5 s; detector configuration (number of detector rows section thickness), 16×
mm 1.5 mm ; table feed per gantry rotation, 24 mm; pitch, 1:1; reconstruction method: Filtered Back Projection (FBP) algorithm with×
convolution kernel B70f  and B31f  ( B31f  is the smoothing reconstruction kernel for mediastinal window illustration in Siemens CT).“ ” “ ” “ ”
The CT dose index volume (CTDI ) is a linear function of the tube currents 2 . We recorded the accumulated doses from the workstationvol [ ]

for each scan with 40 slices. The recorded doses are 9.36 mGy for the routine (or standard) 120mAs protocol, and 2.34 mGy for the low

dose 30mAs protocol. For the phantom experiment, to obtain a high-quality reference volume for quantitative evaluation, HDCT images

were acquired with a higher current of 240mAs because there is no radiation concern for phantom. The experiments aim at illustrating the

behavior of the algorithms on chest structures and pulmonary vessels. The windows and level setting are thus chosen to optimize the

visualization of these data. We will so consider the mediastinal ( ) and lung (window center, 50HU; window width, 350HU window center,

) windows respectively 33 .-600HU; window width, 1600HU [ ]

For evaluation purposes, we compared the HDCS filter in 19  and the LNLM method described in Section II. We applied the hybrid[ ]
diffusion filter with a continuous switch (HDCS) method for LDCT images by using the code provided by the author of 19  ([ ]

). This HDCS method uses local eigenvalue information to determine whether thehttp://www.insight-journal.org/browse/publication/748 

local structures are tubular or planar, and then apply either the coherence-enhancing diffusion (CED) or edge-enhancing diffusion (EED)

based on the calculated eigenvalue information. All the CT images were exported as DICOM files and then processed offline under a PC

workstation (Intel Core  2 Quad CPU and 4096 Mb RAM, GPU (NVIDIA GTX465)) with Visual C  as the developing language™ ++
(Visual Studio 2008 software; Microsoft).

In the latter LNLM step of the AS-LNLM method, intensive computation is required in the distance calculation between each two

translated patches  in each neighborhood . In our experiments, we applied a size for the search neighborhood  equal to 81 81 and forn N N ×
the patches  7 7, which is found practically robust to provide good results. A GPU parallel implementation with CUDA framework hasn ×
been designed to accelerate the processing. Threads, blocks and grids make up of the physical structure of a CUDA multithreading frame [
24 25 . We set the total number of blocks in grid to the row size of the image, and the total number of threads in each block to the column– ]
size of the image. In the processing of LNLM, all threads in the block-grid structure execute simultaneously to perform all the pixel-wise

operations, which include the pixel-wise 1D nonlinear diffusion in (4) (8), the pixel-wise weight calculations for each patch pairs in (13),–
and the pixel-wise  calculations in (10). We also further reduced the computation reduction by applying the parallelization optimization in f ̂
26 27 . Runtime comparison in the practical experiments indicates that the parallelized operation is more than 100 times faster than the[ – ]

previous serial version.

Results
Phantom Data Experiment

Fig. 4(a) and (b) illustrate one typical HDCT image (240mAs, the 16 slice in the whole data volume) in mediastinal and lungth 

windows. We can see in Fig. 4(a) and (b) that, even with high tube current setting, noise and artifacts still remain in the reconstructed

images (c.f. the zoomed regions in Fig. 4(a) and (b)). We applied the AS-LNLM method to processthe HDCT images using the parameters
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given in TABLE I. This parameter setting was set to find the optimal parameter combination that provided the best qualitative results. This

qualitative evaluation was carried out in collaboration with three experienced radiologists (refer to Section. IV. B. 2)). Fig. 4(c) and (d)

illustrate the corresponding processed HDCT images of Fig. 4(a) and (b) from the AS-LNLM method. We can see in Fig. 4(c) (d) that the–
AS-LNLM method leads to more preferable CT images with a better noise/artifact suppression. Thus instead of using the original HDCT

images as the ground-truth reference images, we will consider thereafter the processed HDCT images for quantitative calculations in this

phantom experiment.

In the implementation of the LNLM and the AS-LNLM method, different parameter settings were used for the visualizations in

mediastinum and lung windows. For reminder, the AS-LNLM method involved 7 parameters to set, namely the total decomposition scale 

 of SWT, the ,  and  for the nonlinear diffusion, and the decaying parameter  and  for the subsequent LNLMS K iter inc h the sizes of n and N

processing. Practically, in the implementation of the AS-LNLM processing, we set  to 2 because in SWT operation most high frequencyS

features are found concentrated within the first two scales, and the iteration number  and step size  in the nonlinear diffusions, and iter inc

 are fixed, and  and  are modulated to obtain the visually good results in mediastinal and lung windows. In thethe sizes of n and N K h

following, only  related to the LNLM filter and the ,   used in the AS-LNLM method, will be specified and discussed. As for theh [K h ]
AS-LNLM method, the parameter setting for the HDCS method was set based on 19  to provide the best qualitative results. We present[ ]
first a visual assessment of the performance, then a quantitative evaluation based on the signal to noise ratio (SNR) and the standard

deviation computation(STD).

Visual Assessment

Fig. 5(a) and Fig. 6(a) display the original and processed LDCT 16 slice of the volume respectively using the mediastinal and lungth 

windows. We observe that the LDCT image quality is significantly degraded by mottled noise and streak artifacts. Results are provided

after the application of the HDCS filter (Fig. 5(b) and Fig. 6(b)), LNLM filter with a decaying parameter  respectively equal to 10 (Fig.h

5(c) and 6 (c)) and 200 (Fig. 5(d) and 6 (d)), AS-LNLM method (Fig. 5(e) and 6 (e)). The HDCS filter does not completely remove the

streak artifacts and introduce some false structures which are not presents in the original LDCT images (see the red dash circles

superposed on the images). These aliasing structures were introduced by the 3D processing that takes into account the neighboring slices.

A small value of  in the LNLM method does not allow a good suppression of the streak artifacts in LDCT image (see the zoomed ROI inh

Fig. 5(c) and Fig. 6(c)), and increasing  tends to enforce the smoothing of the structures and make disappear the thin features or on theh

contrary remove the slight discontinuity between two structures (see the zoomed ROI in Fig. 5(d) and Fig. 6(d)). The AS-LNLM method

provides a good compromise between removing the streak artifacts and smoothing the features while preserving the edges. Fig. 5(f)

provides an example of the LDCT image (mediastinal window) that is obtained when performing the FBP reconstruction using the

smoothing kernel B31f: edges were blurred and artifacts were not effectively suppressed. If now we compare these results with the ground

truth images (Fig. 4(c) and (d)), we can conclude that the AS-LNLM method leads to a better structure preservation and noise/artifacts

reduction than the HDCS and the LNLM methods.

Quantitative Assessment

We computed the SNR with respect to the ground truth data (processed HDCT images), and then the STD for selected homogeneous

regions. This STD is computed for all the original LDCT images and the processed images (from HDCS, LNLM and AS-LNLM methods).

We perform analysis in both mediastinum and lung windows. Attenuation intensities in Hounsfield units were used in calculations. The

SNR is calculated as follows:

(13)

where, with  representing the total slice number,  denotes the slice  and  define the reference image and theZ f ̂ z for test image f. F̂ F ̄
mean intensity of this image respectively. Three 40 40 homogeneous regions have been selected and for each slice of each volume×
(original LDCT and processed LDCT), the averaged STD is computed:

(14)

(15)

where,  corresponds to the mean intensities of region  ( 1, 2 and 3) in slice . 1, 2 and 3 represent the three selectedΩ Ω Ω Ω z Ω Ω Ω
homogeneous regions depicted in Fig. 8, and | | denotes the pixel numbers of the selected region .Ω Ω

TABLE II provides the calculated comparative SNR and STD in the both two cases of mediastinum and lung windows. It allows the

concluding on the supremacy of the AS-LNLM method that brings the highest SNR, and the STD closest to that of the reference images.
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TABLE II also points out that, for the LNLM method, a large value of  lowers the STD in the homogenous regions but it also leads to ah

lower SNR.

Computation costs are given in Table III for the HDCS method, the CUDA accelerated LNLM method and the AS-LNLM methods.

The total time (in CPU seconds) is given for the processing of a 512 512 40 CT dataset. The HDCS filter computation time is low× ×
comparing with the other methods. The optimized parallelization for the AS-LNLM method allows speeding up this computation time by

more than 100 times, when comparing with its serial version.

Patient Data Experiment

Visual Assessment

The anthropomorphic phantom and human chest data suffer at quite similar degrees from noise/artifacts when the acquisition is

performed in the same low dose scan protocol. So here the parameter settings selected by experts in phantom experiments (refer to TABLE

I) were re-used for patient data. This strategy of parameter setting has been validated by the experts.

Fig. 8 and Fig. 9 show the original and processed LDCT images (30mAs) of a 59 years old man in different windows. Fig. 8(e) (h)–
and Fig. 9(d) (f) are the selected zoomed regions. Mottle noise and streak artifacts can be easily observed in the original LDCT images–
depicted in Fig. 8(a) and Fig. 9(a). Results provided by the HDCS are displayed in Fig. 8(b) and Fig. 9(b). As previously observed on the

thoracic phantom, the same false structures appears that relate to the introduction of some aliasing features (See in Fig. 8(f) and Fig. 9(e)

the structures in red dash circles). The AS-LNLM method has been applied with two different parameter settings 200,  20  and [K= h = ] [K=
100,  5  for mediastinum and lung windows, and the results were given in Fig. 8(c) and Fig. 9(c). The LDCT image reconstructed usingh = ]
the built-in smoothing kernel B31f (Fig. 8(d)) is currently clinically used for mediastinum window in Siemens CT system, and we can find

the overall image contrast was degraded when using this smoothing kernel. Compared to other images, the AS-LNLM method can lead to

images with a better structure preservation (see the ascending aorta walls pointed by red arrows in Fig. 8(e) (h)) and noise/artifact–
reduction in both mediastinum and lung windows.

In the supplementary file affiliated to this paper, two other patient examples are shown in Fig. 10 and Fig. 11 (two men of 62 and 68

years old respectively) The supplementary file also includes a visual comparison (Fig. 12 and Fig. 13) between the proposed method and

the Adaptive Statistical Iterative Reconstruction (ASIR) algorithm developed in the latest GE CT750 HD system 34 . The results in Fig.[ ]
10-Fig. 13 also validated the above merits of the proposed processing.

Qualitative Assessment

25 original and 25 AS-LNLM processed LDCT images from the 25 patients were assessed separately for noise suppression, artifact

and using a five-point subjective scale (1 unacceptable, 2 substandard, 3suppression, contrast preservation overall image quality = = =
acceptable, 4 above average, 5 excellent). Here, we define artifacts as the shapes with a passive effect on subjective diagnosis. Three= =
radiological readers (R1 (X.D.Y. with 15 years of experience.), R2 (X.H.Y. with 8 years of experience.), R3 (Y.M.D. with 5 years of

experience.) independently evaluated the randomized LDCT images, HDCT images and the AS-LNLM processed LDCT images in a

digital DICOM archiving/assessing workstation (ViewDEX 2.0 35 ). To compare the processed LDCT images with routine HDCT[ ]
images, we selected 25 thoracic HDCT images (120mAs) of other patients from previous scans in the database. All the involved patients

for these HDCT images gave their written consent to use their CT images. In this way, the 4 image features were assessed in all the 75

images, which include 50 original/processed LDCT images, and 25 HDCT images. This results in a total of 900 parameter ratings for the 4

image quality parameters and the 3 readers (75 4 3  900 ). For each subset of images, the 4 image scores were reported as means SDs× × = ±
(averaged scores of the 3 radiologists  standard deviations ). The subjective quality parameters of the original LDCT images and the±
processed LDCT images were compared with those of the original HDCT images. Individual subjective image quality scores for each

parameter were compared using the Wilcoxon signed rank test (SAS/STAT software; SAS Institute, Cary, NC). The differences between

each two groups were determined by the Student  test (Excel; Microsoft) with <0.05 considered a statistically significant difference. Ast P

illustrated in TABLE IV, all the 3 readers rated that, for all the 4 image quality scores, the qualities of the original LDCT images were

inferior to those of the processed LDCT images and the original HDCT images. In TABLE IV, statistically significant differences between

the original HDCT and LDCT images ( <0.05) are noted in all the subjective image quality scores. And with reference to the originalP

HDCT images, there are no statistically significant differences of the 4 subjective quality scores for the processed LDCT images ( >0.05).P

TABLE IV also shows that the AS-LNLM processing leads to CT images with qualities even higher than the original HDCT images.

Inter-observer agreements on the above 4 quality scores were accessed by the Bland-Altman statistic method 36 . For the cases[ ]
without known truth, the Bland-Altman method assumes 95  of variations lie between the mean difference plus or minus 2 SD (Standard% ×
Deviation) of the variations. These are termed the 95  limits of the agreements that represent the limits within which the true values will%
lie. Fig. 14 (1) (3) display the Bland-Altman plots for the 4 quality scores for the scoring agreements between R1 and R2, R1 and R3, R2–
and R3, respectively. We can see in Fig. 14 that, for the 4 image quality scores, the 95  limits between the 3 readers lie within the range%
from 0.4 to 0.4, which implies a substantial overall concordance among the scores of the 3 readers.−
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Discussion

Visual results in Fig. 5-Fig. 6 and Fig. 8-Fig. 11 show that the proposed AS-LNLM processing behaves better than the HDCS and

LNLM methods in the suppression of noise/artifacts. Notably, in Fig. 5-Fig. 6, Fig. 8-Fig. 9 and S.1 S.2 (in the supplementary file) we can–
see the HDCS processing tends to introduce some false structures into the processed images. Fig. 5 and Fig. 6 illustrate that suppressing

the streak artifacts by using large decaying parameter will lead to blurred anatomical structures in the LNLM processing. Especially in the

supplementary file, S.3 and S.4 show that the proposed processing can potentially achieve results with comparable performance as the

iterative reconstruction used in the latest GE CT system. To evaluate the proposed method quantitatively, TABLE II lists the SNR with

respect to the reference phantom images (in Fig. 4(c) (d)) and the STD for selected homogenous regions. TABLE II validates that the–
proposed processing can lead to processed thoracic LDCT images with the highest SNR and the closest STD with respect to the reference

images. In qualitative test, as to the 4 subjective image scores (noise suppression, artifact suppression, contrast preservation and overall

image quality), notable improvements over the original LDCT images were obtained ( <0.05) for the AS-LNLM processed LDCT images.P

The Bland and Altman analysis in Fig. 10 also shows there is substantial overall concordance among the scores of the 3 readers.

Although this algorithm demonstrated a good potential in improving thoracic LDCT images, the following limits should also be noted:

In S.1 (f) and S.2 (f), we can still discern some artifacts remaining in the images processed by the AS-LNLM method, and some tiny

structures tend to be obscured when some aggressive parameters were used to suppress the artifacts and noise. The reason is that, for the

LDCT images scanned from human breast parts with much high-density tissues, some streak artifacts are too severe to be well suppressed.

In this work the parameters calibrated in the phantom test were reused in routine clinical experiments. This strategy of parameter setting is

based on the assumption that the anthropomorphic thoracic phantom and human chests suffer from quite similar noise/artifacts disturbance

when using the same scan protocols in the same CT scanners. Though proved effective by above experiments, the parameter settings

trained in phantom experiments might not produce satisfying results for some patients with abnormal body shapes, so empirical

modulation may be needed in those cases. Also, TABLE III shows that nearly 10 seconds are needed for processing one 512 512 DICOM×
image even after GPU acceleration. This might form a computational burden for those radiological units that require fast and real-time

clinical diagnosis.

Conclusion

This paper presented a two-step method named AS-LNLM to improve the quality of thoracic LDCT images. In this AS-LNLM

method, before the operation of LNLM, the streak artifacts in LDCT images were suppressed by directional 1-D nonlinear diffusions in

stationary wavelet domain. Compared to ordinary processing methods in single image scale, artifact-suppressing operations on high

frequency wavelet subbands can produce less obscuring on the original low frequency information, which suffers less from artifacts and

noise. The parameter settings in processing the patient data can be tractably made according to the previous phantom experiment results

validated by radiological expert. In addition, to enhance clinical applicability, a parallel acceleration using GPU-based CUDA has been

made.

A CT workstation is currently under development to facilitate the on-going clinical evaluations and applications. LDCT images with

smaller nodules will be used to further test the proposed AS-LNLM method. We are also trying extending the method from 2D to 3D with

the objective to further suppress the streak artifacts by taking into account the 3D local geometries. An improved nonlinear diffusion, with

parameters controlled by the artifact directional prominence, is also being devised and tested. Other work in the future will include further

lowering the computation cost by testing the processing under more efficient hardware architectures, exploring the applications with

thinner slice thicknesses (<2mm), and taking a thorough comparison between the proposed processing with iterative reconstruction

algorithms.
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Fig. 1
The outline of the proposed AS-LNLM method.  denotes the original degraded LDCT image.  denote all the wavelet decomposed lowf f

frequency 2D subbands. , ,  and    respectively denote the original and nonlinear diffusion processed high frequency 2D subbandsf f f f ̃ , f ̃ , f ̃

(horizontal, vertical and diagonal).  is the 1-D nonlinear diffusions applied on each extracted 1D column or row data, which are in theφ
orthotropic directions to the high frequency components in the high frequency subbands.  is the reconstructed image from the subbands ( ,  f ̃ f f ̃ , f ̃

).  is the final processed LDCT image from the LNLM operation of ., f ̃ f ̂ f ̃
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Fig. 2
Illustration of the 1D directional nonlinear diffusions in wavelet domain (Haar wavelet, two scales ( 2)) in the proposed method. Note thatS=
this is only for illustration purposes. One typical LDCT and HDCT image are used. In the central table above Fig. 2(3), the blue and grey

arrows represent the directions of the applied nonlinear diffusions together with the high frequency components in the decomposed subbands,

respectively. Decomposed subbands of a typical HDCT image (120mAs). (a1) (d1): for the first scale, the low frequency subband  (:,:,1),(1), – f

the horizontal high frequency subband  (:,:,1), the vertical high frequency subband  (:,:,1) and the diagonal high frequency subband  (:,:,1).f f f

(e1) (h1): for the second scale, the low frequency subband  (:,:,2), the horizontal high frequency subband  (:,:,2), the vertical high frequency– f f

subband  (:,:,2) and the diagonal high frequency subband  (:,:,2). f f Decomposed subbands of a typical LDCT image (30mAs) with the(2), 

similar body position as above HDCT images. (a2) (d2): for the first scale, the low frequency subband  (:,:,1), the horizontal high frequency– f

subband  (:,:,1), the vertical high frequency subband  (:,:,1) and the diagonal high frequency subband  (:,:,1). (e2) (h2): for the second scale,f f f –
the low frequency subband  (:,:,2), the horizontal high frequency subband  (:,:,2), the vertical high frequency subband  (:,:,2) and thef f f

diagonal high frequency subband  (:,:,2). f Decomposed subbands of the LDCT image in (2). (a3) (d3): for the first scale, the original low(3), –
frequency subband  (:,:,1), the processed horizontal high frequency subband  (:,:,1), the processed vertical high frequency subband  (:,:,1)f f ̃ f ̃
and processed the diagonal high frequency subband (:,:,1). (e3) (h3): for the econd scale, the original low frequency subband  (:,:,2), thef ̃ – f

processed horizontal high frequency subband (:,:,2), the processed vertical high frequency subband  (:,:,2) and the processed diagonal highf ̃ f ̃
frequency subband  (:,:,2).f ̃
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Fig. 3
The anthropopathic thoracic phantom used in experiment.

Fig. 4
16 slice of the volume acquired in HDCT condition for the thoracic phantom. (a) and (b): visualization in mediastinal and lung windows ofth 

the original HDCT image; (c) Processed HDCT image from the AS-LNLM method with 50,  10  in mediastinal window; (d), Processed[K= h = ]
HDCT image from the AS-LNLM method with 20,  5  in lung window[K= h = ]
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Fig. 5
Visualization of the 16 slice of the volume of both original and processed LDCT thoracic phantom, in a mediastinal window. (a), originalth 

LDCT image (30 mAs); (b), LDCT image after HDCS filtering 19 ; (c), LDCT image after LNLM filtering with  20; (d), LDCT image[ ] h =
after LNLM filtering with  200; (e), LDCT image after application of the AS-LNLM method with 200,  20 ; (f), original LDCT imageh = [K= h = ]
reconstructed with a smoothing kernel B31f.



Phys Med Biol . Author manuscript

Page /12 16

Fig. 6
Visualization of the 16 slice of the volume of both original and processed LDCT thoracic phantom, in a lung window. (a), original LDCTth 

image (30 mAs); (b), LDCT image after HDCS filtering 19 ; (c), LDCT image after LNLM filtering with  20; (d), LDCT image after[ ] h =
LNLM filtering with  200; (e), LDCT image after application of the AS-LNLM method with 100,  5 .h = [K= h = ]

Fig. 7
Selected homogeneous regions ( 1, 2 and 3 ) in mediastinum window (left) and lung window (right) for STD calculation.Ω Ω Ω
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Fig. 8
Visualization of the original and processed LDCT images (30mAs) of a 59 years old man using a mediastinal window. (a), original LDCT

image reconstructed with the kernel B70f; (b), LDCT images after HDCS filtering; (c), LDCT image after application of the AS-LNLM

method; (d), original LDCT image reconstructed with the kernel B31f; (e) (h) shows the zoomed ROI in (a) (d).– –
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Fig. 9
Visualization of the original and processed LDCT images (30mAs; reconstruction kernel B70f) of a 59 years old man using a lung window.

(a), original LDCT image; (b), LDCT images after HDCS filtering; (c), LDCT image after application of the AS-LNLM method; (d) (f)–
shows the zoomed ROI in (a) (c).–
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Fig. 10
Bland and Altman analysis of inter-observer agreements.
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TABLE I
The parameter settings of different methods in the phantom experiment on LDCT images

Mediastinum window Lung window

Reference Images (Processed HDCT images From AS-LNLM) 50, 10, 0.05,  10, 7 7 , 81 81 S 2, K= = iter= inc= h = × n × N 20, 10, 0.05,  5, 7 7 , 81 81 S 2, K= = iter= inc= h = × n × N

Processed LDCT images from HDCS  1,   20,   15,   20,   0.001,   0.11,   4σ= λ = λ = λ = α = τ = η =
Processed LDCT images from LNLM (small h)  20, 7 7 , 81 81 h = × n × N  10, 7 7 , 81 81 h = × n × N

Processed LDCT images from LNLM (large h)  200, 7 7 , 81 81 h = × n × N  100, 7 7 , 81 81 h = × n × N

Processed LDCT images from AS-LNLM 50, 10, 0.05,  20, 7 7 , 81 81 S 2, K= = iter= inc= h = × n × N 50, 10, 0.05,  10, 7 7 , 81 81 S 2, K= = iter= inc= h = × n × N

TABLE II
The calculated SNR and STD in the phantom experiment

Images
Mediastinum window Lung window

SNR STD SNR STD

Original LDCT images 19.96 75.20 19.96 29.97
Processed LDCT from HDCS 22.92 39.29 22.92 7.01

Processed LDCT images from LNLM (small )h 22.81 35.44 20.95 21.95
Processed LDCT images from LNLM (large )h 20.95 9.55 20.37 3.56
Processed LDCT images From AS-LNLM 24.63 23.61 24.42 2.62

Original LDCT images with smoothing kernel B31f 20.95 17.58
Reference Images (Processed HDCT images From AS-LNLM) 21.64 2.25

TABLE III
Comparison of CPU time cost (second) between the different methods

Different methods CPU time cost (seconds)

HDCS method 75
LNLM method (CUDA accelerated) 407

AS-LNLM method (CUDA accelerated) 384
AS-LNLM method (CPU serial version) 43145

TABLE IV
Image Quality Scores (mean  SDs ) for the Original and AS-LNLM Processed LDCT Images, and the Original HDCT Images±

Image Denoising Tube Current settings (mAs) Noise Suppression Artifact Suppression Contrast Preservation Overall Image Quality

None 30mAs 1.52  0.34 ±  * 1.77  0.41±  * 1.87  0.38 ±  * 1.90  0.43 ±  *

None 120mAs 3.21  0.32± 3.36  0.25± 3.46  0.32± 3.30  0.29±
Processed 30mAs 3.53  0.31± 3.53  0.32± 3.52  0.29± 3.47  0.36±

 * Significantly ( <0.05) different from the mean scores for HDCT images.P


