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Abstract. In image-guided surgery, a new generation of Computer-Assisted-
Surgical (CAS) systems based on information from the Operating Room (OR) has 
recently been developed to improve situation awareness in the OR. Our main 
project is to develop an application-dependant framework able to extract high-
level tasks (surgical phases) using microscope videos data only. In this paper, we 
present two methods: one method to segment the pupil and one to extract and 
recognize surgical tools. We show how both methods improve the accuracy of the 
framework for analysis of cataract surgery videos, to detect eight surgical phases. 
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Introduction 

In the context of surgical process modeling, being able to automatically retrieve low-
level information from the Operating Room (OR) and then extract high-level tasks 
from these data is a growing need. In previous works [1,2], authors developed an 
application-dependant framework automatically able to extract surgical phases from 
microscope videos. They first extracted visual cues for each video frame using image-
based analysis. Each frame is therefore composed of binary information forming a 
semantic signature. These time series are finally used as input for analysis and 
classification using either Hidden Markov Model or Dynamic Time Warping 
approaches. As outputs of these two time series analyses, a sequence of surgical phases 
is proposed. 

In this paper, we present two methods: one method to segment the pupil and one to 
extract and recognize surgical tools. We show how both methods improve the accuracy 
of the framework for analysis of cataract surgery videos to detect eight surgical phases. 
Validation studies were performed with a dataset of twenty cataract surgeries. 
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1. Materials and Methods 

1.1.  Surgical Tools Recognition 

In order to accurately model a surgical process, a vital information needing to be 
retrieved is the presence of instruments in the surgical field of view. Detecting and 
recognizing surgical tools can be relatively complex with image-based analysis because 
they have quite similar shapes. Moreover, they never appear with the same orientations, 
scales or under the same illumination. The method developed, based on machine 
learning (see Figure 1), was automatically able to detect any instrument appearing in 
the video and is composed of three steps: 

• Segmentation 
• Description 
• Classification 

For the segmentation step, the goal was to extract from the image as many regions 
of interest as surgical tools existing in the image. The better the regions of interest 
around the tools are, the better the identification will be. This step was based upon the 
fact there is a distinct color difference surgical tools and the image background. To do 
so, pre-processing operations were first performed on the input image to create a black 
and white mask containing all loud outlines. Those operations were respectively: a 
Gaussian blur transform, a Laplacian transform, along with threshold and dilatation 
operations. We then refined the mask by applying a connected component method (8 
connexity) in order to remove every too small component. Indeed, we can assume that 
small components can't be outlines of tools and so are considered as noise. From this 
clean mask, containing only loud outlines, we retrieved the two largest remaining 
connected components. Indeed, no more than two instruments can be present at a same 
time within the surgical scene. Lastly, we applied separately each connected 
component mask extracted on the input image in order to obtain two regions of interest 
(see Figure 2). Those regions were the most likely to contain a surgical tool. 

 
 

Figure 1. Process pipeline for the surgical tools detection module. 
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Figure 2. Different detection steps in the tools recognition module. From left to right: input image, mask, 
final connected components images. 

 

 

For the description step, the goal was to provide a robust and reproducible way to 
describe each region of interest previously segmented. Those descriptions were 
mandatory in order to subsequently perform the classification. Given the fact that the 
goal of this method was to identify surgical tools, we were willing to extract features 
invariant to scale, rotation, illumination variations. 

In order to create a global description, we first need to obtain locals descriptors (or: 
key points). We have compared four local features detection methods: Harris [3], SIFT 
[4], SURF [5], STAR [6]. All of these methods provide a sample of key points, but 
those key points don't have the same behavior regarding the previously described 
variations. After detection, a key point (describing a patch of the image) was expressed 
in a formal way. It is represented by a descriptor vector whose length is variable and 
depends on the chosen method. Here again, among others, two descriptors methods are 
generally used: SIFT and SURF descriptors. A SIFT descriptor vector is of length 128 
and a SURF descriptor vector is of length 64. In the study, we have decided to use 
SURF key points as long as SURF descriptors because of the good trade-off between 
accuracy and computing time.   

Using those local descriptors, a global descriptor for a region of interest will be 
created. To do so, the bag-of-visual-words approach [7], representing an image as an 
orderless collection of local features, is used. The bag-of-words model can be defined 
as an histogram representation based on independent features. This approach usually 
includes following three steps: feature detection, feature description and codebook 
generation. From a collection of images, a representative set of patches (or key points) 
is selected and each is transformed into a description vector. This set of vectors 
characterizes objects appearing in the images collection. Each vector is called a word 
and the whole set is called a vocabulary or codebook.  

To obtain the global descriptor, the image (represented as a bag of key points) is 
expressed in the vocabulary space. This bag of key points is expressed as an histogram 
recounting the number of occurrences of each word in the image. 

 
For the classification step, a database containing the occurrence histograms of each 

surgical tool needing to be found was used. A smooth classification was then 
performed by applying a k-nearest neighbor algorithm (k=20). At the end of the 
classification, for a region of interest, we had its probabilities to contain respectively 
every surgical tool of the database. A class ''not a tool'' is also considered and called 
''background class''. 

 



1.2. Pupil Segmentation 

In the context of cataract surgery, a step of pupil segmentation can turn out to be very 
useful to identify some specific visual cues. Those more specific visual cues inside the 
pupil will improve surgical phases recognition. 

This procedure can be divided in three parts and is based upon the assumption of a 
color difference between the pupil and everything else. The first part led to the creation 
of a black and white outline mask from the input image, which has been expressed, into 
the YUV color space. This mask was computed by smoothing, thresholding and 
performing morphological operations to the input image. Then, we tried to determine 
circles through the mask using the Hough transform. Sometimes, incomplete circles 
outlines in the mask may occur, leading to Hough circle detection failure. To tackle the 
problem, an iterative search was performed on the mask to identify the most probable 
circular zone. This search was based both on pixel counting and circle radius 
assumption. Finally, a normalization was performed. We kept the circle center found 
previously and we set the region of interest radius to a constant value. Following this 
procedure (Figure 3), a region of interest around the patient pupil has been retrieved. 

 

1.3. Validation Studies 

In this study, twenty cataract surgeries performed by three different surgeons from the 
University Hospital of Munich were available. They were recorded using the OPMI 
Lumera surgical microscope (Carl Zeiss) with an initial resolution of 720x576 at 25fps. 
In order to speed up processing, each video has been down-sampled to 1 fps and each 
frame has been spatially down-sampled by a factor 4 with a 5x5 Gaussian kernel, 
leading to a final resolution of 360x288. Eight surgical phases were defined (Figure 4). 
 

 
Figure 3. Pupil segmentation steps. From left to right: input image, mask, final segmentation (blue circle). 

 

 



 
Figure 4. Typical images for the eight surgical phases: 1-Preparation, 2-Betaisodona injection, 3-Corneal 
incision, 4-Capsulorhexis, 5-Phaco-emulsification, 6-Cortical aspiration, 7-IOL implantation, 8-IOL 
adjustment and wound sealing. 

 

As mentioned in the introduction, this work is a part of a higher-level study [1,2]. 
The aim of this framework is to automatically detect phases of a cataract surgery. Each 
video of the database has been labeled by surgeons, where they have defined the 
phases' transitions. 

The segmentation procedure has been individually and manually validated over the 
entire video database by testing each frame of each video. The pupil was considered 
correctly segmented if it was mainly in the segmented region of interest. 

For the surgical tools recognition, we first compared the four local key points 
detection methods along with the optimal number of words. This test was necessary to 
optimize the bag-of-words approach. Then, we studied results from this module 
independently from the global framework. To do so, we manually labeled each frame 
of each video and compared recognized tools and labeled tools. We defined seven 
classes for the classification, six for the surgical tools and one for everything that is not 
a tool (also called background class). Each class has been built with 100 representative 
images. 

Finally, we compared results from the whole surgery modeling framework (i.e. 
detection of the surgical phases) with and without these two modules. The pupil 
segmentation has been integrated in order to improve the detection of the pupil color 
shade through histogram-based approach. With this new approach, the recognition of 
particular color shade within the pupil is now easier. The recognition of surgical tools 
has been added to the global framework by directly detecting surgical instruments of 
the surgery. New visual cues were created, corresponding to each instrument to be 
detected, increasing the number of information composing each semantic frame 
signature. 

2. Results 

For the pupil segmentation module alone, the pupil was correctly detected within 95% 
of all images (in Table 1). Best result was a segmentation accuracy of 99% and worse 
result was of 78%. 

The results of the bag-of-word approach optimization regarding surgical tools 
recognition are the following. On the one hand, the number of words did not have a lot 



of influence on the classification accuracy. However, a number of words ranged 
between 5 and 15 seems to be the best. The choice of this number will be highly 
correlated with the key points detection. On the other hand, there are major accuracy 
variations depending on the key points/description method combination. Of all the 
combinations tested,  the SURF/SURF one seems to give the best classification 
accuracy (86% for 12 words). 

For our study, we decided to use the SURF/SURF combination along with a 15-
word vocabulary. Within the videos dataset, a surgical tool has been correctly identified 
as a tool with an accuracy of 84,1% (in Table 2). Given the fact that the classification 
returns a probability for each tool, no validation study has been conduct to verify if a 
found tool as been classify as the correct one. 

Finally, we have added the new modules to the framework and we now obtain an 
overall recognition accuracy of 94.4%, results have been slightly improved (in Table 3). 

 

Table 1. Mean accuracy, minimum and maximum of the pupil segmentation over the entire video database. 

 Accuracy (Std) Minimum Maximum 
Detection 95,00% 78,00% 99,00% 

 

Table 2. Tool detection percentage with the tool recognition module alone. 

 Accuracy (Std) Std 
Detection 84.1% 8.6% 

 

Table 3. Percentage of surgical phases correctly recognized with and without the new modules. 

 Average (%) Std (%) Min (%) Max (%) 
Without modules 90.2 8.4 78.1 99.9 
With modules 94.4 3.1 90.6 99.9 

3. Discussion and Conclusion 

In this paper, we proposed to add two new modules of visual cues detection to a 
framework able to automatically recognize surgical phases of cataract surgery. Even 
though the framework was created to be application-dependant, each kind of surgical 
environment has its own particularities and characteristics. As a consequence, the 
framework has to be tuned for a specific type of surgery in order to be as competitive 
as possible. 

The pupil segmentation method, composed of image-based analysis, detects a 
region of interest containing the pupil with an accuracy of 95%. This can be considered 
as preliminary step in order to detect specific visual cues within the pupil. In order to 
avoid any further detection that could be done within the pupil, we decided to define a 
constant circumference value for every region of interest. As a drawback, the region of 
interest is not always perfectly centered on the middle of the pupil. Moreover, 
automatic segmentation turns out to be difficult when there are interferences in the 
microscope field of view. For instance, sometimes the pupil is not completely in the 
image or pupil outlines are too distorted. Retractors can also be too wide and fill too 
much space, or surgeon's fingers can appear in the field of view. 



The surgical tool recognition method, as the pupil segmentation one, has been 
tuned for this type of surgery. Indeed, a training step is required before the utilization 
of the framework for each surgical tool likely to appear. Results obtained are promising, 
we obtain 84,1% of good recognition over all the videos. Some tools are easier to 
recognize because of their bigger size or because of color gradients more important. 
Surgical tools information slightly enhanced the framework but they can be far more 
useful for surgery modeling at a lower granularity level. Surgical tool presence can be 
directed linked to surgeon's activities. As a drawback, connected components obtained 
during the first stage of the method do not always contain whole surgical tool. This 
incomplete detection induces lower recognition rates. Moreover, it is quite difficult to 
build a complete background class so we improved it as much as possible. 

 
To conclude, the addition of these two modules within the framework leads to 

better cataract surgery phases recognition. Other visual cues could be extracted in order 
to further improve phases recognition results. However, in future work, it would be 
more interesting to focus on lower level information. Surgical tools information could 
be used to detect surgeon's gestures and thus extract activities within major surgical 
phases of surgeries. 
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