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Abstract— The need for a better integration of the new 

generation of Computer-Assisted-Surgical (CAS) systems has 

been recently emphasized. One necessity to achieve this 

objective is to retrieve data from the Operating Room (OR) 

with different sensors, then to derive models from these data. 

Recently, the use of videos from cameras in the OR has 

demonstrated its efficiency. In this paper, we propose a 

framework to assist in the development of systems for the 

automatic recognition of high level surgical tasks using 

microscope videos analysis. We validated its use on cataract 

procedures. The idea is to combine state-of-the-art computer 

vision techniques with time series analysis. The first step of 

the framework consisted in the definition of several visual 

cues for extracting semantic information, therefore 

characterizing each frame of the video. Five different pieces 

of image-based classifiers were therefore implemented. A 

step of pupil segmentation was also applied for dedicated 

visual cue detection. Time series classification algorithms 

were then applied to model time-varying data. Dynamic Time 

Warping (DTW) and Hidden Markov Models (HMM) were 

tested. This association combined the advantages of all 

methods for better understanding of the problem. The 

framework was finally validated through various studies. Six 

binary visual cues were chosen along with 12 phases to detect, 

obtaining accuracies of 94%. 

 

Index Terms— Surgical workflow, surgical microscope, 

feature extraction, video analysis, surgical process model, 

DTW, HMM 

I. INTRODUCTION 

ver the past few years, the increased availability of 

sensor devices has transformed the Operating Room 

(OR) into a rich and complex environment. With this 

technological emergence, the need of new tools for better 

resource support and surgical assessment increases [1]. In 

parallel, better management of all devices, along with 

improved safety is increasingly necessary. In order to better 
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apprehend theses new challenges in the context of CAS 

systems and image-guided surgery, recent efforts have been 

made on the creation of context-aware systems. The idea is 

to understand the current situation, and automatically 

adapt the assistance functions accordingly. Being able to 

automatically extract information from the OR such as 

events, steps or even adverse events would allow the 

management of context-aware systems, but also the post-

operative generation of reports or the evaluation of 

surgeons/surgical tools use. The goal of CAS systems 

based on surgery modelling is to retrieve low-level 

information from the OR and then to automatically extract 

high-level tasks from these data [2]. Consequently, it 

would be beneficial for surgeons performing the surgery, 

allowing better systems management, automatically 

reporting procedures, evaluating surgeons, increasing 

surgical efficiency and quality of care in the OR. This is 

why, in the context of CAS systems, the automatic 

extraction of high-level tasks in the OR has recently 

emerged. 

 

To design such models, there are real advantages to 

automating the data extraction process, mainly because 

manual work is time-consuming and can be affected by 

human bias. Automatic data extraction is now easier, 

thanks to the high number of sensor devices. Among all 

sensors, teams have recently focused on videos from 

cameras already employed during the procedure, such as 

endoscopes or microscopes, which are a rich source of 

information. Video images provide information that can be 

processed by image-based analysis techniques, and then 

fused with other data from different sensors for creating 

models capturing all levels of surgery granularity. 

Moreover, computer vision techniques provide complex 

processing algorithms to transform images and videos into 

a new representation that can be further used for machine 

learning techniques through supervised or non-supervised 

classification. Compared to other data extraction 

techniques, the use of video not only eliminates the need to 

install additional material in the OR, but it is also a source 

of information that does not need to be controlled by 

humans, thus automating the assistance provided to 

surgeons, without altering the surgical routine. 
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Current work using surgical videos has made progress in 

classifying and automating the recognition of high-level 

tasks in the OR. Four distinct types of input data associated 

with their related applications have recently been 

investigated. Firstly, the use of external OR videos has 

been tested. Bhatia et al. [3] analysed overall OR view 

videos. After identifying 4 states of a common surgical 

procedure, relevant image features were extracted and 

HMMs were trained to detect OR occupancy. Padoy et al. 

[4] also used low-level image features through 3D motion 

flows combined with hierarchical HMMs to recognize on-

line surgical phases. Secondly, the use of endoscope videos 

in Minimally Invasive Surgery (MIS) has been 

investigated. The main constraints in MIS range from the 

lack of 3D vision to the limited feedback. However, studies 

on the subject have recently shown that the use of videos in 

this context was relevant. Speidel et al. [5] focused on 

surgical assistance for the construction of context-aware 

systems. Their analysis was based on augmented reality 

and computer vision techniques. They identified two 

scenarios within the recognition process: one for 

recognizing risk situations and one for selecting adequate 

images for the visualisation system. Lo et al. [6] used 

vision and particularly visual cues to segment the surgical 

episode. They used colour segmentation, shape-from-

shading techniques and optical flows for instrument-

tracking. These features, combined with other low-level 

visual cues, were integrated into a Bayesian framework for 

classification. Klank et al. [7] extracted image features for 

further scene analysis and frame classification. A crossover 

combination was used for selecting features, while Support 

Vector Machines (SVMs) were used for the supervised 

classification process. Also in the context of endoscopic 

interventions, Blum et al. [8] automatically segmented the 

surgery into phases. A Canonical Correlation Analysis was 

applied based on tool usage to reduce the feature space, 

and resulting feature vectors were modelled using Dynamic 

Time Warping (DTW) and Hidden Markov Model 

(HMM). Thirdly, also based on videos but in the context of 

robotic assistance, with the Da Vinci robot, Voros and 

Hager [9] used kinematic and visual features to classify 

tool/tissue interactions in real-time. Similarly, Reiley and 

Hager [10] focused on the detection of subtasks for surgical 

skill assessment. Finally, our first work [11] proposed the 

extraction of surgical phases with microscope videos and 

validated it in the context of neurosurgical procedures. In 

this paper, we extend this approach by proposing 

aframework that can be adjusted (subject to further 

researches) to any type of surgery. The objective is to 

automatically detect surgical phases from microscope 

videos. Surgical procedures can be decomposed into four 

main levels of granularity: phases, steps, tasks and 

motions. Surgical phases are thus defined as sequences of 

steps performed by the surgeon at a high level of 

granularity. The idea of the framework is first to manually 

defined visual cues that can be helpful for discriminating 

high-level tasks. The visual cues are automatically detected 

by state-of-the-art image-based classifiers, obtaining a 

semantic signature for each frame. These time series are 

then aligned with a reference surgery using the DTW 

algorithm to recognize surgical phases. Compared to 

traditional video understanding algorithms, this framework 

extracts generic application-dependant visual cues. The 

combination of image-based analysis and time series 

classification enables high recognition rates to be achieved. 

We evaluated our framework with a dataset of cataract 

surgery videos through various cross-validation studies, 

and compared results of the DTW approach to the HMM 

classification. 

II. MATHERIALS AND METHODS 

A. Application-dependant visual cues 

The proposed framework (Fig. 1) was created to be 

adapted, if needed, to other types of surgery. Therefore, 

five sub-systems based on different image processing tools 

were implemented. Each of these sub-systems is related to 

one type of visual cue: visual cues recognizable through 

colour were detected with simple histogram intersection. 

For shape-oriented visual cues such as object recognition, a 

Haar classifier was trained. For texture-oriented visual 

cues, we used a bag-of-words approach using local 

descriptors, and finally for all other visual cues we used a 

conventional image classification approach including a 

feature extraction process, a feature selection process and a 

supervised classification with SVM. In all cases, the 

features were considered to be representative of the 

appearance of the cues to be recognized.  

 

 
 

Fig. 1. Framework of the recognition system. 

 

Preliminary pupil segmentation step 

In the context of cataract surgery, some visual cues are 

identifiable only inside the pupil. The regions around the 
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pupil may therefore bias the detection and a preliminary 

segmentation step is needed to ensure good detection. 

Detecting this Region Of Interest (ROI) will allow the 

retrieval of more specific visual cues, consequently 

improving surgical process analysis and modelling. The 

pupil segmentation procedure can be divided into three 

steps and is based on the colour difference between the 

pupil and the remaining eye regions. The first step allows 

the creation of an outline mask from the input image (Fig. 

2-a) transformed into the YUV colour space. Within this 

first step, smoothing, thresholding and morphological 

operations were performed to the input image, obtaining a 

mask (Fig. 2-b). Using the mask, the second step consists 

in determining circles through the image using the Hough 

[12] transform (Fig. 2-c). The third step can be considered 

as a verification step. Incomplete circle outlines in the 

image mask may occur, leading to Hough circle detection 

failure. In order to tackle this problem, an iterative search 

is performed on the mask to identify the most probable 

circular zone, based on both the counting of corresponding 

pixels and circle diameters. Following this procedure, the 

ROI around the patient pupil can be retrieved (Fig. 2-d). 

 

 
           a)                    b)                    c)                    d)  

 
Fig. 2. Different steps of the pupil segmentation. a) input image, 

b) 1st step: creation of the mask, c) 2nd step: Hough transform 

computation, d) 3rd step: final segmentation of the pupil. 

Colour-oriented visual cues 

Colour is one of the primary visual features used to 

represent and compare visual content [13]. In particular, 

colour histograms have a long history as a method for 

image description, and can also be used for identifying 

colour shade through images. Here we used the principle of 

histogram intersection to extract colour-oriented visual 

cues, by creating a training image database composed of 

positive and negative images. Two complementary colour 

spaces [14] were extracted: RGB space (3 x 16 bins) along 

with Hue (32 bins) and Saturation (32 bins) from HSV 

space. For classifying visual cues, we used a KNN 

classifier with the correlation distance to compare 

histograms composed of feature vectors. 

Texture-oriented visual cues 

For whole-image categorization tasks, bag-of-visual-

words (BVW) representations, which represent an image as 

an orderless collection of local features, have recently 

demonstrated impressive levels of performance along with 

relative simplicity of use. The idea of BVW is to treat 

images as loose collections of independent patches, 

sampling a representative set of patches from the image, 

evaluating a visual descriptor vector for each patch 

independently, and using the resulting distribution of 

samples in descriptor space as a characterization of the 

image. A bag of keypoints is expressed as a histogram 

recounting the number of occurrences of each particular 

pattern in an image. Given the occurrence histograms of 

positive and negative regions of a training database, a 

classifier can be trained. Considering the objective of 

getting binary visual cues, we used a SVM classifier with a 

Gaussian kernel. 

In order to find these keypoints, we tested 4 keypoints 

detection methods: SIFT [15], SURF [16], Harris [17] and 

STAR [18], providing access to local image information. 

All of them provided a similar result, which is a sample of 

keypoints, though they differed radically in the methods 

used to obtain them and by the nature of the keypoints 

found. After detection, a keypoint is then described as a 

local, rectangular or circular, patch of the image and is 

represented in a formal way. They are thus represented by 

a descriptor vector whose length is variable and highly 

correlated to the chosen descriptor method. Two main 

descriptors are generally used: SIFT and SURF descriptors. 

In this study, we focused on SURF descriptors, for 

computational reasons. Indeed, the vector space dimension 

is reduced by a half (from 128 to 64) when switching from 

SIFT to SURF descriptors. 

Shape-oriented visual cues 

The presence of instruments in the surgical layout is a 

vital piece of information to access a lower granularity-

level in surgical process analysis. The main limitation is 

that instruments frequently have similar shapes and are 

therefore very difficult to recognize through image-based 

analysis only. Two methods were thus implemented: one 

for recognizing and categorizing a specific instrument (i.e. 

“specific instrument categorization”), and one for detecting 

the presence of a surgical instrument without being able to 

categorize it (i.e. “Detection of other instruments”).  

 

Specific instrument categorization: For this we used a 

Viola-Jones object detection framework [19]. It is mainly 

used to detect specific objects in an image, such as human 

faces. We chose this approach for computational reasons, 

getting a robust method that minimizes computation time 

while achieving high detection accuracy. The basic idea is 

to create a feature-based classifier based on features 

selected by AdaBoost [20]. AdaBoost is a method of 

combining weighted weak learners to generate a strong 

learner. Here, weak learners of the algorithm are based on 

the Haar-like rectangular features [21]. It is based on 

comparing the sum of intensities in adjacent regions inside 

a detection window. Strong learners are then arranged in a 

classifier cascade tree in order of complexity. The cascade 

classifier is therefore composed of stages each containing a 

strong learner. The strong learners, computed during the 

learning stage, are optimized based on negative images 

composed of background, and positive images of the object. 

During the detection phase, a window looks through the 
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image with different scales and positions for detecting the 

object. The idea is to determine, at each stage of the 

cascade, whether the given sub-window is not or may be 

the searched object. This enables a high number of sub-

windows to be very rapidly rejected. As a result, the false 

positive rate and the detection rate are the product of each 

rate of the different stages. This algorithm is known to 

work well for rigid objects. We applied it in the case of 

surgical instrument categorization. 

 

Detection of other instruments: This method was meant to 

be able to automatically detect any instrument appearing in 

the microscope’s field of view. For this detection we used a 

pixel-based approach composed of 3 steps: segmentation, 

description and classification. For the segmentation step, 

the goal was to create as many ROIs as instruments in the 

image. The better the ROIs around the instruments, the 

better the identification will be. Pre-processing operations 

were first performed to create a mask composed of all 

strong outlines. This approach is based upon the fact that 

there is a distinct colour difference between instruments 

and the background. A Gaussian blur transform, a 

Laplacian transform, along with threshold and dilatation 

operations were applied to the input image (Fig. 3-a) to 

create the mask. By applying a connected component 

method to the mask, we were able to detect and remove all 

small connected components which were assumed to be 

noise. The final mask is then clean, and only contains 

strong outlines (Fig. 3-b). Lastly, we retrieved the two 

largest remaining connected components respectively (no 

more than 2 instruments can be present at a same time 

within the surgical scene), and created a mask for each 

one. At this stage, these selected connected components are 

very likely to be the instruments. By applying these masks 

to the input image, we obtained two different images, each 

one with only a ROI of the input image (Fig. 3-c, Fig. 3-d). 

 

 
            a)                    b)                   c)                   d) 
 

Fig. 3. Different stages of the segmentation step for the detection 

of instruments a) the input image, b) the clean mask, c) the 

region of interest corresponding to the first connected component, 

d) the ROI corresponding to the second connected component. 

 

For the description and the segmentation step, the aim 

was to provide a robust and reproducible method for 

describing the ROIs that have been isolated by the 

segmentation step, and then to identify the ROI as an 

instrument or not using the descriptors. Given the fact that 

the goal was to detect instruments, we were willing to 

extract scale and rotation invariant features. We used the 

same approach as that described in subsection “Texture-

oriented visual cues” in II.A, with local description of 

features using a BVW approach, and finally a supervised 

classification using SVM. Fig. 4-a and Fig. 4-b show an 

example of the extraction of local features for the input 

image of Fig. 3-a. If the same instrument appears with 

various scales and orientations, we will be able to extract 

the same feature points with the same descriptors. Using 

this approach, ROIs can be classified as belonging to an 

instrument or not. 

 

 
                           a)                                  b) 
 

Fig. 4. SURF features detected on image from Fig. 3-a., and 

shown as blue circles. a) SURF points on the first connected 

component, b) SURF points on the second connected component.                      

Alternative method 

This approach can be seen as conventional image 

classification. Each frame is represented by a signature 

composed of global spatial features. The RGB and the HSV 

spaces, the co-occurrence matrix along with Haralick 

descriptors [22], the spatial moments [23], and the Discrete 

Cosine Transform (DCT) [24] coefficients were all 

computed. Each signature was finally composed of 185 

complementary features, that had to be reduced by feature 

selection. We combined a filter and a wrapper approach 

[25] using the method described by Mak and Kung [26] 

using the union of both results for improving the final 

selection. The Recursive Feature Elimination (RFE) SVM 

[27] was chosen for the wrapper method and the mutual 

information (MI) [28] was chosen for the filter method. 

Finally, 40 features were kept, and a SVM was applied to 

extract the desired visual cue. This particular procedure 

has been presented and validated in Lalys et al. [29]. 

Once every visual cue of a particular surgery has been 

defined and detected, creating a semantic signature 

composed of binary values for each frame, the sequences of 

frame signatures (i.e. the time series) must be classified 

using appropriate methods. Two different approaches were 

tested here: the HMM modelling and the classification by 

DTW alignment. 

Hidden Markov Model 

HMMs [30] are statistical models used for modelling 

non-stationary vector times-series. An HMM is formally 

defined by a five-tuple BA,Π,O,S, , where 

Nss=S ...1  is a finite set of N  states, 

Moo=O ...1  is a set of M symbols in a vocabulary, 

iπ=Π  are the initial state probabilities, ija=A  
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the state transition probabilities and k)(ob=B i
the 

output probabilities. Here, outputs of the supervised 

classification were treated as observations for the HMM. 

States were represented by the surgical phases that 

generated a left-right HMM (Fig. 5.). Transition 

probabilities from one state to its consecutive state were 

computed for each training video, and then averaged. If we 

set one probability to α , the probability of remaining in 

the same state is then α1 . Output probabilities were 

computed as the probability of making an observation in a 

specific state. Training videos were applied to the 

supervised classification for extracting binary cues and 

output probabilities were obtained by manually counting 

the number of occurrences for each state. Then, given the 

observations and the HMM structure, the Viterbi algorithm 

[31] identifies the most likely sequence of states. HMM 

training, like feature selection process, must be performed 

once only for each learning database. 

 

 
 
Fig. 5. Left-right HMM, where each state corresponds to one 

surgical phase 

Dynamic Time Warping 

We used the DTW algorithm [32] as a method to classify 

the image sequences in a supervised manner. DTW is a 

well-known algorithm used in many areas (e.g. 

handwriting and online signature matching, gesture 

recognition, data mining, time series clustering and signal 

processing). The aim of DTW is to compare two sequences 

X := (x1 , x2 , . . . , xN) of length N and Y := (y1 , y2 , . . . 

, yM) of length M. These sequences may be discrete signals 

(time-series) or, more generally, feature sequences sampled 

at equidistant points in time. To compare two different 

features, one needs a local cost measure, sometimes 

referred to as local distance measure, which is defined as a 

function. Frequently, it is simply defined by the Euclidean 

distance. In our case however, considering that we are 

using binary vectors, we will use the Hamming distance, 

well-adapted for this type of signature. In other words, the 

DTW algorithm finds an optimal match between two 

sequences of feature vectors which allows for stretched and 

compressed sections of the sequence. To compare each 

surgery, we created an average surgery based on the 

learning dataset using the method described by Wang and 

Gasser [33]. Each “query” surgery is first processed in 

order to extract semantic information, and then the 

sequence of image signature is introduced in the DTW 

algorithm to be compared to the average surgery. Once 

warped, the phases of the average surgery are transposed to 

the unknown surgery in a supervised way. Additionally, 

global constraints (also known as windowing functions) 

can be added to the conventional algorithm in order to 

constrain the indices of the warping path. With this 

method, the path is not allowed to fall within the 

constraints window. For surgery modelling, we used the 

Itakura parallelogram [34]. This prevents the warping path 

from straying too far away from the diagonal path. 

 

 

 

Fig. 6. Typical digital microscope frames for the 12 surgical phases: 1-preparation, 2-betadine injection, 3-lateral corneal incision, 4-

principal corneal incision, 5-viscoelastic injection, 6-capsulorhexis, 7-phacoemulsification, 8-cortical aspiration of the big pieces of the lens, 
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9- cortical aspiration of the remanescent lens, 10-expansion of the principal incision, 11-implantation of the artificial IOL, 12- adjustment of 

the IOL+ wound sealing 

 

B. Data 

Video data-set 

Our framework was evaluated on cataract surgeries (eye 

surgeries). The principle of cataract surgery is to remove 

the natural lens of the eye and insert an artificial one 

(referred as an IntraOcular Lens, or IOL) in order to 

restore the lens' transparency. In this project, twenty 

cataract surgeries from the University Hospital of Munich 

were included (with mean surgical time of 15 min). Three 

different surgeons performed these procedures. All videos 

were recorded using the OPMI Lumera surgical 

microscope (Carl Zeiss) with an initial resolution of 720 x 

576 at 25 fps. Considering the goal of recognizing only 

high-level tasks surgical tasks, each video was down-

sampled to 1 fps. Original frames were also spatially down-

sampled by a factor 4 with a 5-by-5 Gaussian kernel. 

Twelve surgical phases were defined (Fig. 6.). 

Definition of the visual cues 

Six pieces of binary visual cues were chosen for 

discriminating the surgical phases. The pupil colour range, 

defined as being orange or black, was extracted using a 

preliminary segmentation of the pupil along with a colour 

histogram analysis. Also analysing only the pupil after the 

segmentation step, the global aspect of the cataract 

(defined as parcelled out or not) was recognized using the 

BVW approach with local spatial descriptors. The presence 

of antiseptic, recognizable by virtue of its specific colour, 

was detected using colour histogram analysis, but on the 

entire image. Concerning the detection of surgical 

instruments, only one had a characteristic shape, the knife. 

We trained a Haar classifier using 2000 negative images 

and 500 positive images for its detection. All other 

instruments have very similar shapes and are very difficult 

to categorize. For this reason, we chose to detect the 

presence of an instrument as a particular visual cue. Lastly, 

the IOL instrument was not readily identifiable through 

only colour or shape analysis and we chose a classical 

approach using many spatial features along with a SVM 

classification to detect this visual cue. 

C. Validation studies 

Initial indexing was performed by surgeons for each 

video, by defining the phase's transitions, along with all 

visual cues for each video. With this labelled video 

database, we were able to evaluate both aspects of our 

framework, i.e. detection of the different visual cues and 

the global recognition rate of the entire framework. From 

each video, we randomly extracted 100 frames in order to 

create the image database, finally composed of 2000 

labelled images, each being associated to one video. This 

image database was used for the assessment of visual cue 

detection, whereas the videos, along with their 

corresponding frames from the image database, were used 

to assess the entire framework. 

One step of our procedure didn't require any training 

stage: the preliminary step of pupil segmentation. This step 

was simply validated over the entire video database by 

testing each frame of each video. During this validation, a 

pupil was considered correctly segmented if and only if the 

circle found by the Hough transform precisely matched the 

pupil. A percentage was then obtained corresponding to the 

accuracy of the segmentation.  

The second aspect of our framework that was assessed 

was the recognition of all visual cues. Independently, for 

knife recognition, the training stage was performed using 

manually selected positive and negative images for better 

object training. For the validation, 1000 test images were 

used and global recognition accuracy was computed. The 

four other visual cues classifiers were the assessed through 

10-fold cross-validation studies. The image database was 

therefore divided into 10 subsets, randomly selected from 

the 20 videos. Nine were used for training while the 

prediction was made on the 10th subset. One test subset was 

consequently composed of frames from two videos, while 

the validation sets was composed of the rest of the frames 

from the 18 other videos. This procedure was repeated 10 

times and results were averaged. After evaluating each 

classifier, we validated their use compared to a traditional 

image-based classifier, i.e. compared to feature extraction, 

selection and classification as performed by the 

conventional classifier. Additionally, we also compared the 

four local keypoint detectors presented in subsection 

“Texture-oriented visual cues” in II.A, along with the 

optimal number of visual words, for both the texture-

oriented classifier and the detection of instrument presence. 

This validation, performed under the same conditions as 

the detection of the visual cues, was necessary to optimize 

the detection of texture and shape-oriented information by 

the BVW approach. 

Lastly, we evaluated the global framework, including 

visual cue recognition and the time series analysis with the 

same type of cross-validation. Similarly to the visual cues 

recognition, at each stage, 18 videos (and their 

corresponding frames from the image database) were used 

for training and recognitions were made on the 2 others. 

For this assessment, the criterion chosen was the 

Frequency Recognition Rate (FRR), defined as the 

percentage of frames correctly recognized over a video by 

the recognition framework. 

III. RESULTS 

Taking all frames from each video (at 1 fps), the pupil 

was correctly extracted with an accuracy of 95% (Tab. 1.). 

The worse video was very difficult to segment, with 78% of 

all frames correctly segmented. The best video, on the 

other hand, had almost its entire frame correctly segmented 

(99%). 



> TBME-00885-2011 < 

 

7 

Table 1. Mean accuracy, minimum and maximum of the 

segmentation of the pupil over the entire video database. 

 Accuracy (Std) Minimum Maximum 

Detection 95,00 (6)% 78,00% 99,00% 

 

 

Table 2. Parameters of the classification algorithms used for 

extracting visual cues. 

Type of visual cues      Algorithm        Parameters 

Color-oriented 
Color histogram 

intersection 

Type of color space: RGB, 

HSV 

Classifier: KNN 

Distance: correlation 

Texture-oriented BVW approach 

Classifier: SVM with Gaussian 

kernel 

Interest points detectors: SIFT 

Feature representation: SURF 

Codebook generation: KNN 

Instrument categorization 
Viola-Jones 

approach 

Features: Haar-like rectangular 

Negative images: 2000 

Positive images: 500 

Detection of other instruments BVW approach 

Classifier: SVM with Gaussian 

kernel 

Interest points detectors: SURF 

Feature representation: SURF 

Codebook generation: KNN 

Alternative method 
Global features 

classification 

Spatial features: RGB, HSV 

spaces, Haralick descriptors, 

DCT, spatial moments 

Wrapper method: RFE-SVM 

Filter method: MI 

Classifier: SVM with Gaussian 

kernel 

 

 

 

Fig. 7-a,b. shows the BVW study for choosing the best 

parameters for both the detection of instrument presence 

and the texture-oriented classifier respectively. 

Surprisingly, for both figures, the number of visual words 

did not appear to be a major parameter to be enhanced. 

Indeed, the accuracy didn’t vary significantly from 1 to 60 

visual words, and this result was true for the 4 keypoint 

detectors and the two BVW studies. For both studies, the 

best accuracy was still obtained for a number of visual 

words equal to 12. On the contrary, the influence of 

keypoint detectors was significant. For the detection of 

instruments presence (Fig. 7-a), the SURF keypoint 

detector showed best recognition accuracies (with 12 visual 

words: 86%), whereas for the detection of the cataract 

aspect, the SIFT keypoint detectors shows best results (with 

12 visual words: 83%).  Tab. 2. gives all parameter values 

used in the 6 detection methods of visual cues. 

The results of the cross-validation study for the 

recognition of all visual cues (Tab. 3.) showed that very 

good detection accuracies were obtained, which outperform 

the standard classifier in all cases. The best recognition 

was obtained for the presence of the Knife (Haar classifier), 

achieving a recognition rate of 96.7%, whereas the lower 

rate was obtained for the recognition of the instrument 

presence. Similarly, the other visual cue detected using a 

BVW approach (the aspect of the cataract) has not a very 

high accuracy (87.2). Histogram approaches shows good 

results (96.2% for the pupil colour range detection and 

96.1% for the antiseptic detection), whereas the IOL 

instrument has also a good recognition rate of 94.6%, even 

detected with the conventional classifier. 
 

 

Table 3. Mean accuracy (standard deviation) for the recognition of the 6 binary visual cues. 

 
Pupil colour 

range 

Presence 

antiseptic 

Presence 

Knife 

Presence 

IOL instrument 

Cataract aspect Presence 

instrument 

Specific image-based classifier (%) 96.2 (3.6) 96.1 (0.7) 96.7 (3.4) 94.6 (1.1) 87.2 (5.4) 84.1 (8.6) 

Classical approach (%) 94.1 (4.6) 95.6 (0.4) 88.5 (4.3) X 54.1 (3.6) 58.7 (6.1) 

 

Table 4. Mean, minimum and maximum FER of the DTW 

 Accuracy (Std) Minimum Maximum 

HMM (%) 91.4 (6.4) 80.5 99.7 

DTW (%) 94.4 (3.1) 90.6 96.4 
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Fig. 7. BVW validation studies comparison of accuracies with different number of visual words and different keypoints detectors: a) 

Detection of the instruments presence, b) Recognition of the cataract aspect. 
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Fig. 8. Distance map of two surgeries and dedicated warping path using the Itakura constraint (up), along with transposition of the surgical 

phases (middle), and the visual cues detected by the system (down). 

 

From Tab. 4., the time series study showed better results 

using the DTW approach than with HMM classification. 

With HMM, a mean FRR of 91.4% was obtained with a 

high maximum of 99.7%, and a low minimum of 80.5%. 

The DTW approach shows a mean FRR of 94.4% with 

quite high minimum (90.6%) and particularly low 

maximum (96.4) compared to its mean FRR. 

Fig. 8. shows an example of video recognized by the 

system (by HMM classification and with the DTW 

approach respectively) along with the warping path from 

the DTW approach. On this particular recognized video, 

DTW shows the best recognition compared to the HMM 

classification. 

IV. DISCUSSION 

In this paper, we proposed a framework that 

automatically recognizes surgical phases of cataract 

surgery. The recognition relies on data provided by 

microscope videos, which is a novel way of addressing 

situation recognition issues. Twelve phases were defined by 

surgeons, and their recognition was based on the detection 

of 6 visual cues, along with time series analysis. This 

combined approach allowed a high degree of automatic 
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recognition system accuracy, achieving accuracies of 

approximately 94% using DTW modelling. 

A. Adaptation to other surgical procedures 

The detection framework is based on the recognition of 

visual cues within the surgical scene. The recognition of 

such information allows the modelling of the surgical 

procedure and final surgical phase recognition. Due to the 

varying facilities between departments, the numbers of 

phases, as well as the colours, tools and shapes will differ. 

Consequently, considering that surgical environments are 

different in each hospital, one recognition system should be 

created for each department. The adopted solution was to 

create a framework using specific image-based sub-systems 

in order to be as generic as possible, and to provide as 

many tools as possible for being exhaustive. This way, our 

method addresses the issue of system adaptability.  

Even though the framework was created to be adaptable, 

each kind of surgical environment has its own 

particularities and characteristics. This is why preliminary 

pre-processing steps may be mandatory in order to tune the 

recognition system according to the type of surgery. For 

instance, in the case of low-resolution video images, the 

purpose would be to improve image quality for further 

processing. In the context of cataract surgery, the 

microscope field of view is precisely delineated, thus 

enabling the use of a preliminary step of segmentation to 

restrict the search for a specific visual cue within a ROI 

defined by the pupil outlines. This is the only step that is 

specific to cataract surgery. For the adaptation to other 

surgical procedures, this segmentation step could be either 

adapted or even removed. Taking as example neurosurgical 

procedures and specifically hypophyse surgeries that we 

used in our previous work [11], segmentation would not be 

necessary as the field-of-view is already zoomed and 

adapted for image-based analysis and visual cues 

extraction. Pre-processing steps for image quality 

enhancement would also not be required because of the 

high-resolution of neurosurgical microscopes, neither 

intensity corrections nor specular reflection removal. This 

example would be true for this specific type of easy and 

reproducible surgical procedures. However, other 

adaptations could be conducted. Dealing with more 

complex surgeries would involves further researches on the 

pre-processing step, on the segmentation of surgical tools 

before their categorizations and possibly on the definition 

of other sub-systems for the detection of visual cues. We 

proposed in this paper a complete framework that we tested 

on one surgical procedure, but the evolution to other 

surgical procedures should be experimented. 

Once the framework has been tuned a dedicated surgical 

procedure, its use is fully automatic and will work with any 

microscope video of this type of surgery in its environment. 

Similarly, other variability factors may affect recognition, 

such as the manner in which surgeons operate. With this 

system, a training stage is necessary for each surgical 

department, assuming that the surgeons within the 

department use identical materials and follow the same 

sequence of phases during the procedure, making image 

features invariant to task distortion. 

 

B. Pupil segmentation 

Using an adapted method composed of image-based 

analysis, the segmentation of the pupil returns highly 

accurate results. For 95% of the frames, the ROI correctly 

contains the entire pupil. Moreover, to avoid distorting any 

further detection that could be done within the pupil we 

decided to define a constant circumference value. Thus, 

each time a region of interest is detected, the centre is kept 

and the circumference value is reset to the default value. 

Due to its high accuracy over the entire video database, it 

allows all potential colour-associated noise to be removed 

from around the pupil for further recognition. The very low 

accuracy obtained for one video can be explained by the 

presence of the retractors, rendering the field of view very 

narrow. Automatic segmentation turns out to be difficult 

when the retractors, or even the surgical instruments, 

around the eye, occupy too much space within the field of 

view. 

As a drawback, our approach, which always returns a 

ROI, is not always perfectly centred on the middle of the 

pupil. We can explain this issue by the fact that the pupil is 

not always completely inside the microscope’s field of 

view. Sometimes the pupil outlines are too distorted due to 

surgical tools or the surgery itself. Sometimes the retractor 

is as wide as the pupil and sometimes the surgeon’s fingers 

are in the field of view. In that case, it's difficult to extract 

the exact position of the pupil and its outlines and to adjust 

an intensity threshold accordingly. If the surgical 

microscope had a permanent position, or if we could 

precisely estimate the position of the pupil in each image, 

it would be possible to adjust a threshold for the 

segmentation automatically. 

 

C. Application-dependant visual cues 

Before the visual cue recognition training stage, the user 

will need to choose the visual cues and the associated 

image-based recognition classifier. In image classification 

problems, users usually do not think in terms of low-level 

features, resulting in poor recognition of the high-level 

semantic content of the images. Here, during the stage of 

visual cue definition, the colour, texture and shape 

behaviour of the visual cues are often intuitively known, 

allowing the most effective classifiers to be chosen. When 

visual cue is unknown or undocumented, the solution 

proposed is to choose the generic approach, integrating a 

large number of image features. This approach, combining 

global spatial features and SVM, may therefore be adapted 

to the recognition of any type of cue. The feature selection 

step allows the user to select discriminatory features and 

remove unsuitable ones, which is the intended objective. 

To improve recognition, however, the three other specific 
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classifiers seem to be well-adapted when the behaviour of 

the visual cue is well perceived.  

Generally, the main drawback of a global colour 

histogram representation is that information concerning 

object shape, and texture is discarded. In our case, 

however, it is only used for colour-related visual cue 

detection. Similarly, the main drawback of shape-based 

approaches is the lack of well-defined outlines. The Haar 

classifier was used in our framework for specific objects 

only, e.g. the knife, which is significantly different from all 

others instruments used in cataract surgery. The use of this 

approach to categorize other instruments, such as the 

cannula, was tested, but gave very poor results due to the 

narrow field of view and the difficulty in discriminating 

that specific instrument from the others. For this reason, 

we chose to use a second approach for object recognition, 

allowing the system to gain an information concerning 

object presence, without categorizing it. This type of 

information was still relevant for phase detection and 

allowed complete image signatures to be achieved using 

other information with a different level of granularity. The 

use of a BVW approach combined with local descriptors 

was also validated. Local descriptor comparisons (Fig. 5.) 

enabled selection of the most appropriate features, and 

application with the recognition of the global aspect of the 

cataract gave very promising results.   

With the exception of the Haar classifier, the three other 

classifiers are all based on a training image database. The 

power of discrimination of the image database is thus vital. 

We can easily imagine that accuracy may decrease sharply 

if the images do not efficiently represent all phases or all 

scene possibilities within the phases. Additionally, the 

training stage is time-consuming and requires human 

efforts. In our particular case, the best method, used here in 

our validation studies, was to annotate surgical videos 

before randomising the initial sample. The randomisation 

process is thus no longer performed on all frames, but on 

each video independently, extracting the same number of 

frames per video. 

D. Time series analysis 

Combined with state-of-the-art computer vision 

techniques, time series analysis displayed very good 

performance, opening the way for further promising work 

on high-level task recognition in surgery. Without this step 

of time series analysis, results are less accurate (~80%). 

This can be explained because some visual cues don’t 

appear only during one particular phase, and the 

information of sequentiality is needed. For instance, the 

knife always appears twice during cataract surgery: once 

during phase n°4 (principal corneal incision), and once 

during phase n°10 (expansion of the principal incision). 

All other visual cues are not present during these two 

phases. The discrimination of both phases appears to be 

possible with an information of time only that the HMM or 

the DTW can bring. 

In particular, DTW captures the sequentiality of surgical 

phases and is well-adapted to this type of detection. The 

cost function between 2 surgical procedures with the same 

sequence of phases, but with phase time differences, will be 

very low. The advantage is that it can accurately 

synchronize two surgical procedures by maximally 

reducing time differences. The main limitation concerning 

the use of DTW, however, can be seen phase sequence 

differences appear between two surgeries. The warping 

path would not correctly synchronize the phases and errors 

would occur. In the context of cataract surgery, the 

procedure is standardized and reproducible, justifying the 

very good results of the recognition. But we can imagine 

that for surgeries that are not completely standardized, 

DTW would not be adapted. In this case, HMM could be 

used by adding bridges between the different states of the 

model (the transition matrix should be adapted in that 

case), allowing the sequence to be resumed and perform 

the same phase multiple times. The state machine would 

not be a left-right structure but would include more 

complex possibilities with many bridges between states. As 

a drawback, the complexity of such HMMs could 

completely affect the recognition accuracy. For each 

surgical procedure, the HMM structure should be created 

by minimizing the possibilities of transitions from states to 

states not to affect the classification phase. In the particular 

case of cataract surgery, the results showed that the DTW 

algorithm was, not surprisingly, quite better than HMM. 

Compared to HMM, the other limitation of the DTW 

algorithm is that it cannot be used on-line, as the entire 

procedure is required to determine the optimum path. For 

on-line applications, the HMM classification should be 

used. 

E. Use in clinical routine 

The automatic recognition of surgical phases is very 

useful for context-awareness applications. For instance, 

there is a need for an analysis methodology specifying 

which kind of information needs to be displayed for the 

surgeon's current task. The use of videos, such as 

endoscope or microscope videos allows automating the 

surgeons' assistance without altering the surgical routine. 

Moreover, it can also support intra-operative decision 

making by comparing situations with previously recorded 

or known situations. This would result in a better sequence 

of activities and improved anticipation of possible adverse 

events, which would, on the one hand optimize the surgery, 

and on the other hand improve patient safety. Because of 

the time-series methods used in the framework that are not 

fully on-line algorithms, the on-line use of the system 

remains a long-term objective. In its present form, the 

computation time of the recognition process for one frame 

(visual cues detection + DTW/HMM classification) was 

evaluated to around 3s on a standard 2-Ghz computer. It 

could be introduced into clinical routine for post-operative 

video indexation and creation of pre-filled reports. Surgical 

videos are increasingly used for learning and teaching 
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purposes, but surgeons often don't use them because of the 

huge amount of surgical videos. One can imagine a 

labelled database of videos with full and rapid access to all 

surgical phases for easy browsing. The video database 

created would contain the relevant surgical phases of each 

procedure for easy browsing. We could also imagine the 

creation of pre-filled reports that would need to be 

completed by surgeons.  

V. CONCLUSION 

The goal of context-aware assistance is to collect 

information from the OR and automatically derive a model 

that can be used for advancing CAS systems. To provide 

this type of assistance, the current situation needs to be 

recognized at specific granularity levels. A new kind of 

input data is more and more used for detecting such high-

level tasks: the videos provided by existing hardware in the 

OR. In this paper, our analysis is based exclusively on 

microscope video data. We proposed a recognition system 

based on application-dependant image-based classifiers 

and time series analysis, using either an HMM or DTW 

algorithm. Using this framework, we are now able to 

recognize the major surgical phases of every new 

procedure. We have validated this framework with cataract 

surgeries, where twelve phases were defined by an expert, 

as long as six visual cues, achieving a global recognition 

rate of around 94%. This recognition process, using a new 

type of input data, appears to be a non-negligible 

progression towards the construction of context-aware 

surgical systems. In future work, lower-level information, 

such as the surgeon's gestures, will need to be detected in 

order to create more robust multi-layer architectures.  
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