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Abstract

Background: Deciphering gene regulatory networks by in silico approaches is a crucial step in the study of the

molecular perturbations that occur in diseases. The development of regulatory maps is a tedious process requiring

the comprehensive integration of various evidences scattered over biological databases. Thus, the research

community would greatly benefit from having a unified database storing known and predicted molecular

interactions. Furthermore, given the intrinsic complexity of the data, the development of new tools offering

integrated and meaningful visualizations of molecular interactions is necessary to help users drawing new

hypotheses without being overwhelmed by the density of the subsequent graph.

Results: We extend the previously developed TranscriptomeBrowser database with a set of tables containing

1,594,978 human and mouse molecular interactions. The database includes: (i) predicted regulatory interactions

(computed by scanning vertebrate alignments with a set of 1,213 position weight matrices), (ii) potential regulatory

interactions inferred from systematic analysis of ChIP-seq experiments, (iii) regulatory interactions curated from the

literature, (iv) predicted post-transcriptional regulation by micro-RNA, (v) protein kinase-substrate interactions and

(vi) physical protein-protein interactions. In order to easily retrieve and efficiently analyze these interactions, we

developed In-teractomeBrowser, a graph-based knowledge browser that comes as a plug-in for Transcriptome-

Browser. The first objective of InteractomeBrowser is to provide a user-friendly tool to get new insight into any

gene list by providing a context-specific display of putative regulatory and physical interactions. To achieve this,

InteractomeBrowser relies on a “cell compartments-based layout” that makes use of a subset of the Gene Ontology

to map gene products onto relevant cell compartments. This layout is particularly powerful for visual integration of

heterogeneous biological information and is a productive avenue in generating new hypotheses. The second

objective of InteractomeBrowser is to fill the gap between interaction databases and dynamic modeling. It is thus

compatible with the network analysis software Cytoscape and with the Gene Interaction Network simulation

software (GINsim). We provide examples underlying the benefits of this visualization tool for large gene set analysis

related to thymocyte differentiation.

Conclusions: The InteractomeBrowser plugin is a powerful tool to get quick access to a knowledge database that

includes both predicted and validated molecular interactions. InteractomeBrowser is available through the

TranscriptomeBrowser framework and can be found at: http://tagc.univ-mrs.fr/tbrowser/. Our database is updated

on a regular basis.
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Background
In the last decade, the advent of high throughput tech-

nologies led to the emergence of the systems biology era

and prompted the research community to systematically

define the expression levels of mRNAs and micro-RNA

(miRNAs) through thousands of cell and tissues under

physiological and pathological conditions [1]. Now, one

of the crucial issues is to define the biological mechan-

isms that drives genes expression with the ultimate goal

of reverse-engineering gene regulatory networks (GRN)

as a whole in order to predict the system outcome

under molecular perturbations.

One current limit for biologists interested in mining reg-

ulatory information or for bioinformaticians interested in

creating regulatory maps for modeling, is that this infor-

mation is scattered over the Internet under various for-

mats making it difficult to handle. Thus one needs to

create a unified database that would list known and pre-

dicted molecular interactions. This information can be

obtained from different sources: (i) from the literature, (ii)

from large-scale experimental methods that allow gen-

ome-wide profiling of transcription factors (TFs) binding

sites to DNA or (iii) from DNA sequence analysis, by

searching 3’UTR regions for miRNA specific motifs or by

scanning gene promoters with transcription factor specific

position weight matrices (PWMs). In the latter case, the

use of comparative genomics is known to greatly improve

predictions of functional TF binding sites by limiting the

number of false positives (though increasing false negative

rate) [2,3]. Another limit of GRN analysis is the intrinsic

complexity of the data. In this regard, several graph-based

tools have been developed to draw a global picture of the

putative interactions taking place in the biological context

of interest (for a review, see reference [4]). In these, genes

or proteins appear as nodes in a graph, and functional

relations (physical/regulatory interactions) are represented

as edges connecting the corresponding entities. The topol-

ogy of the subsequent network can later be analyzed using

advanced tools such as Cytoscape [5]. However, as data

integration is a challenge that requires to map various

types of evidence onto a set of stable gene ids, most appli-

cations are oriented toward a single data type (mostly reg-

ulatory or physical interactions, see table 1 for an

overview) [6-10] Moreover, another challenge is the devel-

opment of graph-based tools producing clear, meaningful

and integrated visualizations from which users can draw

new hypotheses without being overwhelmed by the density

of the presented graphic information. In this regard, the

Cytoscape plug-in “Cerebral” proposes an intuitive visuali-

zation method through a “cell compartment-based layout”

that shows interacting proteins on a layout resembling

“traditional” signalling pathway/system diagrams [11].

Here, we sought to create a compendium of predicted

and validated molecular interactions in human and

mouse. First, we used a large collection of PWMs

obtained from TRANSFAC (n = 523), JASPAR (n = 303)

Table 1 A comparison of web tools dedicated to molecular interactions.

MIR@NT@N STRINGd MotifMape GeneMANIA APIDf InnateDB InteractomeBrowser

Physical protein protein
interactions

- + + + + + +

Computationally predicted TF
targetsa

+ - + - - - +

Experimentally observed TF
targetsb

- - - - - - +

Database
content

Predicted miRNA targets + - - - - - +

Regulatory interactions from
literature

- + - - - - +

Biological pathways - + - + - - -

Inferred functional interactionsc - + - + - - -

Batch query + + - + - - +

Build-in graph
visualizer

add/remove/hide inter-actors
and interactions

- - - - + - +

Movable nodes - + ND + + + +

Compartment-based layout - - - - - + +

The table provides an overview of the types of molecular interactions and of the functionalities offered by representative web tools previously published.

Informations were obtained from latest articles describing the servers. The presence or absence of the corresponding features is denoted by + or - respectively.
a Refers to bioinformatic prediction of TFBSs using PWMs.
b Refers to results from large-scale experimental methods that profile the binding of TFs to DNA at the genome-wide level (e.g.; ChIP-Seq, ChIP-chip, ...).
c Refers to computational methods that aggregate various informations (e.g.; expression, genomic distance, conservation) to infer functional interactions.
d Search Tool for the Retrieval of Interacting Genes/Proteins
e MotifMap visualizer was not available during our tests. Informations related to the visualizer were obtained from documentation.
f Agile Protein Interaction DataAnalyzer
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and UNIPROBE (n = 387) to search, in gene promoter

regions, for candidate transcription factor binding sites

(TFBSs) conserved over human, mouse, rat and dog gen-

omes [12-14]. Overall, our analysis of these PWMs corre-

sponding to 347 human and 475 mouse transcription

factors (TFs) provides a systematic overview of gene reg-

ulation in the human and mouse. Data generated in this

study were next integrated with a large set of molecular

interactions from various sources including (i) potential

protein/DNA interactions derived from ChIP-seq experi-

ments (ChIP-X database), (ii) curated regulatory interac-

tions obtained from the literature (OregAnno, LymphTF-

DB), (iii) predicted miRNA/targets interactions (TargetS-

can) (iv) protein kinase-substrate interactions derived

from multiple online sources (KEA) and (v) physical pro-

tein-protein interactions obtained from HPRD, Reactome

and various databases of the IMEx consortium [15-30].

Informations related to these interactions were stored as

MySQL tables that were integrated in the back-end data-

base of TranscriptomeBrowser, our previously published

microarray datamining software [31]. Finally, we devel-

oped InteractomeBrowser (IBrowser) as a plugin for

TranscriptomeBrowser. IBrowser was developed using

the prefuse Java library and can be used to translate any

gene list into a meaningful graph. The specificity of the

IBrowser plugin relies on a new “cell compartments-

based layout” that makes use of a subset of the Gene

Ontology to map gene products onto relevant cell com-

partments. This layout is particularly powerful for visual

integration of heterogeneous biological information.

Moreover, IBrowser is integrated into the Transcripto-

meBrowser suite, which allows an easy communication

with other tools, for instance to retrieve lists of genes

that are frequently coexpressed in given conditions, thus

creating context-specific views of the interactome and

regulome.

IBrowser is intended both for biologists and bioinfor-

maticians. On one hand, it is a graph-based knowledge

browser, that is intended to provide new insight into

any user-defined gene list. On the other hand it is also

intended to fill the gap between heterogeneous genomic

data and gene regulatory network analysis. In this

regard, graphs produced inside IBrowser may be

exported into Cytoscape and GINsim, a dynamic model-

ing software [32]. In the following sections we provide

several examples underlying the benefits of this visuali-

zation tool for large gene set analysis.

Implementation
We first used phylogenetic footprinting to predict regu-

latory elements in the human and mouse genomes. A

dataset of 1,213 PWMs corresponding to mouse or

human transcription factors was obtained from various

sources (TRANSFAC 10.2, JASPAR 2010, UNIPROBE).

The multiz28way (with hg18 as a reference) and the

multiz30way (with mm9 as a reference) cross-species

multiple alignments were obtained from UCSC [33]. We

retained for analysis alignments flanking transcription

start sites on both sides (-3000, 3000) of any RefSeq

transcript and devoid of coding sequences. Sequences

were scored following the commonly used formula [34]:

SCOREp,c =

W−1
∑

w=0

log 2

(

P
(

seeing Sp+w at position w | PWM
)

P
(

seeing Sp+w at position w | Background model
)

)

where SCOREp, c represents the PWM score for a PWM

of length W in the DNA sequence of a species c between

positions p and p+W-1 and Sp+w represents the nucleotide

observed at position p+w. The probability of observing

each nucleotide under the background distribution was

assumed to be 0.25. For each PWM m, a score threshold

tm with p-value below 5.10-5 was computed using matrix-

distrib from RSAT ensuring high stringency of sequence

scoring [35]. A sequence in the reference genome was

considered as a putative TFBS if its score for PWM m at

position p in the alignment was found above tm in human,

mouse rat and dog. Each PWM was then linked to its cor-

responding transcription factors and putative targets.

Information was stored in a MySQL relational database.

We also integrated several informations obtained from

popular databases. Protein/DNA interactions (n =

174,168) derived from various genome wide analysis (e.g.;

ChIP-on-chip, ChIP-seq and ChIP-PET) and encompass-

ing interactions corresponding to 38 human TFs and 55

mouse TFs were obtained from the ChIP-X database.

TFBS predictions were obtained from the present work

(see below) and TFBSConserved UCSC track (n =

367,829 and n = 686,936 respectively). A set of regulatory

interactions curated from the literature were obtained

from LymphTF-DB (392 directed interactions) and Ore-

gAnno (1,991 interactions). Protein-protein interaction

datasets were obtained from HPRD (n = 78,325), Reac-

tome (n = 166,001) and IMEx (n = 110,578). Protein

kinase-substrate relationships were retrieved from KEA

(n = 14,084). Finally, miRNA/target relationships were

obtained from TargetScan database predictions (n =

260,068). For all datasets, all identifiers were mapped

onto Entrez Gene ids. This compendium of molecular

interactions is available as flat files at: ftp://tagc.univ-mrs.

fr/public/TranscriptomeBrowser/DB_Tables/.

InteractomeBrowser was developed using the Prefuse

Java library which was modified according to our needs.

InteractomeBrowser requires Java 1.6.

Results and discussion
TFBS predictions using comparative genomics

Although previous works have demonstrated the power

of comparative genomics in defining novel regulatory

Lepoivre et al. BMC Bioinformatics 2012, 13:19
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motifs in human and mouse, few of them integrate the

PWMs recently computed from protein binding micro-

array (PBM) experiments. Overall, restricting our analy-

sis to promoter regions and using a set of 1,213 PWMs,

we predicted TFBSs in 141,305 position-specific motifs

of the mouse genome and 164,171 of the human gen-

ome. The median number of hits for any PWM was 117

in mouse (mean, 169; range, 3-2,317) and 122 in human

(mean, 192; range, 6-2,678). The PWMs with highest

number of hits correspond to Sp1 transcription factor

(M00931, M00933, M00196) in both species (additional

file 1, Figure S1). Sp1 binds GC-rich elements (consen-

sus, GGGGCGGGGC) that are found in the promoter

regions of a large number of genes [36]. As promoter

regions are known to contain CpG islands we checked

whether our approach could overestimate the number

of targets for TF with high GC-content related PWMs.

As shown in figure S1, this effect was essentially

restricted to Sp1 and to a lesser extend to the Maz

related PWM (consensus, RGGGAGGG). As expected,

PWMs with high information content were most gener-

ally associated with fewer motifs (Figure S1, point size).

Genes with highly conserved promoter regions mostly

encode transcription factors

We next estimated the number of predicted regulators

for each gene by computing the number of non-redun-

dant PWMs associated with each gene. The number of

PWMs that have a significant match in gene promoter

regions range from 1 to 318 (median, 8; mean, 13.37) in

mouse and 1 to 353 in human (median, 7; mean 13.17).

Genes in the top 1% considering the number of regula-

tors (eg; Lmo3, Foxp2, Bcl11a) were, as expected, invari-

ably associated with highly conserved promoter regions.

Moreover, functional annotation indicates that a very

large proportion of these genes were transcription fac-

tors and genes related to development. Indeed, in

mouse, enrichment analysis of the gene list (112 genes)

using Fisher’s exact test (with Benjamini and Hochberg

correction) indicated a very strong enrichment for genes

related to terms “Transcription factor” (PANTHER

TERM; q-value, 1.3.10-27 ; 52 genes out 95 annotated),

“pattern specification process” (GO biological process;

q-value, 2.8.10-13; 19 genes out 78 annotated) or “neu-

ron differentiation” (GO biological process; q-

value,1.48.10-09 ; 18 genes out 78 annotated). Very con-

cordant results were also observed for human (a sum-

mary of functional enrichment analysis using the

ClueGO cytoscape plugin is provided in additional files

2 and 3, Figure S2 and S3) [37]. Actually, these results

are in agreement with the work of Bejerano and colla-

borators that showed that ultraconserved elements of

the human genome are most often found in genes

involved in the regulation of transcription and

development [38]. As a consequence our phylogenetic

footprinting analysis predicts a higher number of motifs

in the promoter regions of these genes. Although TFBS

conservation in mammals has been previously analyzed

in several papers, none of them, to our knowledge,

reported this observation that may introduce a bias in

the analysis. However, these ultraconserved regions may

also be reminiscent of HOT (high-occupancy target)

regions identified using ChIP-seq analysis in Caenorhab-

ditis elegans and Drosophila [39,40]. Indeed, HOT

regions have been shown to be significantly associated

with “essential genes” (i.e.; having an RNAi phenotype

of 100% larval arrest, embryonic lethality, or sterility)

and genes related to growth, reproduction, and larval

and embryonic development. However, we cannot rule

out that these ultra-conserved regions may be also

related to other mechanisms than regulation by site-spe-

cific TFs

Biological relevance of the TFBS predictions

One criterion to assess the reliability of our predictions

is based on the hypothesis that the overall functional

properties of the predicted targets can be used to infer

the biological processes in which TFs are involved. To

test this hypothesis, we used annotation terms obtained

from GO (biological process), KEGG, PANTHER,

PFAM, SMART, PROSITE, and WIKIPATHWAYS

databases and performed systematic annotation of all

predicted target sets in the mouse [41]. For each pair of

term/PWM we computed the Fisher’s exact test p-value

f. Each cell of a matrix with terms (n = 3,905) as row

and PWM (n = 1,103) as column was filled with a score

defined as -log(f). We then searched for biclusters inside

this matrix using “the binary inclusion maximal algo-

rithm “ (BiMax) [42]. Given the amount of information

produced by this analysis, only some meaningful results

will be presented and are summarized in Figure 1. Sites

for PWM related to ETS (M00746, M00971, M00771,

M00339, MA0136, M00658, M00678), STAT, IRF and

RUNX (M00722) transcription factor families, known to

contribute to pathogen responses, were significantly

over-represented in genes annotated as “immune system

process” and “lymphocyte activation” (Figure 1A). Sites

for PWMs related to the Rel/NF-�B pathway were sig-

nificantly associated with targets related to “induction of

apoptosis”, “Toll-like receptor signaling pathway” and, as

expected to “NF-kappaB cascade” (Figure 1B). More

subtle biclusters related to immune system were also

found. As an example, RBPJK specific PWMs (M01112,

M01111) were statistically significantly associated with

terms “Notch signaling pathway”. Although RBPJK is

already known to be crucial in NOTCH signaling path-

way, PWMs related to TCF3 (also known as E2A and

E47) and AP-4 were also found in the same bicluster
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(Figure 1C). This observation is very consistent with the

known role of these TFs in early B-cell differentiation, a

development step for which Notch pathway is decisive

[43,44]. As expected, a bicluster containing almost all

E2F-related PWMs was also found. Finally, several

biclusters related to “Muscle contraction”, “Phosphorus

metabolic processes”, “Synaptic transmission”, “Protein

catabolic processes” and “Pre-mRNA processing” were

also observed and are presented in Figure 2E-I. Alto-

gether, these results highlight the biological relevance of

the TFBS predictions and provides a systematic over-

view of putative regulatory interactions in human and

mouse. These predictions have been termed “TBMC”

(TranscriptomeBrowser Motif Conservation) and are

available through the InteractomeBrowser plugin or as a

bed file (See additional files 4 and 5).

InteractomeBrowser: graph-based knowledge browser

The InteractomeBrowser application can be used to

connect to our database in order to identify and analyze

molecular interactions (See additional files 6 for a video

tutorial). Available molecular interactions are derived

from various sources: our predictions (TBMC) and

numerous databases including ChIP-X, LymphTF-DB,

OregAnno, HPRD, IMEx, Reactome, TargetScan and

KEA. However, InteractomeBrowser may also accept

additional interaction datasets that users can provide

through a tabulated flat file.

InteractomeBrowser relies on a mixed graph that con-

tains both directed and undirected edges, depicting var-

ious types of interactions ranging from proteins

complex formation to transcriptional regulation. Thus

nodes represent both genes and gene products.

InteractomeBrowser uses a subset of terms of the Cel-

lular Component ontology (additional file, 7, figure S4)

to map nodes onto a schematic and hierarchical view of

cell compartments (users may choose to disable this

option). As a consequence, each gene product may be

represented by several instances (e.g.: one in the nucleus

and one in the cytosol).

The nodes placement is controlled by a force-directed

placement layout: the nodes are repulsive to each other,

they are attracted to their respective compartments, and

edges act like springs (the force-directed placement

Figure 1 Functional enrichment analysis of predicted targets. Annotation terms obtained from various annotation databases were used to

performed systematic annotation of all predicted target sets in the mouse. For each pair of term/PWM we computed Fisher’s exact test p-value

f. Each cell of a matrix with terms as row and PWM as column was filled with a score defined as -log(f). (A-I) Representative biclusters found with

BiMax are presented.

Lepoivre et al. BMC Bioinformatics 2012, 13:19

http://www.biomedcentral.com/1471-2105/13/19

Page 5 of 10



layout can be switched off or on at any moment through

the “Display” menu). Once a graph has been drawn, one

can easily add or delete nodes. InteractomeBrowser pro-

vides several filters that are intended to focus on the

most interesting part of the network. Users can filter

out orphan nodes and empty compartments. An option

called “Hide intercompartmental edges” allows users to

remove several unlikely edges of the network, notably

those involving physical interactions between distant

compartments (eg; an instance of gene A in the nucleus

and an instance of gene B in the extracellular regions).

When the mouse is over a node or an edge, correspond-

ing information is provided in the “Infos” tab on the left

side of the application. Right-clicking on a node opens a

context menu, allowing users to (i) open the NCBI web

page for this gene, (ii) add regulatory interactions invol-

ving this gene and other genes of the network, (iii)

move the node to another compartment and (iv)

connect to UCSC genome browser. The action menu

provides other tools to expand the network: (i) add all

the interactors of the selected genes or (ii) add common

interactors of selected genes.

IBrowser can be used with any user-defined gene list,

for examples genes of interest in a particular experi-

ment. Additionally, the integration of this tool into the

TranscriptomeBrowser suite facilitates the analysis of

lists corresponding to pre-processed clusters of co-

expressed genes stored in the database.

The next part of the result and discussion section

demonstrates the use of InteractomeBrowser for retriev-

ing molecular interactions in the context of thymocyte

differentiation analysis.

Case study: early T-cell development in mouse

The development of mature T cells from lymphoid pro-

genitor cells involves a series of cell fate choices that

Figure 2 The InteractomeBrowser plugin. (A) A global and zoom-in view of InteractomeBrowser cell-compartment based layout. Zoom-in

view shows some sub-cellular compartments together with node corresponding to gene products. Note that node corresponding to Esr1

appears as green, indicating that regulatory information is available for this gene. (B) Positive interactions (i.e.; activations) appear as green edges

with normal arrowheads (here Notch1 is the source). (C) Negative interactions (i.e; repressions) appear as red edges with T-shaped arrowheads

(here Mirn17 is the source). (D) Ambiguous interactions (whose repressive or activating status is unknown) appear as violet arrows with dot

arrowheads (here with Mycn as source).
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direct differentiation. In the context of the Immunologi-

cal Genome Project (ImmGen), M.W. Painter et al used

rigorously standardized conditions to analyze expression

levels of protein-coding gene in almost all defined T-cell

populations of the mouse [45]. Using SAM analysis

(FDR 15%), we selected a set of 281 genes repressed

during the transition from thymic DN3 stage to DN4

stage. Careful analysis, indicated that this gene set was

highly enriched in genes previously shown to be cru-

cially involved during the first step of thymocyte devel-

opment. This includes cell surface markers such as

Il2ra/Cd25, and Il7r together with several transcriptional

regulators, including Notch1, Smarca4/Brg1, Dtx1/Del-

tex1, and Hes1/Hry. More recently, Neilson et al identi-

fied specific miRNAs enriched at distinct stages of

thymocyte development by deep sequencing [46]. The

authors showed that transcripts of the mir17 family are

up-regulated at DN4 stage and thus could be involved

in the repression of DN3 specific messenger RNAs dur-

ing DN3 to DN4 transition. We thus combined one

member of the mir17 family, Mirn17/Mir17, with the

mRNA gene list mentioned above. This gene list was

provided as input to InteractomeBrowser. Figure 2A

shows node placement according to cellular compart-

ment. As shown in Figure 2A and 2B this layout is

extremely useful to directly focus on genes of interest.

Indeed, the nucleus subnetwork contains several regula-

tors (e.g; Runx1, Notch1, Hes1 and Xbp1) some of them

colored in green, indicating available regulatory interac-

tions for the transcription factor in our database. Figure

2B shows that several genes (Dtx1, Hes1, Il7r and Bcl2)

have been previously shown to be under the positive

control of Notch1 (these curated informations are

derived from LymphTF-DB). According to TargetScan

predictions, Mirn17/Mir17 does not seem to target any

component of the Notch pathway. In contrast, it is pre-

dicted to affect the expression of several transcription

regulators including Mycn, Runx1, Smad7 and the

H3K27 methyltransferase Ezh1 (by default miRNA are

considered as having a negative effect on mRNA and

thus edges appear as T-shaped arrows). Moreover, it

may also control key components of the cell cycle

machinery: Ccnd2 and Cdkn1a. Figure 2D shows infor-

mations available from ChIP-X database regarding

Mycn. These informations are derived from a ChIP-seq

experiment performed on mouse embryonic stem cells

by Chen et al [47]. Note that according to these results,

Mycn could target several transcription factors and thus

play a key role during DN3 to DN4 transition. However,

in this cellular context such results should be inter-

preted with caution since no large scale analysis of

MYCN targets in DN3 Thymocytes has been reported

so far. Among Mycn potential targets, Notch1, is one

master switch of early to late thymocyte developmental

transition. Thus, one could hypothesize that Mirn17/

Mir17 may indirectly affect Notch1 by negatively regu-

lating Mycn. Although, these hypotheses rely on predic-

tions and on the assumption that Mycn binding to

Notch promoter is effective in DN3 thymocyte, it clearly

underlines the potential of this software in helping

researchers to draw new hypotheses using data

integration.

Conclusions
InteractomeBrowser and its underlying approach can be

compared to the Cerebral (Cell Region-Based Rendering

And Layout) plugin of Cytoscape that also combines

molecular interactions with a cell-compartment based

layout [11].

But there are qualitative differences in the conception

of Cerebral and InteractomeBrowser, which make the

latest an interesting alternative for exploring networks.

On one hand, Cerebral uses a layered representation

of the cell to create a “pathway-like” view of the net-

work of interacting proteins. This layout thus provides a

linear organisation of the network. On the other hand,

the layout of InteractomeBrowser is based on a sche-

matic view of the entire cell and displays the hierarchi-

cal structure of the underlying Gene Ontology subset as

nested zones. First, this helps visually separating differ-

ent parts of the network corresponding to different cel-

lular localisations, as in Cerebral. But this is a more

generic visualisation method, in the sense it does not

restrict the visual message to an ‘input-intermediates-

output’ mechanism such as in linear pathway diagrams.

As a consequence it is suited for a more general study

of various types of networks. Moreover, since visual

zones correspond to Gene Ontology terms, this layout

handles different levels of accuracy in the localisation of

proteins: for instance a precisely-annotated protein

might be placed in the zone corresponding to “endo-

plasmic reticulum”, while a less well-annotated can be

placed in the more generic, higher level zone

“intracellular”.

In Cerebral, each gene product is represented by one

instance whose cell compartment may be defined by the

user. In contrast, InteractomeBrowser displays, by

default, several instances of a given gene product that

may be placed in several cell-compartments according

to informations provided by the GO Cellular-component

ontology. Although this may lead to a more complex

graph, it provides a more exhaustive presentation of cur-

rent knowledge and may draw the attention of users to

unexpected locations of gene products in the cells. The

user may choose to delete some of these instances

hence selecting a posteriori the most representative one.

The main benefit of InteractomeBrowser resides in its

direct interaction with the database described in this
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report. Indeed, it provides a ready-to-use web-based ser-

vice that requires only few manipulations to retrieve a

network of interactions (see video tutorial provided as

additional file). Notably, in addition to physical interac-

tions it offers a unified access to miRNA targets and

results from ChIP-Seq experiments derived from CHEA.

Presently, the data sources associated with the Interac-

tomeBrowser plug-in are restricted to human and

mouse. Indeed, one of the main objectives of Interacto-

meBrowser is to help users in creating regulatory maps

to study human gene regulatory networks in physiologi-

cal and pathological conditions. The choice of mouse as

an additional organism supported by our database is a

natural choice as it is a widely used model of human

physiopathology. However, we are already planning to

add new organisms in the near future.

As more and more experimentally validated interac-

tions are available, we hope that this tool will prove very

useful for researchers.

Availability and requirements
InteractomeBrowser comes as a plugin for Transcripto-

meBrowser and is available at: http://tagc.univ-mrs.fr/

tbrowser/. Our database is updated on a regular basis.

See additional files for a video tutorial.

• Project name: InteractomeBrowser

• Project home page: http://tagc.univ-mrs.fr/tbrowser/

• Operating system(s): Platform independent (Java)

• Programming language: Java

• Other requirements: Java > 1.6.X

• License: no license required

• Any restrictions to use by non-academics: none

List of abbreviation used
PWM: Position Weight Matrices; GRN: gene regulatory

network; GO: Gene Ontology; micro RNA: miRNA; TF:

transcription factors; TFBS: transcription factor binding

site; TBMC: TranscriptomeBrowser Motif Conservation.

Additional material

Additional file 1: “Number of predicted motifs versus GC content of

PWMs”. Each point corresponds to the results obtained using one PWM

on mouse genome. The name of a representative transcription factor for

each PWM is displayed together with the PWM identifier (informations

are separated using a pipe character). The size of the point is correlated

with info content of the corresponding matrix).

Additional file 2: “Summary of functional enrichment analysis using

ClueGO cytoscape plugin”. We estimated the number of predicted

regulators for each gene of the human genome by computing the

number of non-redundant position-specific motifs associated with each

genes. Genes in the top 1% regards to the number of regulators were

used as input for the ClueGO plugin.

Additional file 3: “Summary of functional enrichment analysis using

ClueGO cytoscape plugin”. We estimated the number of predicted

regulators for each gene of the mouse genome by computing the

number of non- redundant position-specific motifs associated with each

genes. Genes in the top 1% regards to the number of regulators were

used as input for the ClueGO plugin.

Additional file 4: “TFBS predictions in the mouse genome”. A bed

file containing TFBS predictions in the mouse genome. 1 - chrom - The

name of the chromosome. Fields contain the following informations:

chromStart - The starting position of the feature in the chromosome;

chromEnd - The ending position of the feature in the chromosome;

name - PWM identifier and representative names; score - A score for the

PWM hit; strand - Defines the strand - either ‘+’ or ‘-’; gene id - The gene

id of the target gene; geneSymbol- The genesymbol of the target gene.

Additional file 5: “TFBS predictions in the human genome”. A bed

file containing TFBS predictions in the human genome. 1 - chrom - The

name of the chromosome. Fields contain the following informations:

chromStart - The starting position of the feature in the chromosome;

chromEnd - The ending position of the feature in the chromosome;

name - PWM identifier and representative names; score - A score for the

PWM hit; strand - Defines the strand - either ‘+’ or ‘-’; gene id - The gene

id of the target gene; geneSymbol- The genesymbol of the target gene.

Additional file 6: “InteractomeBrowser functionalities”. Contains a

web link to a screencast showing basic use of InteractomeBrowser

plugin.

Additional file 7: “Subset of Gene Ontology used for the cell

compartment-based layout”. Hierarchical structure of the subset of

Gene Ontology used in InteractomeBrowser for the cell compartment-

based layout. Colors highlight the main compartments.
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