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INTRODUCTION 

Complex inflammatory processes underlie the progression of atherosclerosis towards its 

complications 
1
 such as coronary plaque thrombosis 

2
 and abdominal aortic aneurysms (AAA) 

3
. 

Several antigens become immune targets in atherosclerotic patients 
4, 5

 possibly because the 

regulation of immune responses is defective 
6, 7

. The trans-homophilic 
8
 inhibitory immunoreceptor 

CD31 (PECAM-1) 
9
 is expressed exclusively and constitutively by the cells of the blood-vessel 

interface and may therefore play a major role in vascular homeostasis 
10

. Notably, experimental 

studies have shown that CD31 signaling is necessary to prevent blood leukocyte cell-cell 

adhesion 
11

, chronic inflammatory diseases 
12

, and platelet thrombosis 
13

. 

We previously observed that a reinforcement of the physiologic CD31 T-cell regulatory pathway, 

operating before the development of the disease, prevents plaque development in atherosclerosis-

prone mice 
14

. However, this approach requires the presence of the trans-homophilic CD31 

extracellular domains 
14

 which are typically lost on peripheral T-cells of mice 
15

 and patients 
16

 that 

have already developed atherosclerotic complications. Recently, a new therapeutic option has arisen 

from our latest data showing that a truncated extracellular CD31 fragment is indeed expressed by T-

cells that apparently lack CD31 
17

 and that a CD31-derived peptide is able to engage this fragment. 

In particular this peptide showed an immunosuppressive effect in vivo through restoration of the 

CD31 inhibitory pathway 
17

. The aim of this study was therefore to evaluate whether restoring the 

CD31-mediated regulatory pathway with this peptide could harness the inflammatory responses 

underlying atherosclerosis progression and aneurysmal complication in an experimental model. We 

chose to test this hypothesis in aged apolipoprotein E knockout (ApoE KO) mice submitted to 

chronic infusion of angiotensin II because, as in patients 
18

, angiotensin II promotes atherosclerotic 

progression and AAA formation via its pro-inflammatory effect in this model 
19, 20

. 
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METHODS 

 
Peptides. The murine synthetic CD31 peptide (aa 551-574, MW 2606.0) (purified or 5,6-

FAM-conjugated, >95% pure) was synthesized by Genosphere (France) or Mimotopes (Australia) 

and dissolved at 1 mg/ml in sterile PBS (DMSO 0.5%). Endotoxin levels were consistently 

< 0.01 ng/μg of peptide as determined by the LAL test. 

Mice. Male, 28-week old ApoE KO mice (B6.129P2-Apoe
tm1Unc

/Crl, Charles River France) 

were maintained on a regular chow diet under standard conditions. The experiments were repeated 

four times and included 2 groups (n =8-10 mice/group) assigned to the administration of 50 µl of 

either the peptide solution (“peptide” group) or of vehicle alone (“control” group). The dose of the 

murine CD31 peptide (1.5 mg/Kg/d) was chosen on the basis of our previous in vivo studies 
17

. The 

treatment was administered subcutaneously, for 28 days during which Angiotensin II (Sigma, 

#A9525) was infused (1 mg/kg/d) using osmotic mini-pumps (Alzet, #2004) as previously 

described 
21

. At the end of the study, mice were euthanized by exsanguination under anesthesia (i.p. 

injection of Ketamine-HCl 100mg/Kg and Xylazine 20 mg/kg). Blood was withdrawn from the 

right heart ventricle and collected in heparinized and EDTA tubes for blood cell and plasma 

analysis. The heart and the aorta were dissected for AAA assessment, measurement of plaque size 

and phenotypic analysis. Four additional mice of the “control” group received a single injection of 

1.5 mg/Kg fluorescent (5,6-FAM-conjugated) peptide, 30 minutes before euthanasia (day 28). All 

the investigations conformed to the Directive 2010/63/EU of the European Parliament and formal 

approval was granted by the Local Animal Ethics Committee (Comité d'éthique Bichat – Debré). 

AAA and atherosclerotic lesions. The presence of an AAA was blindly assessed by two 

investigators (A-T. G. and A. N.). Plaque size was measured on oil-red-O stained frozen cross-

sections of the aortic root, as previously described 
15

. Morphometric analysis was performed on 

Masson’s trichrome stained slides. Adventitial cell infiltrate was calculated as the fraction of the 
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total surface area of the tissue outside the external elastic lamina occupied by nuclei (black); plaque 

extracellular matrix density was calculated as the ratio between the green-stained surface area and 

the surface of the plaque. All computer-assisted image analyses were performed using the Leica 

Qwin® software. 

Blood cells and plasma analysis. Blood was centrifuged at 900 g for 30 minutes to separate 

plasma. The Th1/Th2/Th17 CBA kit  (BD Biosciences) was used to measure cytokines in the 

plasma samples. Cholesterol was measured using Infinity® Cholesterol-Liquid reagents and an 

Olympus AU-400 multiparametric analyzer. Leukocyte pellets were stained with CD3-Alexa 

Fluor®700, CD4-PerCP, CD8-Pacific Blue, CD19-APC, CD69-PE-Cy7, CD115-PE, Ly-6G-APC-

Cy7, CD31-FITC, (all from BD Biosciences) or with anti-mouse CD4-PerCP, CD25-APC (clone 

PC61, BD) and intracellular FoxP3-PE (clone PE-FJK-16s, eBiosciences). Analysis was performed 

using a LSRII
®

 flow cytometer and BD FACSDiva® Software 6.0. 

T-lymphocyte function. TCR stimulation. CD4+ splenocytes (CD4 T Lymphocyte 

Enrichment Set, BD Biosciences) were plated at 0.2x10
6
 cells/well in U bottom 96-well plates 

(Costar®) pre-coated with anti-mouse CD3 antibody (BD Biosciences) and cultured for 3 days in 

the presence of 1 µg/ml anti-mouse CD28 antibody (BD Biosciences) and different concentrations 

of the CD31 peptide. Cytokines were measured in the supernatants using the Th1/Th2/Th17 CBA 

kit (BD, Biosciences) and T-cell proliferation was assessed using the CellTrace
TM

 CFSE Cell 

Proliferation Kit (Invitrogen). Phospho-SHP2 was evaluated by flow cytometry on TCR-stimulated 

splenocytes as detailed in the supplementary method section. Antigen-specific stimulation. Four 

individual ApoE KO male mice aged 24 weeks were immunized (4 footpads) with 100 µg 

autologous oxidized (ox) LDL (prepared as previously described 
22

) in complete Freund’s adjuvant. 

Ten days later, the animals were euthanized and the popliteal and axillary lymph nodes draining the 

immunization sites were collected. Single cell suspensions obtained from pooled lymph nodes from 

each mouse were stained with CFSE (5 µM) and plated in complete medium in 96-well plates 
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(round bottom, 2x10
5
 cells/well) in the presence of oxLDL (1 µg/ml) and in the presence of 

increasing doses of CD31 peptide (0, 12.5, 25, 50 and 100 µg/ml). Culture supernatants were 

harvested four days later for soluble CD31 analysis and cells were submitted to cytometry to 

analyze the CFSE-based proliferation index within the CD4+ lymphocyte gate. The mean 

fluorescent intensity of surface CD31 was analyzed in the same wells and soluble CD31 

concentration was assessed in the supernatants (supplementary methods). 

Macrophage function. Bone marrow-derived macrophages were differentiated and IFN-

primed as previously described 
23

. Cells were then cultured in complete medium and stimulated 

with 100 ng/ml angiotensin II in the presence of increasing doses (0, 25, 50µg/ml) of CD31 peptide. 

Macrophage intracellular MMP-2/9 activity was quantified by flow cytometric detection of a 

fluorescent enzyme substrate, according to the manufacturer’s instructions (Invitrogen). Briefly, 

10 µg/ml fluorescein-conjugated DQ
TM

 type IV collagen, analog of the MMP-2/9 natural substrate, 

were added to stimulated macrophages for six hours and the fluorescence derived from the enzyme-

driven hydrolysis of the fluorescein-conjugated DQ
TM 

was quantified by flow cytometry. IL-1, IL-

1, IL-12/IL-23p40, RANTES, IL-6, MCP-1 and MIP-1 and MIP-1 (CBA flex sets, BD 

Biosciences) were measured in the culture supernatants from each condition. Individual mouse data 

(n =4), expressed as Median Fluorescence Intensity (MFI) have been used for statistical analysis. 

Statistical Analysis. Data are expressed as means ± SD unless otherwise indicated in the text. 

Differences between groups were analyzed by Student t-test or chi-squared test, as appropriate. 

Differences were considered statistically significant when the p value was ≤0.05. 
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RESULTS 

Loss of T-cell extracellular CD31 and development of AAA 

Plaque-infiltrating leukocyte analysis showed that CD4
+
 cells were all positive for intracellular 

CD31 but not all of them co-expressed extracellular CD31 (supplementary Figure 1a). The lack of 

extracellular CD31 was also specifically observed on peripheral blood CD4+ T lymphocytes and 

associated with the development of an AAA (supplementary Figure 1b and 1c). 

CD31 peptide treatment reduces AAA formation and plaque growth 

Since AAA development was associated with the loss of extracellular CD31 on CD4+ T-cells we 

reasoned that this receptor could be shed from mouse leucocytes as we have previously described 

for human cells 
17

. Accordingly, we evaluated the therapeutic potential of a CD31-derived peptide, 

which is able to restore the lost inhibitory function in vitro and in vivo 
17

 in this model. CD31 

peptide treatment significantly reduced the incidence of AAA formation (Figure 1a) and the extent 

of atherosclerotic lesions (Figure 1b and 1c). Aortic root adventitial cell infiltrate was associated 

with the presence of an AAA (Figure 1d and 1e) and was also reduced in peptide-treated mice. The 

peptide stabilized the phenotype of the plaques as determined by higher extracellular matrix density 

(44.52 ± 5.5 vs 31.61 ±4.9 a.u, p=0.05), lower expression of VCAM-1 and higher SMA content 

(supplementary Figure 2). Fibrillar collagen was more abundant in the aortic root plaques and 

significantly higher at the site of the abdominal aorta that is prone to dissection in this model, 

suggesting that the peptide treatment confers a higher resistance against rupture to the arterial wall 

(supplementary Figure 3). Furthermore, the presence of T-cells (CD4+), macrophages (Mac3+) and 

MMP9 within the plaques was also blunted by the treatment (supplementary Figure 2). CD31-

treatement did not affect body weight (34.8 ± 0.8 vs 36.4 ± 0.9 g), lipoprotein profile 

(supplementary Figure 4) or plasma levels of total cholesterol (11.9 ± 0.75 vs 10.9 ± 0.6 mmol/l), 

HDL (1.2 ± 0.1 vs 1.1± 0.1 mmol/l), and triglycerides (1.1 ± 0.1 vs 1.2 ± 0.1 mmol/l). No 
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differences could be found between the two groups in terms of total IgG and IgM and of specific 

anti-oxLDL IgG and IgM serum levels (supplementary data, Figure 5) or circulating blood cell 

count (supplementary Table 1). 

CD31 peptide modulates the peripheral T-cell compartment in vivo and directly inhibits T-cell 

responses in vitro 

Peptide-treated mice showed increased CD4
+
CD25

+
FoxP3

+
 (Tregs) and reduced CD69

+
 (recently 

activated) T-cell % in the peripheral blood (Figure 2a). The treatment decreased plasma levels of 

IL-2, IFN, IL-4 and IL-6 (Figure 2b) but not those of TNF, IL-10 or IL-17A (data not shown).  

We therefore assessed if the peptide exerts direct T-cell suppressive effects in vitro. Our data show 

that, as for human cells 
17

, the peptide reduces mouse T-cell proliferation in response to TCR 

engagement (Figure 3a). In addition, it inhibited the production of IL-2, IFN, IL-4, IL-6, TNF and 

IL-10 (Figure 3b). To assess whether the peptide triggered the physiological T-cell CD31 inhibitory 

signaling, we evaluated the levels of the SHP2 phosphorylation [tyrosine (Y) 542] in TCR-

stimulated splenocytes. Similar to the specific control (antibody-mediated cross-linking of surface 

CD31) a significant increase in intracellular SHP2 pY542 was induced by the peptide, in a dose-

dependent manner (Figure 3c). 

The peptide was also able to suppress the CD4+-specific immune response directed against ox-

LDL, a major atherosclerosis-related antigen (Figure 4a). Interestingly, the expression of CD31 

extracellular domains at the cell surface was reduced after antigenic T-cell stimulation, 

concomitantly with an increase in soluble CD31 concentration in the supernatants, further adding to 

the evidence that CD31 shedding is driven by (antigen-specific) TCR-mediated T-cell activation 

(Figure 4b and 4c). 
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CD31 peptide prevents angiotensin II-induced macrophage activity in vitro 

While T cells are certainly involved in the acceleration of plaque formation in the angiotensin II 

infusion model, macrophages may play a more important role in AAA formation 
24, 25

. We therefore 

assessed whether the peptide is able to bind to macrophages in vivo and to exert a direct effect on 

angiotensin II-induced macrophage activation, in vitro. Fluorescent peptide tracking showed that 

plaque-infiltrating and peri-aneurysmal macrophages could indeed be targeted by the peptide, in 

vivo (Figure 5). In vitro, the CD31 peptide reduced intracellular MMP-2/9 activity (Figure 6a and 

6b) and release of IL-6, MCP-1, MIP-1 and MIP-1 in the culture medium (Figure 6c). The 

concentrations of IL-1, IL-1, IL-12 and RANTES were not affected by the peptide (data not 

shown). 
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DISCUSSION 

The present study provides further evidence for a protective role of T-cell CD31 against 

atherosclerotic complications, such as AAA. Indeed, as in patients 
16

, the presence of an AAA was 

linked to the loss of CD31 on both plaque-infiltrating and peripheral T-cells in angiotensin II-

infused apoE KO mice. We also found that the incidence of AAA correlated with adventitial cell 

infiltration at the level of the aortic root, distant from the abdominal aorta. While such a 

perivascular leukocyte infiltration had previously been described at the site of aneurysm formation 

24
, our findings suggest that the adventitial inflammatory process induced by angiotensin II extends 

to the whole arterial tree and contributes to both the acceleration of plaque-growth (aortic root) and 

the occurrence of wall dissection/aneurysm formation (abdominal aorta) depending on site-specific 

hemodynamics and leukocyte environment. In support of this hypothesis, the CD31-peptide 

treatment effectively reduced perivascular inflammation and equally protected against aneurysmal 

complications and atherosclerosis progression in this study. 

Although the CD31 peptide can potentially act on CD31-positive cells other than leukocytes 

(platelets and endothelial cells), in this study we focused our attention on its putative effect on the 

cells of the immune system. Indeed T-cell activation is a key cellular process linking the 

hypertensive and pro-inflammatory effects of angiotensin II 
19, 26, 27

. Our data suggest that the 

inhibition of T-cell activation achieved in vivo 
17, 28

 by the CD31 peptide prevents the angiotensin 

II-driven inflammatory vascular damage. However, the T-cell suppression cannot explain, alone, 

the anti-inflammatory and protective effect of the peptide in this model because angiotensin II 

receptors are expressed both by T lymphocytes and macrophages 
29

. The latter are particularly 

relevant in angiotensin II-driven arterial wall dissection and AAA formation 
24, 25

. Interestingly, the 

peptide was found to bind to both plaque and adventitial macrophages, which were both reduced by 

the treatment. In addition, the peptide inhibited macrophage collagenolytic activity and the release 
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of IL-6 and MCP-1 by angiotensin II-stimulated inflammatory macrophages, possibly explaining 

the resistance of the aortic wall to dissection in peptide-treated mice 
30

.  

In agreement with our findings in human lymphocytes 
17

, our in vitro data suggest that restoring 

CD31-driven intracellular SHP-2 phosphorylation in activated leukocytes constitutes a novel 

immunomodulatory strategy. Interestingly, it has recently been shown that the CD31-SHP2 

pathway simultaneously inhibits tyrosin kinase-dependent activation while promoting T-cell 

survival via the Erk/MAP kinase pathway 
31

. The latter is also involved in extrathymic Treg 

induction 
32

 and function 
33

. This may account for the enrichment of the Treg peripheral pool that 

we have observed in treated mice and represent an additional immunoregulatory mechanism exerted 

by the peptide. 

As compared to other potential immunosuppressive atheroprotective agents, such mycophenolate 

mofetil 
34

, anti-CD3 
35, 36

 and anti-CD20 
37

 antibodies, the peptide that we used in this study induces 

a “targeted” immunosuppressor effect because it does not cause lymphocyte depletion and reduces 

the release of selected disease-related cytokines . Moreover, since disease severity is linked to the 

extent of CD31 shedding from leukocytes 
16

, which can be easily measured in plasma samples 
17

, 

the dosing of the peptide could be finely adjusted to optimize the benefit/risk ratio of its use as a 

drug. 
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LEGENDS 

 

Figure 1. CD31 peptide-treatment prevents plaque growth and aneurysm formation. a. The 

incidence of AAA (% of mice/group) was significantly reduced by CD31 treatment (14.5 ± 3 vs 

75 ± 7, *p<0.001). b. Quantification of atherosclerotic lesion surface area in serial cross-sections of 

the aortic root (200, 400, 600, 800 µm from the appearance of the first cusp) in control (, n=10) 

and CD31 peptide-treated (, n=8) mice. *p<0.05 vs control. c. Representative micrographs of oil-

red-O stained sections. d. Representative images showing Masson’s trichrome staining of aortic 

root cross-sections. Control mice showed increased adventitial cell infiltration (nuclear staining) as 

compared to peptide-treated mice. e. Quantitative analysis of the adventitial cell infiltration. 

Peptide-treated mice (n=8) showed significantly reduced (*p<0.01) cell infiltration as compared to 

control mice (n=8). Interestingly, a higher adventitial nuclear density was correlated with the 

presence of abdominal aortic aneurysms (AAA, red dots; no AAA, green dots).  

Figure 2. Immunoregulatory effects of the CD31 peptide in vivo. a. The percentage of Tregs 

(CD25
+
 FoxP3

+
) was increased while the relative fraction of activated T-cells (CD69

+
) CD4

+
 T-

cells among total blood CD3
+
 T-cells was diminished by the peptide treatment (*p<0.05). b. Plasma 

IL-2, IFN, IL-4 and IL-6 (a.u.) were significantly decreased by the peptide treatment in vivo 

(*p<0.05). 

Figure 3. The CD31 peptide inhibits TCR-stimulated T cell responses in vitro and drives 

SHP2 phosphorylation. a. Proliferation in response to TCR engagement is inhibited as a function 

of dose by the CD31 peptide (*p<0.05 vs dose “0”). Proliferation was analyzed by the Modfit® 

software and expressed as “Prolif Index”. The dotted line represents baseline proliferation (Prolif 

Index for unstimulated CD4
+
 cells). b. Cytokine concentrations (pg/ml) in the supernatants of 

stimulated CD4
+
 T-cells were significantly reduced by the peptide. (*p<0.05 vs dose “0”). c. Flow 
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cytometric quantification of SHP2 pY542 in stimulated splenocytes. Dotted line (baseline) 

represents SHP2 phosphorylation induced by TCR engagement alone. Crosslinking of the TCR 

with surface CD31 molecules induced SHP2 phosphorylation (*p<0.01 vs baseline); Increasing 

doses of CD31 peptide induced further increments of SHP2 phosphorylation (*p<0.01 vs baseline). 

Data are expressed as Median Fluorescent Intensity (MFI). 

Figure 4. oxLDL stimulation drives the cleavage and shedding of CD31 and the CD31 peptide 

inhibits oxLDL-specific T-cell responses. a The peptide inhibits the proliferation of oxLDL-

specific CD4+ splenocytes derived from oxLDL-immunized apoE KO mice (*p<0.05 vs dose “0”). 

Proliferation was analyzed at 4 days after a challenge with oxLDL in vitro by the Modfit® software 

and expressed as “Prolif Index”. b. Representative density plot and c. quantitative analysis of CD31 

by flow cytometry on a CD4+ splenocyte surface (MFI) and by ELISA in matched culture 

supernatants (ng/ml). Upon oxLDL stimulation in vitro, the expression of CD31 decreases at the 

surface of CD4+ cells while its detection in the soluble form increases in parallel (*p<0.01). 

Figure 5. The CD31 peptide binds to plaque-infiltrating and peri-aneurysmal adventitial 

macrophages. Representative in vivo tracking immunofluorescent cross-section micrographs. The 

fluorescent peptide (green) bound to cells in clusters (blue = nuclei) including CD68+ cells (red, 

macrophages) within and surrounding abdominal aortic aneurysm (left panel) as well as within 

aortic root plaques (right panel). Numbered white boxes in the top panels indicate the position of 

the magnified insets. Scale bar=100 µm. Hem=intramural hematoma; Adv=adventitia, EL=elastin, 

L=lumen. 

Figure 6. The CD31 peptide inhibits macrophage response to angiotensin II. a. Representative 

phase contrast and fluorescent images of angiotensin II-stimulated macrophages in the absence (left 

panel) or presence (50 µg/ml) of the CD31 peptide (right panel). Collagenolytic activity (MMP, 

green) was detected by the presence of the fluorogenic degradation product of DQ collagen. 

Blue = nuclei. Scale bar = 100 µm. b. Flow cytometric quantification of the collagenolytic activity 
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shown in a. At 50 µg/ml, the peptide significantly inhibits collagen degradation (*p<0.05 vs dose 

“0”) MFI = median fluorescent intensity of viable macrophages in the fluorescein channel. c. The 

concentration of IL-6, MCP-1, MIP-1 and MIP-1 in the culture supernatants was significantly 

reduced by the peptide. (*p<0.05 vs dose “0”). 


