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ABSTRACT
We consider the problem of estimating life expectancy of demented and in-

stitutionalized subjects from interval-censored observations. A mixed discrete-
continuous scheme of observation is a classical pattern in epidemiology be-
cause very often clinical status is assessed at discrete visit times while times
of death or other events can be exactly observed. In this work we jointly mod-
elled dementia, institutionalization and death from data of a cohort study.
Due to discrete time observations, it may happen that a subject developed
dementia or was institutionalized between the last visit and death. Con-
sequently, there is an uncertainty about the precise number of diseased or
institutionalized subjects. Moreover the time of onset of dementia is interval-
censored. We use a penalized likelihood approach for estimating the tran-
sition intensities of the multi-state model. With these estimators, incidence
and life expectancy can be computed easily. This approach deals with incom-
plete data due to the presence of left-truncation and interval-censoring. It
can be generalized to take explanatory variables into account. We illustrate
this approach by applying this model to the analysis of a large cohort study
on cerebral aging.
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1 Introduction

In longitudinal follow-up of cohort studies, subjects are only intermittently
observed. Such discrete observations times produce interval-censored obser-
vations. Thus, we lack information about the accurate time of transition
between states and we may miss some transitions. Transition intensities
may be interpreted, in some cases, as incidence or mortality rates (Keid-
ing, 1991). In our application, we were primarily interested in estimating
age-specific incidence of dementia and life expectancy for demented and in-
stitutionalized subjects. Knowledge of life expectancy for specific population
such as demented or institutionalized subjects is useful to improve man-
agement of elderly subjects. Our application is based on the Paquid study
(Letenneur et al., 1999), a prospective population-based cohort focused on
the epidemiology of dementia in the elderly population. The study initially
included a community-based sample of 3,777 elderly subjects, aged 65 and
older. The subjects were selected conditionally on being non-demented and
non-institutionalized at baseline. These subjects were followed-up over a
13-year period with 7 intermittent times of follow-up. Over the follow-up,
information on onset of dementia and entry in institution was assessed only
at planned visits. Thus, we have to deal with several problems. Firstly, due
to intermittently observed data, we must jointly model dementia and death,
in order not to under-estimate the incidence of dementia (Joly et al., 2002).
Secondly, due to baseline selection conditions of the cohort, we have to take
into account dementia and institution in the truncation condition. Thus we
have to jointly model entry in institution and onset of dementia. Finally, we
have to take into account that data were not observed in continuous time. We
propose a non-parametric method for estimating the transition intensities in
an irreversible multi-state model for interval-censored data. This work is the
continuation of Commenges and Joly (2004); however, in this preliminary
work, not applied to real data, the institutionalization status was assumed
to be observed in continuous time. We treat the problem on institutional-
ization assessed only at planned visits in the present work. In addition, we
estimate life expectancy for demented and institutionalized subjects. This
approach also allows analysing risk factors acting on the transition between
the different states.

The model is presented in the next section. Estimation of age-specific
incidence of dementia and life expectancy is described in section 3. The
application and the results are provided in section 4. Section 5 discusses the
proposed approach.
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2 The Model

2.1 The Multi-state Model

We consider a five-state model with irreversible transitions depicted in Fig-
ure 1, where the αhj are the transition intensities of a Markov process X

(Commenges and Joly, 2004). Subjects are in state 0 if they are “healthy”
(that is non demented and living at home), in state 1 if they are demented
and living at home, in state 3 if they are demented and living in institution
and in state 2 if they are non demented and living in institution. State 4,
death, is an absorbing state and it is possible to go to this state from all the
four other states.

0: Healthy

2: Instit

4: Dead

1: Demented

3: Dem+Inst
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Figure 1: The five-state model for dementia, institutionalization and death.

Age is the major risk factor of dementia (see Launer et al., 1999), institu-
tionalization and death and we are mostly interested in age-specific incidence
and age-specific mortality. We thus consider a non-homogeneous Markov
model where the intensities only depend on age and not on the time since
the onset of the disease or the institutionalization.

2.2 Patterns of observation and interval censoring

In longitudinal follow-up studies, subjects are only intermittently observed.
Thus, dementia and institutionalization statuses are assessed only at discrete
time points, corresponding to the planned visits. If a transition toward de-
mentia is observed, the age at the time of transition is interval-censored. On
the contrary, once we observed a subject in an institution we can collect the
date of institutionalization. Thus, as we observe institutionalization status in
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continuous time, the age at the time of transition is not interval-censored for
these subjects. If a subject who dies was non demented at the last visit, it is
not known whether the subject has made the transition towards dementia or
not. If a subject who dies was seen at home at the last visit, we try to collect
the information about institutionalization; but for some subjects it is not
possible to know whether the subject has been institutionalized before death
or not. Thus, discrete observations times not only produce interval-censored
observations but also an uncertainty about the followed path.

In Figure 2 we propose three examples of follow-up to illustrate the pat-
tern of observation and its relation with interval censoring.

subject 1

V10 V11 ... V1k

healthy

demented

V1k+1

subject 2

V20 V21 ... V2k TI

healthy

in institution

V2k+1

subject 3

V30 V31 ... V3k

healthy
dem and/or inst ?

death

V3k+1

Figure 2: Examples of follow-up of three subjects 1, 2 and 3.

Subject 1 was seen healthy at the planned visit V1k and was diagnosed
demented at the next planned visit V1k+1. The date of transition toward
dementia is not known exactly; it is only known to lie between two visits
(here between V1k and V1k+1): there is interval-censoring.

Subject 2 was seen healthy at the planned visit V2k and was seen in
institution at the next planned visit V2k+1. Once we observe a subject in
institution we can collect the exact date of institutionalization (here TI is
the age at the time of institutionalization). There is no interval-censoring for
entry in institution.

Subject 3 was seen healthy at the planned visit V3k and he died before the
next planned visit V3k+1. It is not known whether he has made the transition
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towards dementia. Similarly it is difficult, and some time impossible to know
if he was institutionalized before death. This is the most difficult case.

There are other types of possible observation. It is possible to find exam-
ples in the sub-sample of the data set used for the application provided in
Appendix B. All the possible trajectories are given in the likelihood part.

2.3 The Likelihood

The likelihood used in this article is slightly different than the likelihood
detailed in Commenges and Joly (2004) because the assumptions on the
observation of the institutionalization status differ. Subjects are not followed-
up from the origin (their birth) but from their age at entry in the cohort.
Demented and institutionalized subjects at the initial visit are excluded from
the sample. This produces a left-truncation that has to be taken into account
in the likelihood. We assume that the truncating and censoring mechanisms
are independent from the multi-state process (for a discussion on independent
censoring see Grüger et al., 1991). This happens for instance if the visits are
fixed or are random variables independent of the illness-death process (visits
times have been prespecified in advance in the Paquid study), and if loss of
follow-up obeys an independent censoring mechanism. The last assumption
is difficult to verify in our study and may not hold.

The model is completely specified by the eight transition intensities (see
figure 1): α01(t), α02(t), α04(t), α13(t), α14(t), α23(t), α24(t), α34(t). It is
natural to write the likelihood in terms of both transition intensities and
transition probabilities phj(s, t), where phj(s, t) = P (Xt = j|Xs = h). Kol-
mogorov equations allow expressing the latter in terms of the former:

p00(s, t) = e−A01(s,t)−A02(s,t)−A04(s,t)

p11(s, t) = e−A13(s,t)−A14(s,t)

p22(s, t) = e−A23(s,t)−A24(s,t)

p33(s, t) = e−A34(s,t)

p01(s, t) =

∫ t

s

p00(s, u)α01(u)p11(u, t)du

p02(s, t) =

∫ t

s

p00(s, u)α02(u)p22(u, t)du

p03(s, t) =

∫ t

s

∫ t

u

p00(s, u)
(

α01(u)p11(u, v)α13(v)+α02(u)p22(u, v)α23(v)
)

p33(v, t)dvdu

p13(s, t) =

∫ t

s

p11(s, u)α13(u)p33(u, t)du

p23(s, t) =

∫ t

s

p22(s, u)α23(u)p33(u, t)du
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Here, Ahj(s, t) =
∫ t

s
αhj(u)du.

Example: likelihood contribution for a subject i not demented and not
seen in institution at the time of the last visit VLi. T̃V i is the time of death
or the time of right-censoring (δV i = 1 if the subject has died). The subject
is healthy at V0i, the beginning of the follow-up; left-truncation is taken into
account by using the probability p00(V0i, VLi) rather than p00(0, VLi) (this
amounts to divide the unconditional likelihood by p00(0, V0i), the likelihood
of the condition).

Li = p00(V0i, VLi)
[

p00(VLi, T̃V i)α04(T̃V i)
δV i

+ p01(VLi, T̃V i)α14(T̃V i)
δV i

+ p02(VLi, T̃V i)α24(T̃V i)
δV i

+ p03(VLi, T̃V i)α34(T̃V i)
δV i

]

The likelihood contribution for all the different trajectories of the sub-
jects are detailed in Appendix A. This heuristic likelihood can be rigorously
justified using the results of Commenges and Gégout-Petit (2007).

Inference is based on maximizing the likelihood. We propose to use a
penalized likelihood approach detailed in the next paragraph. Since there
are eight transition intensities to estimate in this model we propose a semi-
parametric approach in order to reduce the number of functions to estimate
non-parametrically. We assume proportionality for all transitions intensities
towards death:

α14(t) = α04(t)e
θ14

α24(t) = α04(t)e
θ24

α34(t) = α04(t)e
θ34

We also assume proportionality for the transitions towards dementia:

α23(t) = α01(t)e
θ23

and proportionality for the transitions towards institution:

α13(t) = α02(t)e
θ13

Keiding et al. (2001) and Klein et al. (1993), for example, used the same
kind of assumption in a multi-state model of bone marrow transplantation.
Verifying these assumptions is theoretically possible by considering a more
general model, with one more estimation of a transition intensity for example,
and using an approximate cross-validation criterion (see Commenges et al.,
2007) to compare the two models. We did not do it because of the numerical
complexity of this more general model.
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2.4 The penalized likelihood approach

Usually, intensity functions are expected to be smooth. A possible means
to introduce such a priori knowledge, is to penalize the log-likelihood by a
term which takes large values for rough functions. The roughness penalty
function chosen in our five-state model is the sum of the L2 norms of the
second derivatives of the three intensities α01, α02 and α04. In functional
analysis, the integrated squared second derivative is a widespread choice for
the roughness of a function (see Ramsay and Silverman, 1997). The penalized
log-likelihood is thus defined as:

pl(α01, α02, α04, θ) = l(α01, α02, α04, θ) −
∑

k=1,2,4

κ0k

∫ +∞

0

α
′′

0k

2
(u)du (2.1)

where l is the full log-likelihood, θ = (θ14, θ24, θ34, θ13, θ23) and κ01, κ02

and κ04 are the three positive smoothing parameters which control the trade-
off between the data fit and the smoothness of the intensity functions. Max-
imization of (2.1), in the desired class of function, defines the maximum
penalized likelihood estimators (MPLE) α̂01(.), α̂02(.), α̂04(.) and θ̂.

2.5 Estimation procedure

The MPLE cannot be calculated explicitly. However, for each transition
intensity, it can be approximated using splines. Splines are piecewise poly-
nomial functions which are combined linearly to approximate a function on
an interval. We use cubic M-splines, which are normalized B-splines. For
more details, see Ramsay (1988) and Joly et al. (1998). There is one base of
splines M0k(.) = (M10k(.), ..., Mm0k0k(.))

T for each transition. Each transition
intensity estimator α̂0k(.) is approximated by a linear combinations of m0k

cubic M-splines α̃0k(.) = γ̃0kM0k(.). The spline function α̃0. is defined by a
sequence of increasing knots and a vector of coefficients γ̃0.. The first knot
is set at 0 or just before the first follow-up time point (for delayed entry) and
the last knot is set just after the last follow-up time point. Other knots are
put equidistantly between the first and the last one. Theoretically, the more
knots, the better the approximation. Increasing the number of knots does
not deteriorate the MPLE: this is because the degree of smoothing in the
penalized likelihood approach is tuned by the smoothing parameter κ0. and
not by the number of knots. Once a sufficient number of knots is established,
there is no advantage in adding more because the more knots, the longer the
running time. Usually, we found that a good choice for the number of knots is
between 7 and 15. The three vectors of spline’s coefficients γ̃01, γ̃02 and γ̃04

are obtained simultaneously by maximizing pl. When the four vectors γ̃01,
γ̃02, γ̃04 and θ̂ are obtained, all the functions of interest can be computed,
as in a parametric model. To choose the three smoothing parameters, we
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used an approximate cross-validation criterion (see Commenges et al., 2007).
The criterion was maximized using a pseudo-grid method. The model can
be generalized to regression models to study explanatory variables using a
proportional intensity function model. The regression parameters and the
baseline functions are estimated simultaneously. The variance of parameters
are computed using the inverse of the matrix of the second derivatives of the
penalized likelihood.

3 Estimation of age-specific incidence of de-

mentia and life expectancy

Unlike with an “illness-death” model (see Joly et al., 2002) the transition
intensity α01 is not enough to estimate the age-specific incidence of demen-
tia. Using the previously defined transition probabilities, the age-specific
incidence of dementia for subjects living at home at 65 years old is:

Ic(t) =
p00(65, t)α01(t) + p02(65, t)α23(t)

p00(65, t) + p02(65, t)
(3.1)

This is a weighted mean of the incidences of healthy and institutionalized
subjects, the weights being the probabilities of these states at time t. For
a similar expression for obtaining death intensity in an illness-death model
see, for example, Andersen (1988).

Likewise, obtaining all the transition intensities allows to compute easily
life expectancy in institution and life expectancy for demented people. The
life expectancy for a subject demented and living at home at age td is:

∫ +∞

td

[p11(td, s) + p13(td, s)]ds (3.2)

For a subject demented and living in institution at age td the life expectancy
is:

∫ +∞

td

p33(td, s)ds (3.3)

In the same way, the life expectancy for a subject non demented living in
institution at age tI is:

∫ +∞

tI

[p22(tI , s) + p23(tI , s)]ds (3.4)

Finally, the life expectancy for a subject healthy (non demented and living
at home) at age t is:

∫ +∞

t

[p00(t,s) + p01(t, s) + p02(t, s) + p03(t, s)]ds (3.5)
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When the estimators γ̃01, γ̃02, γ̃04 and θ̂ are obtained, we have the esti-
mators of all the transition intensities and then de probability functions p11,
p13, p33, p22 and p23 and then we plug them in 3.1, 3.2, 3.3, 3.4 and 3.5 to
obtain estimators of age-specific incidence of dementia and life expectancy.
A Bayesian technique for generating confidence bands for each transition in-
tensity was used in Joly et al. (2002). But, even with the delta-method,
we cannot use this technique to compute confidence bands for age-specific
incidence and for life expectancy because the relation between transition in-
tensities and these functions is too complex. To obtain confidence bands for
these functions we propose to use a parametric bootstrap (Efron and Tibshi-
rani, 1993). We generated 2000 realizations from the asymptotic distribution
of the parameters. For each replication we computed age-specific incidence
and life expectancy and for each point considered, we order the 2000 values
obtained; the lower bound and the upper bound of our confidence band are
respectively given by the 2.5th and the 97.5th empirical percentiles. How-
ever, this estimator does not take into account the variability due to the
choice of smoothing parameters.

4 Application: estimation of age-specific in-

cidence of dementia and survival time in

institution

The application is based on the Paquid research programme, a prospective
cohort study of mental and physical aging that evaluates social environment
and health status. The target population consists of subjects aged 65 years
and older living at home at the baseline visit in southwestern France. The
baseline variables registered included socio-demographic factors, medical his-
tory and psychometric tests. Subjects were re-evaluated 1, 3, 5, 8, 10 and
13 years after the initial visit. Demented subjects at the baseline visit were
removed from the sample because the initial sample may not be representa-
tive. Therefore, this produced a left-truncation problem, subjects living at
home and not demented at baseline visit. As mentionned before, the inspec-
tion processes for dementia, institutionalization and death are all different.
Dates of death are always reported unlike dates of onset of dementia and
entry in institution which were assessed only at planned visits. But for entry
in institution, unlike for onset of dementia, we can most often collect the
exact date of institutionalization when the subject is seen in institution.

Numbers of observed women and men diagnosed as demented and in
institution over the 13 years of follow-up are detailed in Table 1.
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Figure 3: Age-specific incidence of dementia for women (—) and men (- - -).

Table 1: Observed number of women and men demented and

in institution over the 13 years of follow-up.

Women Men Total
2133 1540 3673

diagnosed as demented 396 189 585
in institution 342 113 455
dead* 1038 939 1977
* dead over the 13 years of follow-up include subjects

previously diagnosed as demented or institutionalized.

In a previous work (Joly et al., 2002) we found that the age-specific
incidence of dementia was different between women and men. It is also well
known that the age-specific risk of death is higher in men than in women,
especially in France (Robine et al., 2002). Thus we separately estimated the
transition intensities for women and men. We used 7 knots for each intensity
function. Figure 3 displays age-specific incidence of dementia for women and
men. We observe, as in Joly et al. (2002), that the estimate of age-specific
incidence of dementia is slightly higher for men than for women under 79
years old and slightly higher for women than for men after this age. We give
in Table 2 the estimates of the parameters θ and the corresponding standard
errors.

10



 0

 2

 4

 6

 8

 10

 12

 14

 16

 65  70  75  80  85  90  95

L
if
e

 e
x
p

e
c
ta

n
c
y
 i
n

 y
e

a
rs

Age at dementia

Figure 4: Life expectancy for demented subjects living at home as a function of age:

women (—) and men (- - -).

Table 2: Estimates of θ (with standard errors) for women and men

Women Men
θ14 (Dm → D) 1.13 (0.18) 2.25 (0.17)
θ24 (I → D) 1.29 (0.17) 1.79 (0.18)
θ34 (Dm+I → D) 1.83 (0.11) 1.57 (0.18)
θ13 (Dm → Dm+I) 1.83 (0.15) 2.39 (0.24)
θ23 (I → Dm+I) 0.92 (0.19) -0.84 (1.04)

Figures 4 and 5 display the life expectancy for women and men, respec-
tively for subjects developing dementia and entered in institution. In Figure
4, we plot the life expectancy for women and men demented at home as a
function of age. In Figure 5 we plot the life expectancy for women and men
in institution and not demented as a function of age. Whatever the age,
the life expectancy is higher for women than for men but the difference is
decreasing with age. We give some selected values in Table 3. There seems
to be a contrast between institutionalized women and men. While women
in institution have a higher estimated life expectancy when they are non de-
mented versus when they are demented, the reverse is true for men. Subjects
in institution may have some other diseases, but this does not explain the
contrast between institutionalized women and men. Note however that the
difference for men is small with regard to the confidence interval.
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Figure 5: Life expectancy for institutionalized non demented subjects as a function of

age: women (—) and men (- - -).

Table 3: Estimated life expectancy for subjects, healthy, in institution and/or with

dementia, for women and men for different ages with 95% confidence intervals

(parametric boostrap with 2000 replications)

Women
Age Healthy Demented In institution Dem+Inst
70 15.92 [15.07;16.20] 10.99 [9.58;12.14] 10.54 [9.07;11.65] 8.19 [7.03;9.38]
80 9.02 [8.70;9.33] 5.91 [5.31;6.50] 5.68 [5.01;6.31] 4.40 [3.83;5.01]
90 5.19 [4.82;5.60] 3.12 [2.79;3.47] 3.02 [2.65;3.40] 2.29 [1.99;2.64]

Men
Age Healthy Demented In institution Dem+Inst
70 12.95 [12.43;13.37] 6.94 [5.76;8.09] 4.90 [3.72;6.23] 5.76 [4.39;7.31]
80 7.80 [7.41;8.22] 3.87 [3.30;4.50] 2.66 [2.03;3.42] 3.19 [2.38;4.16]
90 5.33 [4.79;5.94] 2.35 [1.98;2.80] 1.60 [1.22;2.10] 1.95 [1.44;2.64]
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5 Discussion

In this paper we propose an estimation method applied to multi-state model
with interval-censoring. Our work was mainly motivated by two major is-
sues: estimation of age-specific incidence of dementia and life expectancy
for demented or institutionalized subjects. With interval-censoring and a
high risk of death for demented and institutionalized subjects, there is an
underestimation of the incidence of dementia using a (two-state) survival
analysis approach. It is then important to take interval-censoring into ac-
count. The proposed penalized likelihood approach in a multi-state model
yields a method for analyzing such data and for providing estimators of the
intensity functions, which cannot easily be estimated using conventional non-
parametric methods. Once the intensity functions are obtained, age-specific
incidence and life expectancy can easily be computed. Moreover, the penal-
ized likelihood approach yields smooth estimates of the transition intensities
without making the strong assumption that it belongs to a given parametric
model. The proposed approach can be applied to semi-Markov models as well
as to non-homogeneous Markov models and can be generalized to regression
models to deal with explanatory variables. The approach can easily be ex-
tended to models with reversible transitions if there is no interval-censoring
in the reversible transitions. If there is interval-censoring, there may be an
infinite number of transitions between two observations, which is hard to
treat in non homogeneous Markov models. In the same way right-truncation
can be accomodated. The program was written in FORTRAN 77 and is
available on request.

In France, the higher mortality rate in men compared to women is well
known. This work shows that there are also large differences in life ex-
pectancy according to sex, even after institutionalization or dementia, al-
though the difference is decreasing with age. These data have public health
implications, in the case of demented people and of institutionalized resi-
dents.
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Appendix A

Likelihood

In principle all the indicators and times of observations should be indexed
by i (example Li, δV i, ...); we will omit this for the sake of simplicity.

We have three indicators: δV = 1 if the subject is deceased, δI = 1 if the
subject is known institutionalised and δD = 1 if the subject is diagnosed de-
mented. V0 is the age at the entrance in the cohort. T̃V is the age at death or
at right-censoring for death, TI is the age at the time of institutionalization
or at right-censoring for the institutionalization. VL is the age at the last
visit without dementia and VR is the age at the first visit with dementia (for
subject diagnosed demented).

Subject not demented at the time of the last visit VL (δD = 0)

• If δI = 0 (not institutionalised TI = T̃V )

L = p00(V0, VL)
[

p00(VL, T̃V )α04(T̃V )δV

+ p01(VL, T̃V )α14(T̃V )δV

]

• If δI = 0 (not seen institutionalised but TI < T̃V )

L = p00(V0, VL)
[

p00(VL, T̃V )α04(T̃V )δV

+ p01(VL, T̃V )α14(T̃V )δV

+ p01(VL, TI)p13(TI , T̃V )α34(T̃V )δV

+ p00(VL, TI)p02(TI , T̃V )α24(T̃V )δV

+ p00(VL, TI)p03(TI , T̃V )α34(T̃V )δV

]

• If δI = 1 (institutionalised)

– If TI < VL (institutionalised before VL)

L = p00(V0, TI)α02(TI)p22(TI , VL)
[

p22(VL, T̃V )α24(T̃V )δV

+ p23(VL, T̃V )α34(T̃V )δV

]

– If TI > VL (institutionalised after VL)

L = p00(V0, VL)
[

p00(VL, TI)α02(TI)p22(TI , T̃V )α24(T̃V )δV

+ p00(VL, TI)α02(TI)p23(TI , T̃V )α34(T̃V )δV

+ p01(VL, TI)α13(TI)p33(TI , T̃V )α34(T̃V )δV

]
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Subject diagnosed demented at VR (δD = 1)

• If δI = 0 (not institutionalised TI = T̃V )

L = p00(V0, VL)p01(VL, VR)p11(VR, T̃V )α14(T̃V )δV

• If δI = 0 (not known institutionalised but TI < T̃V )

L = p00(V0, VL)p01(VL, VR)p11(VR, TI)
[

p11(TI , T̃V )α14(T̃V )δV

+ p13(TI , T̃V )α34(T̃V )δV

]

• If δI = 1 (institutionalised)

– If TI < VL

L = p00(V0, TI)α02(TI)p22(TI , VL)p23(VL, VR)p33(VR, T̃V )α34(T̃V )δV

– If VL < TI < VR

L = p00(V0, VL)
[

p01(VL, TI)α13(TI)p33(TI , VR)

+ p00(VL, TI)α02(TI)p23(TI , VR)
]

p33(VR, T̃V )α34(T̃V )δV

– If TI > VR

L = p00(V0, VL)p01(VL, VR)p11(VR, TI)α13(TI)p33(TI , T̃V )α34(T̃V )δV
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Appendix B

Sub-sample of 40 men followed during 13 years: Paquid research programme.

Subject V0i δDi δIi δV i VLi VRi TIi T̃V i

01 85.25 1 0 0 90.61 95.50 98.27 98.27
02 74.17 0 1 0 86.86 86.86 85.76 86.86
03 71.50 0 0 1 74.73 74.73 74.73 78.67
04 66.00 0 0 0 79.07 79.07 79.07 79.07
05 73.75 0 0 1 75.18 75.18 76.10 82.33
06 66.58 0 0 0 79.64 79.64 79.64 79.64
07 70.33 0 0 1 75.56 75.56 77.56 77.56
08 79.67 0 0 1 84.93 84.93 84.93 86.23
09 66.92 0 0 0 77.11 77.11 77.11 79.79
10 78.17 0 0 1 78.17 78.17 82.54 82.54
11 71.92 0 0 1 82.06 82.06 82.06 84.73
12 87.00 0 0 1 87.97 87.97 87.97 90.30
13 66.08 0 0 1 73.92 73.92 73.92 75.73
14 82.00 0 1 1 87.49 87.49 87.40 87.95
15 73.92 0 0 0 86.81 86.81 86.81 86.81
16 87.58 0 0 1 88.58 88.58 88.58 89.94
17 65.58 1 0 1 73.43 75.77 75.77 77.83
18 73.25 0 0 1 76.64 76.64 77.48 77.48
19 83.17 0 0 1 83.17 83.17 90.07 90.07
20 68.67 0 0 1 70.23 70.23 70.23 78.98
21 86.00 0 1 1 89.47 89.47 88.85 93.28
22 65.92 0 0 0 66.96 66.96 68.34 79.04
23 81.67 1 0 1 81.67 82.65 82.65 83.97
24 88.42 0 0 1 93.84 93.84 93.99 93.99
25 66.42 0 0 0 79.55 79.55 79.55 79.55
26 67.17 0 0 0 75.05 75.05 75.05 80.02
27 74.83 0 0 1 74.83 74.83 77.21 88.09
28 65.58 0 0 0 78.46 78.46 78.46 78.46
29 73.92 1 1 1 74.82 76.72 77.92 78.69
30 73.83 0 0 0 86.44 86.44 86.44 86.44
31 76.50 0 0 1 81.69 81.69 81.69 84.38
32 74.92 1 1 1 80.12 83.01 81.66 86.25
33 76.42 0 0 1 77.51 77.51 78.61 79.55
34 73.25 0 0 0 86.11 86.11 86.11 86.12
35 80.75 1 0 1 83.87 85.94 85.94 89.16
36 69.58 0 0 1 70.53 70.53 72.28 79.35
37 79.25 1 0 1 80.22 84.38 86.95 87.97
38 75.83 0 0 1 75.83 75.83 75.83 77.32
39 65.67 0 0 0 78.48 78.48 78.48 78.48
40 77.25 1 1 0 84.93 87.42 87.37 90.02
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