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Laurence Baranger5, Franck Geneviève3, Isabelle Luquet4, Mathilde Hunault-Berger6, Annaelle Beucher3,

Aline Schmidt-Tanguy2,6, Marc Zandecki3, Yves Delneste2, Norbert Ifrah2,6 and Philippe Guardiola1,2,6*

Abstract

Background: Gene expression profiling has shown its ability to identify with high accuracy low cytogenetic risk

acute myeloid leukemia such as acute promyelocytic leukemia and leukemias with t(8;21) or inv(16). The aim of

this gene expression profiling study was to evaluate to what extent suboptimal samples with low leukemic blast

load (range, 2-59%) and/or poor quality control criteria could also be correctly identified.

Methods: Specific signatures were first defined so that all 71 acute promyelocytic leukemia, leukemia with t(8;21)

or inv(16)-AML as well as cytogenetically normal acute myeloid leukemia samples with at least 60% blasts and

good quality control criteria were correctly classified (training set). The classifiers were then evaluated for their

ability to assign to the expected class 111 samples considered as suboptimal because of a low leukemic blast load

(n = 101) and/or poor quality control criteria (n = 10) (test set).

Results: With 10-marker classifiers, all training set samples as well as 97 of the 101 test samples with a low blast

load, and all 10 samples with poor quality control criteria were correctly classified. Regarding test set samples, the

overall error rate of the class prediction was below 4 percent, even though the leukemic blast load was as low as

2%. Sensitivity, specificity, negative and positive predictive values of the class assignments ranged from 91% to

100%. Of note, for acute promyelocytic leukemia and leukemias with t(8;21) or inv(16), the confidence level of the

class assignment was influenced by the leukemic blast load.

Conclusion: Gene expression profiling and a supervised method requiring 10-marker classifiers enable the

identification of favorable cytogenetic risk acute myeloid leukemia even when samples contain low leukemic blast

loads or display poor quality control criterion.

Background

Prognostic evaluation is a critical step in newly diag-

nosed patients with acute myeloid leukemia (AML) in

order to identify those at high risk of relapse. For AML

patients, cytogenetic abnormalities as well as gene muta-

tions and/or hyper-expressions detected at diagnosis are

the main prognostic factors guiding the initial treatment

strategy in a risk-oriented manner [1-4]. Hypergranular

acute promyelocytic leukemia (APL), as well as AMLs

with either translocation t(8;21)(q22;q22) [t(8;21)-AMLs]

or inversion inv(16)(p13q22)/t(16;16)(p13;q22) [inv(16)-

AMLs], are well-defined entities associated with a favor-

able outcome [1,3]. They can be distinguished from all

other AML subtypes based on specific chromosomal

alterations and fusion genes: PML/RAR-alpha fusion

gene with reciprocal translocation t(15;17)(q24;q21) for

APLs, AML1/ETO (also called RUNX1/RUNX1T1)
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fusion gene for t(8;21)-AMLs, and CBFB/MYH11 fusion

gene for AMLs with either inv(16)(q21;q22) or balanced

reciprocal translocation t(16;16)(q21;q22). Of note, in up

to 15 percent of APLs, no translocation t(15;17)(q24;

q21) is detected by conventional cytogenetics at diagno-

sis, despite PML/RARA fusion gene is detected using

molecular assays [5,6]. Similarly, cryptic t(8;21)(q22;q22)

and inv(16)(q21;q22), undetected by conventional cyto-

genetics, have also been reported [7-9].

With samples containing a high leukemic blast load,

microarray-based gene expression profiling (GEP) and

class prediction analyses have demonstrated their ability

to assign AML samples to one of these three well char-

acterized favorable cytogenetic risk AML subtypes, with

high accuracy and low error rates [10-18]. One of the

largest class prediction analyses in AML achieved 100

percent classification accuracy with respect to APL, t

(8;21)-AML, and inv(16)-AML subtypes, indeed [10].

However, in the majority of those studies, the minimum

percentage of leukemic cells within each sample is most

often above 60 percent [10-18], an arbitrary threshold

that is significantly different from the one used by cytol-

ogists for the diagnosis of AML, i.e., excess of blasts

greater or equal to 20 percent.

To our knowledge, the impact of the leukemic blast

load and/or of the sample quality on microarray-derived

class prediction results has not been specifically studied

in AMLs. For centers wishing to integrate microarray-

based GEP in a routine prognostic workflow for newly

diagnosed AML patients, one critical issue is the ability

to perform accurate class prediction analysis with sub-

optimal samples, i.e., containing as low as 20 percent

blasts and even below, and/or not fulfilling all quality

control criteria along their process.

In this study, GEP was first used to define a limited

set of markers allowing to correctly classify 71 patients

with either APL, t(8;21)-AML, inv(16)-AML or cytogen-

etically normal AML (NK-AML) based on samples con-

taining at least 60 percent of leukemic blasts and

characterized by good quality control criteria (training

set including optimal samples). The classifiers derived

from this first supervised analysis were then evaluated

for their ability to assign to the correct class 111 subop-

timal samples with low leukemic blast load (from 2 to

59 percent) and/or poor quality control criteria (test set

including suboptimal samples), as well as duplicates of

three AML cell lines.

Methods

Characteristics of the patients and samples

A total of 182 bone marrow or peripheral blood samples

from 97 AML patients, diagnosed with either APL (n =

18), t(8;21)-AML (n = 19), inv(16)-AML (n = 29), or

NK-AML (n = 31), followed at Angers University

Hospital (n = 72) or Reims University Hospital (n = 25),

were analyzed, as well as duplicated samples of NB4,

Kasumi-1, and ME-1 cell lines (n = 6 samples), which

are derived from patients with APL, t(8;21)-AML and

inv(16)-AML, respectively. In addition, 18 samples of

unique (n = 9) or pooled (n = 9) normal bone marrows

obtained from 12 healthy volunteers were included in

the study. The main characteristics of AML patients and

samples are summarized in Tables 1 and 2. Conven-

tional cytogenetic banding, fluorescence in situ hybridi-

zation, and RT-PCR analysis of fusion gene transcripts

were used to identify patients with APL, t(8;21)-AML or

inv(16)-AML, as previously reported [19]. Analysis of

NPM1, FLT3 and CEBPA for mutations was also per-

formed for all patients [20-23]. All participants gave

their written informed consent, and the study was

approved by the Ethical Committee of Angers University

Hospital.

The gene expression dataset, generated from 206 sam-

ples (182 AML samples, duplicated samples of NB4,

Kasumi-1, and ME-1 cell lines, 18 samples of unique or

combined normal bone marrows), was divided into a

Training Set (n = 89 samples) and a Test Set (n = 117

Table 1 Characteristics of the patients.

Covariates Overall APLs t(8;21)-
AMLs

inv(16)-
AMLs

NK-AMLs

Patients N = 97 N = 18 N = 19 N = 29 N = 31

Gender

Males 44 7 13 15 9

Females 53 11 6 14 22

Age at diagnosis

Median (years) 54 56 53 38 60

Range 18-87 19-87 18-84 18-70 25-78

Leukocytosis at
diagnosis

WBC ≥ 30 G/L 39 2 6 12 19

FAB classification

M1 or M2 45 0 18 6 21

M3 18 18 0 0 0

M4 or M5 34 0 0 24 10

Cytogenetics

Expected
anomaly*

62 16 19 27 0

Normal karyotype 34 2 0 1 31

Karyotype failure 1 0 0 1 0

Gene mutations

FLT3-ITD$ 19 2 1 2 14

FLT3-D835& 7 2 2 2 1

NPM1 18 0 0 1 17

CEBPA (mono-
allelic)

4 0 2 1 1

WBC, white blood cells. * t(15;17), t(8;21), inv(16) or t(16;16) for APL, t(8;21)-

AML and inv(16)-AML, respectively detected. $ Internal tandem duplication.
&Mutation Asp835 of the tyrosine kinase domain.

de la Blétière et al. BMC Medical Genomics 2012, 5:6

http://www.biomedcentral.com/1755-8794/5/6

Page 2 of 12



samples). The Training Set, used to identify specific

class markers (classifiers), included 18 samples of unique

or pooled normal bone marrows (see details about the

pools below) as well as 71 AML samples obtained from

patients (bone marrow samples, n = 48; peripheral

blood samples, n = 23) newly diagnosed with APL (n =

14 patients), t(8;21)-AML (n = 14 patients), inv(16)-

AML (n = 15 patients) or NK-AML (n = 28 patients),

which contained at least 60 percent blasts. The class

prediction analysis was performed on a Test Set includ-

ing 111 suboptimal AML samples (bone marrow sam-

ples, n = 78; peripheral blood samples, n = 33 obtained

from 53 patients), i.e., with a low leukemic blast load (n

= 101 samples containing from 2 to 56 percent blasts)

and/or poor quality control criteria (n = 10 samples) as

well as duplicated samples of NB4, Kasumi-1, and ME-1

cell lines (n = 6 samples). Among test samples with

optimal quality control criteria, 22 originally contained

less than 60% blasts (range, 5-56 percent blasts),

whereas 79 were high blast load ones artificially diluted

within one of the five pools of normal bone marrows

(see details below and Tables 2 and 3). The 10 samples

with suboptimal quality control criteria were character-

ized by either a low RNA integrity number suggestive of

RNA degradation (n = 2), a low cRNA amount obtained

after total RNA amplification and labeling (cRNA hybri-

dized on BeadChips < 750 micrograms) (n = 7) or both

(n = 1) (Tables 2 and 3).

Sample preparation for gene expression profiling

Blasts and mononuclear cells were purified by Ficoll-

Hypaque density gradient centrifugation from bone mar-

row or peripheral blood samples (Nygaard, Oslo, Norway).

Isolated cell samples were then immediately cryopre-

served. Total RNAs were extracted from 107 thawed cells

using RNEasy® Mini Kits (Qiagen Incorporation, Valencia,

USA). Total RNA quantification was performed using the

Nanodrop ND-1000 spectrophotometer (Thermo Fisher

Scientific Incorporation, Waltham, USA) according to

manufacturer recommendations. Integrity of the extracted

RNAs was assessed with the Bioanalyzer 2100 and the

RNA6000 Nano kit (Agilent Technologies Incorporation,

Santa Clara, USA). A RNA integrity number (RIN) greater

or equal to 7.00 was achieved for 203 samples (RNA

degradation observed for 3 AML samples). No sign of

DNA contamination was detected in any of the 206 sam-

ples analyzed. The starting amount of total RNA used for

the reactions was 200 nanograms per sample, for all sam-

ples. The Illumina Total Prep RNA Amplification Kit

(Applied Biosystems/Ambion, Austin, USA) was used to

generate biotinylated, amplified cRNA according to the

manufacturer recommendations (see additional file 1 for

details). To study the leukemic blast load effect on the

class prediction accuracy, besides including 22 samples

with good quality control criteria that originally contained

less than 60 percent of leukemic blasts, 79 artificially gen-

erated low leukemic blast load samples, via a “dilution/

mixture” approach, were also assessed (see additional file 1

for details for the generation of low leukemic blast load

AML samples by a “dilution/mixture” approach). Hybridi-

zation on Illumina HumanHT-12 v3 Expression Bead-

Chips, staining and detection of cRNAs on microarrays

using an I-Scan system were performed according to Illu-

mina’s protocol (see additional file 1 for details).

Data analyses

GenomeStudio 2010.3 software (Illumina Inc., San

Diego, USA) and its Gene Expression Analysis Module

Table 2 Characteristics of the samples.

Covariates Overall APLs t(8;21)-
AMLs

inv(16)-
AMLs

NK-
AMLs

Samples* N = 206 N = 40 N = 39 N = 52 N = 57

Groups

Training Set AML
samples

71 14 14 15 28

Training Set
NBM&samples

18 – – – –

Test Set AML
samples*

111 24 23 35 29

Test Set AML cell
lines

6 2 2 2 –

Samples with
optimal QCC#

Blast % < 60%
(undiluted)

22 3 5 11 3

Diluted at 50% 28 5 5 5 13

Diluted at 75% 27 5 4 5 13

Diluted at 90% 12 4 4 4 0

Diluted at 95% 12 4 4 4 0

Overall, blasts
< 60%

101 21 22 29 29

Overall, blasts
≥ 40% < 60%

23 2 2 6 13

Overall, blasts
≥ 20% < 40%

40 6 9 10 15

Overall, blasts
≥ 10% < 20%

15 4 4 6 1

Overall, blasts
≥ 5% < 10%

14 5 4 5 0

Overall, blasts
< 5%

9 4 3 2 0

Samples with poor
QCC#

10 3 1 6 0

cRNA $ < 750
ng

7 1 1 5 0

Low RIN% 2 2 0 0 0

Low RIN + low
cRNA

1 0 0 1 0

* including the three AML cell lines. # quality control criteria. $ labeled cRNA

to be hybridized on Illumina Beadchips.
% RNA integrity number lower than 7.00. &NBM, normal bone marrow.
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Table 3 Characteristics and class assignment of the 117 Test Set samples.

UPN Cell Source Time Blasts % Dilution QCC Real Class Assigned Class Confidence

NB4 BM Diagnosis 100 No Dilution OK APLs Test Set APLs 10.802

NB4 BM Diagnosis 100 No Dilution OK APLs Test Set APLs 17.507

UPN53 BM Diagnosis 43 Dilution 50% OK APLs Test Set APLs 26.028

UPN22 BM Diagnosis 40 Dilution 50% OK APLs Test Set APLs 29.91

UPN65 BM Diagnosis 39 Dilution 50% OK APLs Test Set APLs 26.403

UPN40 BM Diagnosis 33 Dilution 50% OK APLs Test Set APLs 29.91

UPN50 PB Diagnosis 27 Dilution 50% OK APLs Test Set APLs 19.2

UPN53 BM Diagnosis 22 Dilution 75% OK APLs Test Set APLs 20.904

UPN22 BM Diagnosis 20 Dilution 75% OK APLs Test Set APLs 29.91

UPN65 BM Diagnosis 20 Dilution 75% OK APLs Test Set APLs 15.763

UPN40 BM Diagnosis 16 Dilution 75% OK APLs Test Set APLs 26.425

UPN5 PB Diagnosis 15 No Dilution OK APLs Test Set APLs 17.193

UPN50 PB Diagnosis 14 Dilution 75% OK APLs Test Set APLs 10.46

UPN48 PB Diagnosis 11 No Dilution OK APLs Test Set APLs 23.005

UPN53 BM Diagnosis 9 Dilution 90% OK APLs Test Set APLs 16.749

UPN22 BM Diagnosis 8 Dilution 90% OK APLs Test Set APLs 15.781

UPN40 BM Diagnosis 7 Dilution 90% OK APLs Test Set APLs 10.143

UPN86 PB Diagnosis 7 No Dilution OK APLs Test Set APLs 11.641

UPN50 PB Diagnosis 6 Dilution 90% OK APLs Test Set APLs 2.661

UPN22 BM Diagnosis 4 Dilution 95% OK APLs Test Set APLs 7.665

UPN53 BM Diagnosis 4 Dilution 95% OK APLs Test Set APLs 1.201

UPN40 BM Diagnosis 3 Dilution 95% OK APLs Test Set APLs 10.667

UPN50 PB Diagnosis 3 Dilution 95% OK APLs Test Set APLs 4.337

UPN59 PB Diagnosis 70 No Dilution Low RIN APLs Test Set APLs 26.497

UPN82 BM Diagnosis 64 No Dilution Low RIN APLs Test Set APLs 22.822

UPN13 BM Diagnosis 30 No Dilution Low cRNA APLs Test Set APLs 18.651

Kasumi-1 BM Diagnosis 100 No Dilution OK t(8;21)-AMLs Test Set t(8;21)-AMLs 5.184

Kasumi-1 BM Diagnosis 100 No Dilution OK t(8;21)-AMLs Test Set t(8;21)-AMLs 1.525

UPN30 PB Diagnosis 49 Dilution 50% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 19.199

UPN69 PB Diagnosis 41 Dilution 50% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 30.674

UPN51 BM Relapse 38 Dilution 50% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 20.609

UPN76 PB Diagnosis 31 No Dilution OK t(8;21)-AMLs Test Set t(8;21)-AMLs 32.067

UPN69 BM Diagnosis 30 Dilution 50% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 25.183

UPN26 BM Diagnosis 27 No Dilution OK t(8;21)-AMLs Test Set t(8;21)-AMLs 14.89

UPN30 PB Diagnosis 25 Dilution 75% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 17.719

UPN61 BM Diagnosis 24 Dilution 50% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 30.674

UPN69 PB Diagnosis 21 Dilution 75% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 27.738

UPN21 BM Diagnosis 21 No Dilution OK t(8;21)-AMLs Test Set t(8;21)-AMLs 24.116

UPN95 BM Diagnosis 20 No Dilution OK t(8;21)-AMLs Test Set t(8;21)-AMLs 30.674

UPN51 BM Relapse 19 Dilution 75% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 10.519

UPN94 PB Diagnosis 16 No Dilution OK t(8;21)-AMLs Test Set t(8;21)-AMLs 28.631

UPN69 BM Diagnosis 15 Dilution 75% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 22.744

UPN30 PB Diagnosis 10 Dilution 90% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 16.958

UPN69 PB Diagnosis 6 Dilution 90% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 13.468

UPN30 PB Diagnosis 5 Dilution 95% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 13.581

UPN61 BM Diagnosis 5 Dilution 90% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 28.443

UPN51 BM Diagnosis 4 Dilution 90% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 3.096

UPN69 PB Diagnosis 3 Dilution 95% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 12.875

UPN51 BM Diagnosis 2 Dilution 95% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 4.6

UPN61 BM Diagnosis 2 Dilution 95% OK t(8;21)-AMLs Test Set t(8;21)-AMLs 19.237

UPN30 PB Diagnosis 25 No Dilution Low cRNA t(8;21)-AMLs Test Set t(8;21)-AMLs 15.256
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Table 3 Characteristics and class assignment of the 117 Test Set samples. (Continued)

ME-1 BM Diagnosis 100 No Dilution OK inv(16)-AMLs Test set inv(16)-AMLs 15.836

ME-1 BM Diagnosis 100 No Dilution OK inv(16)-AMLs Test set inv(16)-AMLs 18.901

UPN52 BM Diagnosis 56 No Dilution OK inv(16)-AMLs Test set inv(16)-AMLs 26.467

UPN45 BM Diagnosis 50 Dilution 50% OK inv(16)-AMLs Test set inv(16)-AMLs 30.188

UPN31 BM Diagnosis 50 No Dilution OK inv(16)-AMLs Test set inv(16)-AMLs 29.511

UPN88 BM Diagnosis 46 No Dilution OK inv(16)-AMLs Test set inv(16)-AMLs 31.576

UPN47 BM Diagnosis 41 Dilution 50% OK inv(16)-AMLs Test set inv(16)-AMLs 30.517

UPN37 BM Diagnosis 40 No Dilution OK inv(16)-AMLs Test set inv(16)-AMLs 28.551

UPN9 BM Diagnosis 35 No Dilution OK inv(16)-AMLs Test set inv(16)-AMLs 31.083

UPN87 PB Diagnosis 35 No Dilution OK inv(16)-AMLs Test set inv(16)-AMLs 29.511

UPN10 BM Diagnosis 33 Dilution 50% OK inv(16)-AMLs Test set inv(16)-AMLs 17.561

UPN43 PB Diagnosis 31 No Dilution OK inv(16)-AMLs Test set inv(16)-AMLs 24.289

UPN52 BM Diagnosis 28 Dilution 50% OK inv(16)-AMLs Test set inv(16)-AMLs 24.608

UPN45 BM Diagnosis 25 Dilution 75% OK inv(16)-AMLs Test set inv(16)-AMLs 23.687

UPN67 PB Diagnosis 24 No Dilution OK inv(16)-AMLs Test set inv(16)-AMLs 31.576

UPN36 PB Diagnosis 23 No Dilution OK inv(16)-AMLs Test set inv(16)-AMLs 27.432

UPN47 BM Diagnosis 20 Dilution 75% OK inv(16)-AMLs Test set inv(16)-AMLs 16.733

UPN37 BM Diagnosis 20 Dilution 50% OK inv(16)-AMLs Test set inv(16)-AMLs 26.644

UPN10 BM Diagnosis 16 Dilution 75% OK inv(16)-AMLs Test set inv(16)-AMLs 10.252

UPN52 BM Diagnosis 14 Dilution 75% OK inv(16)-AMLs Test set inv(16)-AMLs 6.543

UPN37 PB Relapse 14 No Dilution OK inv(16)-AMLs Test set t(8;21)-AMLs 4.33

UPN45 BM Diagnosis 10 Dilution 90% OK inv(16)-AMLs Test set inv(16)-AMLs 14.568

UPN47 BM Diagnosis 10 Dilution 90% OK inv(16)-AMLs Test set inv(16)-AMLs 15.298

UPN37 BM Diagnosis 10 Dilution 75% OK inv(16)-AMLs Test set inv(16)-AMLs 20.423

UPN10 BM Diagnosis 7 Dilution 90% OK inv(16)-AMLs Test set inv(16)-AMLs 8.479

UPN52 BM Diagnosis 6 Dilution 90% OK inv(16)-AMLs Test set APLs 0.6

UPN45 BM Diagnosis 5 Dilution 95% OK inv(16)-AMLs Test set inv(16)-AMLs 15.056

UPN47 BM Diagnosis 5 Dilution 95% OK inv(16)-AMLs Test set inv(16)-AMLs 2.293

UPN7 BM Relapse 5 No Dilution OK inv(16)-AMLs Test set t(8;21)-AMLs 0.473

UPN10 BM Diagnosis 4 Dilution 95% OK inv(16)-AMLs Test set inv(16)-AMLs 3.715

UPN52 BM Diagnosis 3 Dilution 95% OK inv(16)-AMLs Test set inv(16)-AMLs 3.79

UPN6 BM Diagnosis 74 No Dilution Low cRNA inv(16)-AMLs Test set inv(16)-AMLs 27.753

UPN45 BM Diagnosis 25 No Dilution Low cRNA inv(16)-AMLs Test set inv(16)-AMLs 31.005

UPN47 BM Diagnosis 20 No Dilution Low cRNA inv(16)-AMLs Test set inv(16)-AMLs 26.009

UPN79 BM Diagnosis 47 No Dilution Low cRNA inv(16)-AMLs Test set inv(16)-AMLs 29.75

UPN90 PB Diagnosis 9 No Dilution Low cRNA inv(16)-AMLs Test set inv(16)-AMLs 2.693

UPN23 BM Diagnosis 27 No Dilution Low RIN + Low cRNA inv(16)-AMLs Test set inv(16)-AMLs 24.111

UPN60 PB Diagnosis 50 No Dilution OK NK-AMLs Test Set inv(16)-AMLs 0.948

UPN72 BM Diagnosis 49 Dilution 50% OK NK-AMLs Test Set NK-AMLs 26.707

UPN8 BM Diagnosis 48 Dilution 50% OK NK-AMLs Test Set NK-AMLs 27.354

UPN44 PB Diagnosis 47 Dilution 50% OK NK-AMLs Test Set NK-AMLs 28.541

UPN73 PB Diagnosis 47 Dilution 50% OK NK-AMLs Test Set NK-AMLs 19.624

UPN97 BM Diagnosis 47 Dilution 50% OK NK-AMLs Test Set NK-AMLs 22.934

UPN1 PB Diagnosis 46 Dilution 50% OK NK-AMLs Test Set NK-AMLs 26.707

UPN66 BM Diagnosis 46 Dilution 50% OK NK-AMLs Test Set NK-AMLs 23.454

UPN78 PB Diagnosis 46 Dilution 50% OK NK-AMLs Test Set NK-AMLs 28.541

UPN25 BM Diagnosis 43 Dilution 50% OK NK-AMLs Test Set NK-AMLs 21.699

UPN38 BM Diagnosis 40 Dilution 50% OK NK-AMLs Test Set NK-AMLs 26.707

UPN74 BM Diagnosis 40 Dilution 50% OK NK-AMLs Test Set NK-AMLs 19.777

UPN89 BM Diagnosis 40 Dilution 50% OK NK-AMLs Test Set NK-AMLs 29.115

UPN19 BM Diagnosis 39 No Dilution OK NK-AMLs Test Set NK-AMLs 25.313

UPN11 BM Diagnosis 37 Dilution 50% OK NK-AMLs Test Set NK-AMLs 29.776
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(version 1.8.0) were used for signal extraction and nor-

malization (for the Training Set only). Briefly, the Invar-

iant Rank normalization method was applied to the

primary probe data obtained from the Training Set sam-

ples. Processed probe data were then filtered according

to the following criteria: minimal signal intensity fold

change of 1.50 across all samples; minimal probe signal

intensity absolute change of 150 across all samples

(choice based on the maximum expression levels of

XIST transcript in males, and CYorf15B transcript in

females); and maximal value for probe signal intensity of

50 000 across all samples. Among the 48 803 probes

assessed on HumanHT-12 v3 Expression BeadChips, 11

779 satisfied these low stringency filtering criteria. Fil-

tered data were then log-transformed and exported to

appropriate softwares for the analyses. Regarding the

Test Set samples processing, only data concerning the

markers identified during the first analysis, restricted to

the Training Set, were used. These raw data were log-

transformed and merged to the one of the Training Set

for class prediction analyses. The Class Prediction Mod-

ule of ArrayMiner 5.3.3 (Optimal Design, Brussels, Bel-

gium - http://www.optimaldesign.org), which uses a

proprietary method based on grouping genetic algo-

rithms, was used for all class prediction analyses (see

additional file 1 for details) [24]. This module allowed

calculating the confidence level of the class prediction

for each sample, or for a given group of samples, and

the fitness of the overall model. This estimator enabled

optimizing the number of probes/markers to be used

per class. Briefly, the confidence level of the class pre-

diction analysis reflected the strength with which the

probe/marker landed each sample into its predicted

class. More precisely, for each sample, the following

happened: (1) each probe/marker casted its vote for the

sample being in each of the train classes, (2) the votes

were summed up over all probes/markers, yielding a

vote for each of the classes, (3) the score of the winner

class (call it S1) was compared to the second best (call

it S2), and the confidence level of the classification of

the sample was computed as (S1-S2)/(S1+S2). In the

Cross-validation analysis, the same was performed,

except that the probe/marker set was recomputed each

time, leaving out the sample being tested in order to

yield an honest estimate of the worth of the method.

The fitness of a class prediction model was computed

on the test samples only, in order to estimate how good

the class prediction (of the “unclassified” samples) was,

and reflected the success with which the model was able

to correctly (re)classify the already “classified” samples.

The fitness of the model was in fact the result of a

cross-validation (as described above) on the Training

samples, with the integral part being equal to the num-

ber of correct (re)classifications, and the fractional part

being computed as follows: (1) if all samples were cor-

rectly classified, the average confidence level (as defined

above) of all samples, (2) if some samples were misclas-

sified, the average confidence level of the correctly clas-

sified samples minus the average confidence level of the

misclassified ones. If all samples were misclassified, the

fitness of the model was zero. Omics Explorer 2.2 soft-

ware (Qlucore, Lund, Sweden - http://www.qlucore.

com) was used for principal-component analyses. S-

Plus® 8.0 Enterprise Developer software (Insightful Cor-

poration, Seattle, USA) was used for all other statistical

analyses. The two datasets (Training Set and Test Set)

discussed in this publication have been deposited in

NCBI’s Gene Expression Omnibus and are accessible

Table 3 Characteristics and class assignment of the 117 Test Set samples. (Continued)

UPN96 PB Diagnosis 35 No Dilution OK NK-AMLs Test Set NK-AMLs 27.303

UPN72 BM Diagnosis 25 Dilution 75% OK NK-AMLs Test Set NK-AMLs 26.707

UPN8 BM Diagnosis 24 Dilution 75% OK NK-AMLs Test Set NK-AMLs 27.357

UPN44 PB Diagnosis 24 Dilution 75% OK NK-AMLs Test Set NK-AMLs 29.235

UPN97 BM Diagnosis 24 Dilution 75% OK NK-AMLs Test Set NK-AMLs 24.035

UPN1 PB Diagnosis 23 Dilution 75% OK NK-AMLs Test Set NK-AMLs 26.707

UPN66 BM Diagnosis 23 Dilution 75% OK NK-AMLs Test Set NK-AMLs 19

UPN73 PB Diagnosis 23 Dilution 75% OK NK-AMLs Test Set NK-AMLs 24.104

UPN78 PB Diagnosis 23 Dilution 75% OK NK-AMLs Test Set NK-AMLs 28.541

UPN25 BM Diagnosis 21 Dilution 75% OK NK-AMLs Test Set NK-AMLs 18.99

UPN38 BM Diagnosis 20 Dilution 75% OK NK-AMLs Test Set NK-AMLs 25.107

UPN74 BM Diagnosis 20 Dilution 75% OK NK-AMLs Test Set NK-AMLs 19.705

UPN89 BM Diagnosis 20 Dilution 75% OK NK-AMLs Test Set NK-AMLs 26.555

UPN11 BM Diagnosis 19 Dilution 75% OK NK-AMLs Test Set NK-AMLs 24.587

UPN, unique patient number. BM, bone marrow. PB, peripheral blood. QCC, quality control criteria.

Low cRNA, amount of labeled cRNA hybridized on the BeadChip below 750 ng. Low RIN, RNA integrity number below 7.00.
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through GEO Series accession number GSE34823 http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34823.

The dataset associated with the Training Set is also

linked to the SubSeries accession number GSE34577.

The dataset associated with the Test Set is also linked

to the SubSeries accession number GSE34714.

Results

Identification of classifiers from optimal APL, t(8;21)-AML,

inv(16)-AML and NK-AML samples

First, using the Class Prediction Module of ArrayMiner

5.3.3 software, classifiers associated with the APL, t

(8;21)-AML, inv(16)-AML, NK-AML classes were

defined based on 71 samples containing at least 60% of

leukemic blasts and characterized by good quality con-

trol criteria (Optimal samples - Training Set). At this

stage, unique and pooled normal bone marrow samples

were also included in the model as the objective was to

enhance the predictive capacity of the classifiers, espe-

cially for Test Set samples containing a majority of resi-

dual normal cells and a low leukemic blast load.

Evaluating classifiers which included from 1 to 100 mar-

kers per class, all Training Set samples were assigned to

the correct class when selecting from 3 to 46 markers

per class (class prediction accuracy, sensitivity, specifi-

city, negative and positive predictive values, 100% for

each class - error rate, 0%), whether the source of leuke-

mic cells was bone marrow or peripheral blood. The

best model fitness was obtained with 8, 9 or 10 markers

per classifier. To select the optimal model among these

three, a principal-component analysis was performed.

The highest cumulative percent of variance accounted

for by the first three components was obtained with the

10-marker classifiers (cumulative percent of variance

with classifiers including 10 markers, 79 percent - addi-

tional file 1, Figure S1), which led to select these for

subsequent analyses (Figure 1). The best median confi-

dence levels for the correct assignment of the Training

Set samples were achieved with 10, 2, 1, and 9 markers

for APLs, t(8;21)-AMLs, inv(16)-AMLs, and NK-AMLs,

respectively (additional file 1, Figure S2). Regarding NK-

AMLs and in agreement with previous reports, the high-

est median confidence levels were observed for NK-

AMLs with mutated NPM1 and the lowest ones for NK-

AMLs with neither NPM1 nor FLT3 mutations (addi-

tional file 1, Figure S3) [22-26].

Class prediction analysis for suboptimal AML samples -

Impact of the leukemic blast load

Using the 10-marker classifiers, the GGA-based super-

vised method was subsequently applied to a series of

101 Test Set samples, with optimal quality control cri-

teria, for which the leukemic blast load was originally

below 60 percent or had been artificially lowered to less

than 60 percent blasts by dilution series. Only the classi-

fiers associated with one of the four AML classes were

Figure 1 Heatmap of the 40 markers used to define the four AML classifiers allowing the assignment of all Training Set AML samples

to the correct class. From the top to the bottom: APL, t(8;21)-AML, inv(16)-AML, and NK-AML classes - 10 markers per class (normal bone

marrow class is not represented). Each column represents a sample; each row represents a marker (gene transcript). The log2 relative gene

expression scale is depicted on the bottom left.
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considered for this analysis. All APL and t(8;21)-AML

Test Set samples were correctly classified, even when

containing as low as 2 percent blasts (Table 3 - Figure 2).

Twenty six of the 29 inv(16)-AML samples were

assigned to the expected class, including the 95 percent-

diluted ones which contained as low as 3 percent blasts

(error rate, 10 percent). In all three inv(16)-AML Test

Set samples that were incorrectly classified, CBFB-

MYH11 fusion gene was detected by FISH assay. For

APL, t(8;21)-AML and inv(16)-AML classes, the blast

load significantly influenced the confidence level of the

class assignment (Figures 3 - additional file 1, Figure

S4). For NK-AMLs, all but 1 of the 29 Test Set samples

were correctly classified (error rate, 3 percent) (Table 3).

This misclassified sample, obtained at diagnosis from

UPN60, had no NPM1, FLT3 or CEBPA mutations. Its

class assignment, characterized by a low confidence level

(given its blast load - Table 1, additional file 1, Figure

S4), was not confirmed as no PML/RARA fusion gene

was detected by FISH analysis and RT-PCR assay.

Across the range of leukemic blast loads studied in the

Test Set, the confidence level associated with the class

assignment of diluted AML samples was not different

from the one achieved for undiluted low leukemic blast

load samples (Table 3 - additional file 1, Figure S5). For

those 101 AML Test set samples with low leukemic

blast load and optimal quality control criteria, the over-

all error rate was 3.9 percent.

Class prediction analysis for suboptimal AML samples -

Impact of quality control criteria

When the performance of the 10-marker classifiers was

assessed on 10 samples that did not fulfill all quality

control criteria, all suboptimal samples were assigned to

the expected class, even though their leukemic blast

content was as low as 9 percent (median, 55 percent;

range 9 to 100 percent) (Table 3 - additional file 1, Fig-

ure S6). The confidence level for the class assignment of

these samples was not different from the one achieved

for the other Test Set samples (Data not shown).

Overall, the error rate was 3.6 percent for the entire

Test Set (excluding AML cell lines that were considered

as controls), and for each class, sensitivity and specifi-

city, negative and positive predictive values of the class

assignments ranged from 91 to 100 percent (additional

file 1, Figure S7).

Discussion
The integration of microarray-derived data to the cur-

rent workflow dealing with the prognostic evaluation of

AML patients requires the technology to deliver infor-

mative data for the majority of samples, including those

Figure 2 Results of the class assignment for the 107 AML Test Set samples fulfilling all quality control criteria based on the 10-marker

classifiers characterizing the APL, t(8;21)-AML, inv(16)-AML and NK-AML classes (all three AML cell lines run in duplicates included).

Each column represents a sample; each row represents a marker (gene transcript). The log2 relative gene expression scale is depicted on the

bottom left.
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with suboptimal characteristics. The current study

focused on this kind of samples - either with a low leu-

kemic blast load, poor quality control criteria or both -

and the ability to identify favorable-risk karyotype AMLs

in such situations, using microarray-based GEP and a

class prediction method based on GGA. Apart from the

study of de Ridder et al, which addressed the impact of

random, fixed and group-specific impurities on the

results of differential gene expression analyses, using a

limited set of samples and computer simulations, the

influence of the leukemic blast load on class prediction

accuracy based on GEP data has never been specifically

studied so far [25]. To evaluate the capacity of microar-

ray-derived predictors to correctly assigned samples

with a low leukemic blast load, besides using “real”

AML samples with low blast percentage, i.e., less than

60 percent, a “dilution/mixture” approach was consid-

ered [26,27]. This strategy has already been successfully

applied to assess the efficiency of various normalization

methods applied to microarray datasets. It consisted in

diluting labeled cRNAs of originally high blast load

AML samples within pools of normal bone marrow

labeled cRNAs. This approach was also considered as in

some AML subtypes, such as t(8;21)-AMLs, more differ-

entiated cells (not counted as blasts) are frequently of

leukemic origin, leading to under-estimate the leukemic

load of some “low blast content” samples. Consequently,

it became possible to accurately control the percentage

of leukemic blasts within the Test Set sample down to 2

percent.

Overall, considering the 111 Test Set samples with

low leukemic blast load and/or suboptimal quality con-

trol criteria, whether being peripheral blood or bone

marrow samples, the predictive capacity of the GGA-

derived model with 10-marker classifiers was encoura-

ging, with specificities ranging from 0.98 to 1.00, and

sensitivities ranging from 0.91 to 1.00. Moreover, con-

sidering AML samples containing 20 to 56 percent

blasts, the overall error rate was lower than 1.4 percent

(1 misclassified NK-AML sample out of 72). Finally,

APL, t(8;21)-AML, and inv(16)-AML samples containing

as low as 2 percent blasts could be correctly classified,

whether the classifiers mainly relied on a single marker,

such as for inv(16)-AMLs and t(8;21)-AMLs, or on the

overall set of 10 markers defining the classifier, as for

APL samples. However, regarding APL, t(8;21)-AML

and inv(16)-AML samples, the confidence level of the

class assignment was correlated to the percentage of

leukemic blasts within the studied samples. For NK-

AML samples, such a finding was not observed, prob-

ably because NK-AMLs represent a more heterogeneous

group of leukemias as compared to t(8;21)-AMLs, inv

(16)-AMLs or APLs in term of oncogenic processes.

This heterogeneity likely led to a higher variance of

gene expression profiles within the NK-AML class, to

the detriment of the interclass variance, hence influen-

cing the class prediction confidence level more than the

leukemic blast load. This hypothesis was supported by

the fact that, within the NK-AML class, the best predic-

tive capacity of the GGA was achieved for NPM1-

mutated samples, in accordance with previous studies,

and the worst one for samples with no NPM1 and FLT3

mutations [28-31].

Unexpectedly, the worst results of the class prediction

analysis were achieved for inv(16)-AML Test set samples

(Sensitivity, 0.91; negative predictive value, 0.96). Among

the three misclassified inv(16)-AML samples and for

which the presence of CBFB/MYH11 fusion gene was

confirmed by FISH analysis, all contained less than 20

percent blasts and two were obtained at the time of

relapse - from patients UPN7 and UPN37 -. Regarding

these two samples, which respectively contained 5 and

14 percent blasts, they were characterized by a low

expression level of most markers defining the inv(16)-

AML specific signature; especially MYH11, which

expression level was within the estimated background

signal range. It is noteworthy that for one of those two

patients, UPN37, the bone marrow sample obtained at

diagnosis was correctly classified, even when diluted at

50 and 75 percent (blast content, 20 and 10 percent,

Figure 3 Box plots of the confidence levels for the class

assignment of the APL, t(8;21)-AML, inv(16)-AML and NK-AML

Test Set samples according to their leukemic blast load. The

white vertical line and circle in the interior of the dark gray box is

located at the median of the data. The width of the box is equal to

the interquartile distance, which is the difference between the third

and first quartiles of the data. The interquartile distance indicates

the spread of the distribution for the data. The whiskers (the lines

extending from the left and right parts of the box) go to the

nearest value not beyond the span from the quartiles, i.e., 1.5 times

the interquartile distance from the center of the data. Points

beyond the whiskers are considered outliers and are drawn

individually, indicated in black (+).
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respectively). For this patient, a clonal evolution of the

disease was suspected as CD2, CD13, CD34 and CD117

expression values, assessed by flow cytometry on gated

leukemic cells, and MYH11 expression level (microarray

data) were significantly lower in the relapse sample as

compare to the ones observed in the diagnostic sample.

Verhaak et al in their study using Affymetrix GeneChips

reported that MYH11 expression level was sufficient to

identify inv(16)-AMLs [10]. The present results suggest

that the use of MYH11 as the sole marker for the inv

(16)-AML class could lead to unstable results in a class

prediction model, especially in low leukemic blast load

samples or in case of a clonal evolution at relapse. Of

note, the inv(16)-AML signature developed on the

AMLProfiler™ kit http://www.skyline-diagnostics.com,

which uses the Affymetrix™ platform, also includes a

set of 19 markers [32].

As reported by Kohlmann et al., sub-optimal AML

samples with poor quality control criteria, mainly

because of low amounts of hybridized cRNAs, were all

correctly classified, even though half of these contained

less than 60 percent blasts (down to 9 percent for

UPN90) [33]. Studying the impact of RNA degradation

on GEP analyses, similar results have been recently

reported by Opitz et al on a different microarray plat-

form [34]. As in the present study, they showed that

useful information could still be obtained from thermi-

cally degraded RNA; at least to a certain extent, and

depending on the length of the mRNA molecules. Inter-

estingly, even AML samples for which a third of the

required cRNA amount was hybridized on BeadChips

could be assigned to the correct class in the present

study, suggesting that the biological variance between

the AML classes was higher than the one related to

technical variability or artifacts. This result could also be

related to the fact that, during the sample processing,

the TotalPrep RNA Amplification kit that was used, did

not required any fragmentation step, which could

further alter poor quality RNA or lower the already

reduced cRNA amounts. These encouraging results, on

a limited set of poor quality samples, could also be

related to the classification method used, as the GGA-

based class prediction strategy aimed at finding the

most influential markers for each AML class (top mar-

kers with the highest inter-class variance and the lowest

intra-class variance). This GGA-based class prediction

method was indeed associated with the lowest error rate

and the highest predictive accuracy when compared to

other supervised methods, such as support vector

machines, random forests, artificial neural networks, k-

Nearest Neighbor or nearest shrunken centroids (also

known as PAM) (data not shown).

Although, in most cases, these favorable prognostic

chromosomal abnormalities and/or their related gene

products can be detected by karyotype, FISH or PCR

assay, they represent main targets for a microarray-

based class prediction analysis to be identified before

considering GEP as a useful tool in a routine workflow

for prognostic assessment of AML patients. The fact

that the AMLProfiler, a microarray-derived kit based on

the Affymetrix™ platform, has been recently commer-

cialized with the aim of achieving a molecular diagnosis

for APLs, t(8;21)-AMLs and inv(16)-AMLs, respectively

using 27, 31 and 19 markers, emphasizes this assump-

tion [32].

Finally, regarding the classifiers associated with APLs,

t(8;21)-AMLs or inv(16)-AMLs, 18 of the 28 markers

identified in this study (64 percent) had already been

reported in previous studies using various microarray

technologies (additional file 1, Table S1). These findings

(1) confirm that the Illumina bead-based technology is

as reliable, robust and sensitive as other microarray

technologies developed by commercial manufacturers or

academic facilities, and (2) suggest that the GGA-

derived class prediction approach is a highly efficient

one as it required a limited set of ten markers per class

to achieve accurate class assignments. Furthermore, this

study has identified new AML markers that will need

further studies to delineate their role in the leukemo-

genic events involved in APLs (CERCAM, COL23A1,

LOC643201, LOXL4, SLC39A11), t(8;21)-AMLs

(LOC440030, TNFRSF21), and inv(16)-AMLs (EFHC2,

GPR12, MEGF10).

Conclusions

In more than 96 percent of the suboptimal cases, using

a microarray-derived GEP approach and a GGA-based

class prediction method, favorable cytogenetic risk AML

samples with low leukemic blast load and/or poor qual-

ity control criteria could be correctly assign to the

appropriate class with a limited set of markers, allowing

to consider GEP as a useful tool in a routine workflow

for prognostic assessment of AML patients.

Additional material

Additional file 1: Sample preparation for gene expression profiling.
- Generation of biotinylated, amplified cRNA using The Illumina Total
Prep RNA Amplification Kit (Applied Biosystems/Ambion, Austin, USA). -

Generation of low leukemic blast load AML samples by a “dilution/
mixture” approach. - Hybridization on Illumina HumanHT-12 v3
Expression BeadChips, staining and detection of cRNAs on microarrays
using an I-Scan system. Additional table S1 - Citations in previous studies
of the identified markers. Additional figures S1 to S7. Figure S1. Three-
dimensional projection of the 3 principal components in a principal-

components analysis of APL, t(8;21)-AML, inv(16)-AML, NK-AML, and
Normal Bone Marrow samples belonging to the Training Set, with the
use of the 10-marker classifiers. Figure S2. Per class median confidence
level of the assignment for APL, t(8;21)-AML, inv(16)-AML, NK-AML and
normal bone marrow samples belonging to the Training Set according
to the number of markers per class (from 1 to 100 markers per class).
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Figure S3. Median confidence level of the class assignments for the NK-

AML samples belonging to the Training Set according to FLT3 and NPM1

mutational status and the number of markers per class (from 1 to 100
markers per class). Figure S4. Relationship between the percentage of
leukemic blasts within the 101 Test Set samples (X axis) and the
confidence level of their class assignments (Y axis) (samples with poor
quality control criteria and AML cell lines were excluded). Figure S5.

Confidence level of the class assignments according to the percentage
of leukemic blasts including comparisons between diluted and not
diluted samples. Figure S6. Results of the class assignment for the 10
AML Test Set samples with suboptimal quality control criteria based on
the 10-marker classifiers characterizing the APL, t(8;21)-AML, inv(16)-AML
and NK-AML classes. Figure S7. Sensitivity, specificity, negative and
positive predictive values of the prediction model for the class

assignment of the 111 Test Set samples (all AML samples with or
without optimal quality control criteria - AML cell line samples excluded)
to the APL, t(8;21)-AML, inv(16)-AML and NK-AML classes with 10-marker
classifiers.
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APL: acute promyelocytic leukemia; AML: acute myeloid leukemia; GEP: gene
expression profiling; GGA: grouping genetic algorithms; NK-AML:
cytogenetically normal acute myeloid leukemia; RIN: RNA integrity number.
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