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Abstract

In the creation of new computer-assisted intervention systems, Surgical Process Models (SPMs) are an emerging concept
used for analyzing and assessing surgical interventions. SPMs represent Surgical Processes (SPs) which are formalized
as symbolic structured descriptions of surgical interventions using a pre-defined level of granularity and a dedicated
terminology. In this context, one major challenge is the creation of new metrics for the comparison and the evaluation of
SPs. Thus, correlations between these metrics and pre-operative data are used to classify surgeries and highlight specific
information on the surgery itself and on the surgeon, such as his/her level of expertise. In this paper, we explore the
automatic classification of a set of SPs based on the Dynamic Time Warping (DTW) algorithm. DTW is used to compute
a similarity measure between two SPs that focuses on the different types of activities performed during surgery and
their sequencing, by minimizing time differences. Indeed, it turns out to be a complementary approach to the classical
methods that only focus on differences in the time and the number of activities. Experiments were carried out on 24
lumbar disc herniation surgeries to discriminate the surgeons level of expertise according to a prior classification of SPs.
Supervised and unsupervised classification experiments have shown that this approach was able to automatically identify
groups of surgeons according to their level of expertise (senior and junior), and opens many perspectives for the creation
of new metrics for comparing and evaluating surgeries.
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1. Introduction

The analysis and modeling of surgical procedures has
recently emerged in the medical engineering field. Surgical
procedures can be broken down into four main levels of
granularity, from high to low [1]: phases, steps, tasks and
motions. A surgical intervention can be described using a
formal and structured language to create a Surgical Process
(SP) at a fixed granularity level. Thus, Surgical Process
Models (SPMs) are used to study, evaluate and analyze
surgical activities in the Operating Room (OR). In this
field, a recent and important challenge has been the design
of new methods to compare and group similar SPs in order
to identify relevant patterns that can be correlated with
other pre-operative data in order to highlight specific infor-
mation on the surgery. The main issue in such analysis is
the definition of similarity metrics between SPs that reveal
objective and quantitative differences at every granularity
level of the surgical procedure. Indeed, SPs from the same
intervention type can have high variability, which can be
caused by many parameters such as the different operating
techniques, the intrinsic difficulty of the surgical procedure
or the surgeons expertise. Consequently, similarity mea-
sures have to be designed to accurately assess the similarity

between SPs according to their content (i.e. the different
activities performed by the surgeon) and their sequencing
(i.e. the order in which the activities are performed).

In a recent work, Riffaud et al. [2] computed similarity
metrics and performed statistical analysis for comparing
groups of senior and junior surgeons (i.e. experienced and
inexperienced surgeons). The metrics used were (i) General
parameters of the procedure: the operating time for the
whole procedure and for each step, (ii) General parameters
of the surgeons activity: the number of activities performed
with either the right or the left hand and the number of
changes in microscope position, (iii) Specific parameters
of the surgeons activity: all the gestures performed by the
surgeon, the instruments used and the anatomical structure
treated. Some of these metrics were found to be statistically
different in a significant way when comparing the junior
and senior groups. These metrics are of interest but provide
no clues as to differences in terms of sequentiality. If the
exact same activities were performed in a random order, the
evaluation would have been the same. Consequently, in this
paper we have introduced a new approach by exploring the
use of the Dynamic Time Warping (DTW) [3] algorithm to
evaluate similarities between SPs. DTW is used to measure
the similarity between two sequences which may vary in
time or speed. As SPs have been acquired in different
environments, they can easily vary in time, which makes
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DTW particularly suitable for comparing SPs. Using DTW
to compare SPs allows us to focus on the sequencing of
the activities comprising the SPs. Indeed, DTW makes it
possible to reduce the importance of time variations in the
comparison and to focus on the number of activities and
their organization in the timeline of the surgery.

Using this similarity metric, we addressed the problem
of the automatic classification of SPs in supervised and
unsupervised ways. We focused our evaluation on the
correlation between automatic classification and the sur-
geons level of expertise. We present experiments using 24
SPs in lumbar disc herniation surgery, half of which were
performed by senior surgeons and half by junior surgeons.
Evaluation studies shown that our approach was able to
automatically identify these two clusters of surgeons based
on the comparison of the SPs using DTW. Furthermore,
our approach was also able to go further by identifying
sub-clusters of surgeons.

This kind of application is of great importance to iden-
tify and understand surgical behaviors. Indeed, one of
the important challenges is to understand the parameters
that influence the way surgery is performed. The goal is
to better understand the practice of surgery and to pro-
vide significant feedbacks to surgeons before, during and
after the intervention. The work presented in this paper
highlights a significant application in surgical behaviors
identification, and open many perspectives in this field.

The paper is organized as follows: in Section 2, we
present work related to SP processing and surgery similarity
metrics. In Section 3, we present the proposed approach
and formalize the classification of SPs. In Section 4, we
present several experiments which highlight the relevance
of the proposed method. Lastly, in Section 5 we present a
discussion and Section 6 concludes the paper.

2. Related work

Given the advent of the latest technologies in the Oper-
ating Room (OR), an important need has emerged for tools
to assess and evaluate the impact of these new technolo-
gies. Within this field, the development of new methods
for objective surgical skill evaluation is an important issue
[4, 5]. Surgical skills can be assessed based on five factors:
knowledge, decision making, technical skills, communica-
tion skills and leadership skills. From these five factors,
many studies have been conducted for developing objective
methods of technical skill evaluation. A comprehensive
review can be found in [6].

One approach to surgical skills evaluation [7] is to con-
sider the patient’s outcome in assessing surgeons. Unfortu-
nately, this metric is highly variable and dependent upon
the patients specific characteristics. Additionally, patient
outcome is usually a multi-factor criterion requiring long
term follow-up. Even if outcome-based metrics are straight-
forward to use, they are not objective enough and they do
not study the differences in the surgical procedure in detail.
Another approach uses human grading techniques. The

underlying idea is to ask to a senior surgeon to provide an
evaluation rating scale using dedicated check-lists during
the observation of an intervention. Several scores have been
proposed: Objective Structured Assessment of Technical
Skills (OSATS) [8], Objective Structured Clinical Exam-
inations (OSCE) [9], and the Global Rating Scale (GRS)
[10] have shown good results. However, this method has
proven to be very time-consuming and also very observer-
dependant. Motion has also been investigated to analyze
dexterity by tracking the surgeon’s hand [11], arm [12],
and instruments [13], using various and complementary
tracking systems [14] or in the context of robotic assistance
[15]. This work has focused on motion pattern analysis, for
instance using time series analysis of the different motions.
The main drawback of such approaches is their low level of
granularity, which does not give insight into the surgical
scenario followed.

Lastly, on-line and off-line recordings of surgeries have
been of growing interest for analyzing procedures and as-
sessing surgeons. Recordings can be performed using sensor
devices or directly by an observer. This data extraction
process can be supported by two level of knowledge: activ-
ity recording can be performed either according to common
standards of surgical procedures, including standard surgi-
cal terms [16, 17], or according to fixed protocol created
by local experts. In this second case, the first step consists
in building up one’s own vocabulary. New terminology is
employed and provides knowledge representation that is
proper to the surgeons own experience and to the specific
surgical environment. In this context, SP recordings can
be driven by specific Surgical Process Models (SPMs), in-
cluding complex dedicated ontologies. The need for model-
based systems to assist and monitor Computer-Assisted
Surgery (CAS) has been discussed by Jannin et al. [18],
who also mentioned the importance of foresight within a
surgical procedure by modeling the surgery into a sequence
of major steps. A model was proposed in the context of
neurosurgical interventions, based on a UML class diagram
and a textual description for breaking down the proce-
dure. SPMs have also been introduced as an added-value
for the description of surgeries during an SP recording
by the group in Leipzig. Burgert et al. [19] proposed
an explicit and formal description in an ontology based
on General Ontological Language (GOL) for representing
surgical interventions. Another study [20] focused on the
description of concepts and technologies for the acquisition
of surgical workflows by monitoring surgical interventions.
They introduced a universal adaptable recording scheme
describing the subdivision of the surgical interventions into
detailed records of manual work steps. New software was
implemented (i.e. a surgical workflow editor: the ICCAS
editor system) to record processes during the intervention.
They also introduced methods for computing generic SPMs
that could serve to generate and compare surgical proce-
dures [21, 22]. Recently, Bouarfa et al. [23] presented a
mechanism for dataset pre-processing before HMM training.
Their objective was to infer high-level tasks (i.e. defined
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as surgical steps) from a set of observable low-level tasks
(e.g. picking up instruments or putting down instruments).
They stressed that the information extracted from the OR
must be discriminant, invariant to task distortion, compact
in size and easy to monitor.

Lastly, Combi et al. [24] studied clinical activities in
terms of clinical workflows. They studied clinical processes
which are comprised of clinical activities to be done by
given actors in a given order satisfying given temporal
constraints. They modeled workflows as a set of activities
and proposed a similarity function taking into account the
order and duration of the activities. On a more general
level, Vankipuram et al. [25] studied workflows composed
of recordings of the motion and location of clinical teams.
These data are then used to model activities in critical care
environments. These recent studies highlight the serious
need and the emerging trend of tools able to take into
account the sequentiality of activities.

The study of processes is also related to the field of
process mining [26], which traditionally has been used to
extract models from event logs and to check or extend
existing models. One of the goals of process mining is to
create a model which ideally represents a set of processes.
Then, a single process can be checked against the model to
identify problems. The field of process mining [27] is com-
posed of different tasks, as the discovery of the models, the
check of the conformance of one process against a model or
the extension of a model. Even though the process mining
approach introduces interesting and important concepts, it
does not generally tackle the definition of metrics to com-
pare processes. Furthermore, the concepts introduced are
generic and an adaptation to a specific domain is always
necessary. The work presented in this paper is related to
this field in the way that the general concepts are similar.
However, we introduce in this paper a methodology which
is specific to surgical processes.

3. Methods

3.1. A Surgical Process (SP) as a sequence of activities

A Surgical Process (SP) can be seen in the real world as
a sequence of flow objects [28]. According to the Workflow
Management Coalition (WFMC) terminology [29], we name
flow objects representing surgical work steps as activities
aci and a set of activities as AC with aci ∈ AC (aci
being the ith activity). Each activity in a SP corresponds
to a surgical work step which contains several kinds of
information. Thus, an activity aci is defined as a triple:

aci =< a; s; i > a ∈ A, s ∈ S, i ∈ Imi (1)

where A is the set of possible actions (e.g. {cut, remove,
. . . }), S the set of possible anatomical structures (e.g. {skin,
dura matter, . . . }), I the set of possible instruments (e.g.
{scalpel, scissors, . . . }) and mi the number of instruments
used in the activity aci. A full example of one activity could
be: <cut, skin, scalpel>. Thus, the domain of definition of

an activity is given by: A×S×Imi . These sets of possible
values are generally specific to the type of surgery studied.
An ontology can be used to describe the vocabulary for a
specific type of surgery [30].

Along with the information on the action (a), the
anatomical structure (s) and the instrument(s) used (i),
each activity has a starting point (start(aci)) and a stop-
ping point (stop(aci)) which respectively correspond to the
time point when the activity started and the time point
when the activity stopped (start(.) → R, stop(.) → R)
on the timeline of the surgeries. Note that start(aci) <
stop(aci), induces a partial order among the activities. The
last information on the activity is the hand used to perform
the activity (hand(aci)) which can either be right or left.

A Surgical Process can be seen as a sequence of activities
(spk) performed during surgery. Each activity of this
sequence belongs to the set of all the different activities
performed during the surgery (ACk):

spk =< ac
(k)
1 ,ac

(k)
2 , . . . ,ac(k)nk

> | ac(k)i ∈ ACk (2)

3.2. Comparing SPs using Dynamic Time Warping (DTW)

When dealing with SPs, a major challenge is the design
of metrics to evaluate the similarity of SPs. Indeed, defining
a similarity measure is often the first step in identifying
patterns among a set of objects. As an SP can be seen as a
sequence of activities, we propose using the Dynamic Time
Warping (DTW) algorithm [3] to compare them. DTW is
based on the Levenshtein distance (or edit distance), and
was originally used for applications in speech recognition.
It finds the optimal alignment between two sequences and
captures flexible similarities by aligning the two sequences.
In order to use DTW to compare two sequences, a distance
has to be defined to evaluate the similarity between the
different elements comprising the sequence. In our case, it
means defining a distance between two activities. Thus,
we defined this distance as a binary function which is 0
if all three components (Eq. 1) of the two activities are
equals and 1 otherwise:

d(aci,acj) =


0 if aci(a)

∗
= acj(a) and

aci(s)
∗
= acj(s) and

aci(i)
∗
= acj(i)

1 else

(3)

where
∗
= a Boolean operator performing the compari-

son between the action, the anatomical structure or the
instrument(s) used (e.g. d( <cut, skin, scalpel>,<cut, skin,
scalpel>)=0).

To compare two SPs using DTW, the sequence of ac-
tivities is first stretched by considering the starting and
stopping of each activity. This step is needed to have the
two SPs on the same timeline and to be able to compare
the activities performed in each SP at a given time point
t in the timeline. The activity performed at time point t
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will be aci(t) iff t ∈ [start(aci); stop(aci)]. Note that it is
not necessary for the two SPs to last the same amount of
time, the only assumption we make is that for both SPs,
the first activity started at the same moment (t = 0).

Considering two SPs, spk =< ac
(k)
1 ,ac

(k)
2 , . . . ,ac

(k)
nk >

and spl =< ac
(l)
1 ,ac

(l)
2 , . . . ,ac

(l)
nl > the cost of the optimal

alignment can be recursively computed with:

d(spk(t), spl(t)) = (4)

d(ac
(k)
i (t),ac

(l)
j (t)) +min


d(spk(t− 1), spl(t− 1))

d(spk(t), spl(t− 1))

d(spk(t− 1), spl(t))

where spk(t) is the subsequence < ac
(k)
1 , . . . ,ac

(k)
i (t) >.

Direct implementation of this recursive definition has an
exponential cost. Fortunately, by decomposing it into
subproblems, complexity can be narrowed down to Nk×Nl,
N being the number of time points in a SP, which is
equivalent to the stopping value of the last activity of the
SP. Note that the cost of the aligment can be seen as a
dissimilarity measure but is not a distance as DTW is a
semi-pseudometrics. The term distance is used here as an
abuse of langage.

3.3. Breakdown of SPs and component weighting

To better analyze SPs and accurately render the way
activities are performed during surgery, we decided to
split an SP into three parts according to whether the
activities are performed with the right hand, the left hand
or under the microscope. This breakdown allows us to
better represent the way the activities are chained by
the surgeon during the surgery. Indeed, by using this
breakdown, surgeries can be compared with a finer grain
by taking into account the surgeons different actions.

The set of activities performed with the right hand

(AC(r)k ) and the sequence of activities performed with the

right hand (sp
(r)
k ) are defined as:

AC(r)k = {ac(k)i } | (ac
(k)
i ∈ ACk ∧ hand(ac

(k)
i ) = right

∧ ac
(k)
i (i) 6= {microscope})

(5)

sp
(r)
k =< ac1,ac2, . . . ,acnr

k
> | aci ∈ AC(r)k

The set of activities peformed with the left hand (AC(l)k )
and the sequence of activities performed with the left hand

(sp
(l)
k ) are defined as:

AC(l)k = {aci} | (aci ∈ ACk ∧ hand(aci) = left

∧ aci(i) 6= {microscope})
(6)

sp
(l)
k =< ac1,ac2, . . . ,acnl

k
> | aci ∈ AC(l)k

The set of activities involving the use of the microscope

(AC(m)
k ) and the sequence of activities performed using the

microscope (sp
(m)
k ) are defined as:

AC(m)
k = {aci} | (aci ∈ ACk∧ aci(i) = {microscope}) (7)

sp
(m)
k =< ac1,ac2, . . . ,acnm

k
> | aci ∈ AC(m)

k

By definition, we have ACk = AC(r)k ∪ AC
(l)
k ∪ AC

(m)
k

and spk = sp
(r)
k ∪ sp

(l)
k ∪ sp

(m)
k and nk = nrk + nlk + nmk .

Following this breakdown, we composed the similarity
used in DTW to compare two activities of two SPs at a
given time point to take into account these three differ-
ent components (right hand, left hand and miscroscope
use). The similarity taking into account the three pieces
of information is defined as:

d(spk(t), spl(t)) = α× d(sp
(r)
k (t), sp

(r)
l (t)) + (8)

β × d(sp
(l)
k (t), sp

(l)
l (t)) + (9)

γ × d(sp
(m)
k (t), sp

(m)
l (t)) (10)

where α, β and γ are the weights respectively given
to the right hand, the left hand and the microscope (α+
β + γ = 1). In this paper we have used α = 0.7, β = 0.2
and γ = 0.1 as the right hand is the most important
component followed by the left hand and, lastly, microscope
use. These weights were chosen according to surgeons
experience on the most important actions performed by a
surgeon during the surgery. According to their knowledge,
the most important actions are performed with the right
hand. We tried different values for the weights, and kept
the one giving the most interesting results. However, the
difference in the results were limited, especially with a
weight for the right hand superior to 0.5.

3.4. Visualizing SPs using an index plot

It is generally useful to have a visual representation
of the data to easily explore them and to illustrate re-
sults. However, complex data structures sometimes pre-
vent straightforward visualization. In the case of SPs, we
propose the use of index plots [31] which have already been
used for sequence visualization [32]. The idea of an index
plot is to display the sequence by representing an activity as
a rectangle of a specific color for each activity, and a width
proportional to its duration (i.e. stop(aci) − star(aci)).
By this mean, SPs can easily be visualized and a quick
visual comparison can be performed. The following gives

an example of one SP (sp1 =< ac
(1)
1 ,ac

(1)
2 ,ac

(1)
3 >) with

three different activities:

sp1:

ac
(1)
1︷ ︸︸ ︷ ac

(1)
2︷ ︸︸ ︷ ac

(1)
3︷ ︸︸ ︷

timeline
0 N1
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Using this representation, a set of SPs can be displayed
for visual assessment. In the example bellow, three SPs
are presented:

sp1:

sp2:

sp3:

Legend:

<cut, skin, scalpel>

<coagulate, skin, bipolar>

<swab, muscle, cottonoids>

According to DTW, sp1 and sp2 will have an align-
ment cost of zero and the highest possible similarity (i.e.
0). Indeed, even if the different activities do not last the
same amount the time, the sequencing and the number of
activities are identical. Alternatively, sp3 will be slightly
dissimilar from sp1 and sp2 as the two first activities are
repeated (in practice, this can be explained by the sur-
geon’s lower degree of experience, requiring him to redo
some actions).

The alignment of two SPs using DTW can also be
visualized using an index plot by highlighting the path of
the minimum cost. The figure below displays the minimum
cost path for the alignment of sp1 and sp2 and sp1 and
sp3:

sp1

s
p

2 minimal cost path

sp1

s
p

3

This visualization can be useful in understanding and
analyzing complex differences between surgeries. Further-
more, it helps to visually identify patterns in order to
understand the similarity or dissimilarity of a pair of SPs.

3.5. Mining patterns within Surgical Processes (SPs)

The similarity measure defined using DTW allows us to
easily compare SPs. This measure can be used with data

mining methods in order to identify patterns among a set
of SPs. If a classification of the SPs is known, the measure
can be used to assign a class to a new, unknown SP. For ex-
ample, if we possess two sets of SPs representing recordings
of two different kinds of surgery, it is possible to classify
an unknown SP by evaluating which of the two groups of
SPs this surgery is the most similar to. In [33], Padoy et al.
had a similar approach and used Hidden Markov Models to
analyze and process a set of SPs. Alternatively, unsuper-
vised classification (i.e. clustering) can also be carried out
in order to identify relevant groups of SPs in a set of SPs.
This kind of approach is especially useful for identifying
patterns in a set of surgeries. Furthermore, it can then
be used to correlate pre-operative information (e.g. age of
the patient, surgeons expertise) with the identified clusters.
This can be used to identify the criteria which best explain
the similarities and dissimilarities between surgeries. In
the work presented in this paper, we used both of these
approaches: a supervised approach with a K-Nearest Neigh-
bors (KNN) classifier and an unsupervised approach with
Ascendant Hierarchical Clustering (AHC). The goal is to
highlight the relevance of the proposed similarity measure
in order to identify patterns among SPs. The following
describes both approaches.

K-Nearest Neighbors (KNN). In pattern recognition, the
k-nearest neighbor algorithm is a method for classifying
objects based on closest training examples in the feature
space. In our case, it consists in identifying for a given
SP, the most similar SP(s) in a set of SPs. Once the most
similar SP is identified, the class assigned to this SP is
assigned to the unclassified SP. It is possible to change the
parameter k and to carry out a vote among the classes of
the k most similar in the SPs. We used the KNN with
k = 3 after having tested k = 1 and k = 5, the results
being similar. The nearest neighbor of one SP in a set of
SPs (SP) is defined as:

NN(spk) = spl | spl ∈ SP ∧ ∀ spi ∈ SP ∧ spi 6= spl

∧ d(spk, spl) < d(spk, spi)

(11)

Ascendant Hierarchical Clustering (AHC). Clustering [34,
35] is the automatic assignment of a set of objects into
subsets (called clusters) so that objects in the same cluster
are similar in some sense. This similarity between objects
is often difficult to design, especially for complex objects
like sequences. DTW has already been successfully used
as a similarity measure for clustering, for example in [36]
where the authors used DTW to perform KMeans clus-
tering on sequential data to identify patterns in remote
sensing images. Thus, we propose using the similarity mea-
sure defined using DTW to automatically identify clusters
of similar surgeries. Hierarchical clustering is a method
of cluster analysis which seeks at building a hierarchy of
clusters. Starting with the objects, the clusters are cre-
ated iteratively by merging the two most similar clusters.
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Different criteria exist to choose the clusters to merge,
we used the average-link approach [37], which consists in
evaluating the similarity of two clusters according to the
average distance between all the couple of objects in the
two clusters. Thus, the distance between two clusters Ci

and Cj composed of SPs, is defined as:

d(Ci, Cj) =
1

|Ci||Cj |

|Ci|∑
k=1

|Cj |∑
l=1

d(spk, spl) (12)

where |C| is the cardinality of the cluster (i.e. the number
of SPs in the cluster). Hierarchical clustering approaches
are known to be computationally expensive. However, as
the number of data we manipulate is limited, using this
kind of approach is tractable (e.g. less than 10 seconds
of computation time for one clustering of the data, a few
minutes to compute the distance matrix). The average-link
approach was selected for its low sensibility to noise and
outliers.

3.6. Data presentation

Twenty-four procedures (10 men, 14 women, median
age of 52 years) of lumbar disc herniation surgery were
recorded at the Neurosurgery Department of the Leipzig
University Hospital, Germany. The procedure can be di-
vided into three major steps: the approach of the herniated
disc via a posterior intermyolamar route, discectomy in-
cluding the dissection and removal of the disc, and the
closure step. Additionally, a hemostasis step might be
necessary before the closure. Five senior surgeons and
five junior surgeons participated to the study. The senior
surgeons had already performed more than 100 removals
of lumbar disc herniation, whereas the junior surgeons had
performed more than 2 years of their residency program.
Among the 24 recorded procedures, 12 were performed by
one senior surgeon with the aid of one junior surgeon, and
in the 12 remaining cases, surgery was performed by one
junior surgeon with the aid of one senior surgeon. During
all junior recordings, the only step that was performed by
junior surgeons without the help of senior surgeons was
the closure step. Thus, in this paper, we focused on the
analysis of this last step for a better discrimination of junior
and senior performances. Figure 1 presents an illustration
of this step using index plot visualization (section 3.4) for
the right hand (R) and the left hand (L) of the 24 SPs
considered. The legend, which matches the colors with
activity performed, is presented in Figure 2 (a) for the
right hand, and Figure 2 (b) for the left hand. Table 1
presents information about the content of the surgeries
(e.g. number of activities, total duration, etc.) for the
junior and senior according to the activities performed by
the right and left hands.

The data were acquired using the Surgical Workflow
Editor [38]. SPs were recorded on-line by an observer,
a senior neurosurgeon, with the help of a touch-screen
laptop to facilitate the recording task. Figure 3 presents a

picture acquired in the OR during the acquisition of the
data. Moreover, before starting the study, the observer
performed a training session comprising different recordings
of neurosurgical procedures in two different hospitals, in
order to reduce the intra-observer recording variability.

3.7. Introducing noise into the data to evaluate the metric’s
behavior

In order to evaluate the relevance of our approach
consisting in using DTW to compare surgeries, we intro-
duced noise into the data presented in the previous section.
By this means, we wanted to highlight the fact that our
measure was able to accurately grasp similarity and dis-
similarity between SPs. The introduction of noise was
expected to perturb the results obtained with the noise-free
data.

Acquiring SPs off-line from recorded video, or on-line
using an operator present in the operating room, is prone
to errors. Consequently, some noise can be present in the
data, mostly materialized as errors in the components of
the trio describing the activities (Eq. 1). To evaluate the
reliability of our method with noise, and to highlight its
ability to accurately measure SP similarity, we artificially
added noise to the SPs presented in section 3.6. This
added noise consisted in switching one of the components
in several activities of the SPs.

We derived 10 datasets from the original dataset con-
taining the 24 surgeries with a level of noise ranging from
10% to 100%. These percentages correspond to the number
of permutations applied to the dataset according to the
number of activities in the SP. For example, for a SP con-
taining 14 activities (each one comprising 3 components:
action, anatomical structure and instrument(s) used), with
a 10% level of noise, 4 permutations (abs(14× 3× 0.10))
will be performed. A permutation consists, for example, in
switching the action in an activity (e.g. sew) to another
randomly selected action (e.g. cut). As the permutation
step contains randomness, we carried out this process ten
times for each level of noise. Consequently, 101 datasets
(the original one plus 10 × 10 noisy ones) were used for
the experiments, totalizing 2424 single surgeries (24 per
dataset).

To evaluate the behavior of our method according to the
noise level, we used three evaluation criteria: the accuracy
of the classification using a 3NN classifier, the accuracy of
the clustering result using an AHC and, lastly, the sum of
the distance matrix. 3NN classifier accuracy is computed
by carrying out a cross validation on the different noisy
datasets. Clustering accuracy is computed by applying the
AHC and by cutting the dendrogram in order to obtain
two clusters. These two clusters were then compared to
the known classification (i.e. junior and senior). Lastly,
the sum of the distance matrix consists in computing the
sum of the distances between each couple of SPs in the
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Figure 1: Index-plots representing the activities of the right (R) and left (L) hand for a population of 24 surgeries performed by junior (a) and
senior (b) surgeons.
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Figure 2: Legend of the activities performed during the last step of the considered SPs.

dataset:

Dsum =

N∑
i=0

N∑
j=i+1

d(spi, spj) (13)

where N is the number of SPs. The sum of the matrix
highlights the overall distance between the SPs of the
dataset.

4. Results

The results presented below are composed of two steps.
In the first step (section 4.1) we carried out experiments

on the data presented in section 3.6 to highlight the ability
of our method to identify relevant patterns. In a second
step (section 4.2), we present results on the noise added
to the data to study the robustness of the metric to noise
data.

4.1. Results of data clustering

Figure 4 presents the dendrogram of the AHC for the
closure step, which is the only step performed by junior
and senior surgeons alone. Along with the clustering, index
plots of the right-hand activities of each surgery are shown
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Table 1: Information about the different SPs used in the experiments for right (R) and left (L) hands.

Surgeon Number of ac-
tivities

Total duration
(seconds)

Mean duration
of one activity
(seconds)

Number of different
activities

R L R L R L R L
Jun 1 17 8 637.0 804.0 37 101 7 5
Jun 2 9 9 615.0 627.0 68 70 5 5
Jun 3 9 4 1160.0 1004.0 129 251 5 2
Jun 4 10 8 503.0 462.0 50 58 4 3
Jun 5 18 11 642.0 656.0 36 60 7 2
Jun 6 13 3 805.0 876.0 62 292 6 2
Jun 7 7 3 315.0 266.0 45 89 6 2
Jun 8 11 5 665.0 673.0 60 135 6 3
Jun 9 7 5 472.0 395.0 67 79 6 3
Jun 10 12 2 700.0 728.0 58 364 6 1
Jun 11 12 3 287.0 364.0 24 121 7 2
Jun 12 11 3 532.0 638.0 48 213 6 2

Sen 1 4 2 190.0 192.0 48 96 3 2
Sen 2 7 5 396.0 405.0 57 81 3 1
Sen 3 12 2 577.0 642.0 48 321 7 2
Sen 4 11 4 470.0 539.0 43 135 7 3
Sen 5 9 3 480.0 369.0 53 123 6 2
Sen 6 7 3 471.0 438.0 67 146 5 3
Sen 7 6 2 367.0 327.0 61 164 5 1
Sen 8 2 1 244.0 247.0 122 247 2 1
Sen 9 14 2 556.0 556.0 40 278 8 2
Sen 10 13 3 743.0 759.0 57 253 8 2
Sen 11 12 5 608.0 733.0 51 147 7 4
Sen 12 7 2 211.0 248.0 30 124 5 2

Figure 3: Acquisition of the data in the OR (a demonstration video
is available on the online version of the article).

below. Three clusters visually emerged from the analysis.
When cutting the dendrogram to create 2 clusters, 12
surgeries can be extracted from each cluster. The first
cluster (left part, in green and blue) contains 10 surgeries
performed by seniors and 2 by juniors. For the second
cluster (right part, in red), there are 10 surgeries performed
by juniors and 2 by seniors. Additionally, within the first

cluster, a sub-classification can be found (between red and
blue parts), where each sub-cluster contains five surgeries
performed by seniors and 1 by a junior. By keeping the two
main clusters, an accuracy of 83.33% is found, considering
that 20 surgeries out of 24 are classified in the right cluster.

4.2. Results according to noise

Figure 5 illustrates the evolution of the three criteria
(i.e. 3NN accuracy, clustering accuracy and sum of the
distance matrix) on the noisy datasets (section 3.7) accord-
ing to the noise level. Figures 5 (a) and (b) respectively
show the evolution of the accuracy of the 3NN classifier
and the clustering accuracy. The accuracies decrease with
the increase of noise in the dataset. This trend highlights
the fact that the similarity measure using DTW accurately
evaluates similarity between SPs. Indeed, the noise in-
crease disrupts the performance of SP similarity. Figure 5
(c) shows the evolution of the sum of the distance matrix
(Eq. 13). This sum increases with the level of noise, which
means that adding noise tends to decrease the similarity
between the SPs. This result also shows that this similarity
measure is relevant as it reveals that if the content of two
SPs is different, they will be dissimilar according to our
measure. However, one can also note that these results
highlight that the method is sensitive to noise. Indeed,
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Figure 4: Dendrogram of the clustering of the 24 SPs

with more than 10% of noise the accuracy begins to be
low. The strong influence of the noise is mostly due to the
use of a binary distance between the activity (see Eq. 3).
Indeed, if only one component of an activity is different,
the two activities will be evaluated as different. To reduce
the influence of noise, other distances between activities
could be used, as for example a fuzzy distance weighting
each component of the activities. Figure 7 presents the
similarity matrices between the 24 SPMs without noise (a),
with 10% of noise (b) and with 60% noise (c). The first 12
rows/columns of the matrices correspond to juniors and the
remaining 12 rows/columns correspond to the seniors. The
histogram of the distance was stretched and normalized in
order to compute gray levels. In these matrices, the darker
the cell, the more dissimilar the SPs.

Table 2 presents the evolution of the average distance
in percentage between the junior and the senior groups
according to three levels of noise. Figure 6 shows the
evolution of the percentages for all the levels of noise.
Given two levels of noise, the percentage is computed by
studying the difference between the distance matrices of
the two levels and by computing the geometric mean of the
percentage of increase of the distance. These values show
that the distances within each group (junior and senior)
tend to increase faster than the distance between the junior

and the senior groups when the noise increase. This can
be explained by the fact that the SPs belonging to the
same group are more similar, and a change in an activity
resulting from the introduction of noise is likely to affect
the alignment provided by DTW. On the contrary, when
measuring the distance between SPs from two different
groups, the introduction of noise is less likely to affect the
similarity as a change in one component of two activities
already containing one difference will have no effect.

5. Discussion

5.1. Classification of the surgeon’s experience

According to Figure 4, two main clusters are clearly
identifiable. It turns out that these two clusters are strongly
correlated with surgeons experience, which is not surpris-
ing. Indeed, an actual tendency shows that senior surgeons
perform fewer gestures than juniors. Experienced surgeons
are more economical with their movements than the inexpe-
rienced ones, notably during a mechanical step (the closure
step), which explains why the DTW similarity is able to
capture the differences between the two groups. Moreover,
the two junior surgeries classified as being senior ones were
actually both operated by the same junior surgeon. During
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Table 2: Means augmentation of the distance between SPs in percentage.

Junior vs Junior Junior vs. Senior Senior vs. Senior
10% noise 57,1% ↗ 42,7% ↗ 48,3% ↗
20% noise 15,8% ↗ 12,1% ↗ 14,2% ↗
30% noise 24,8% ↗ 13,6% ↗ 18,3% ↗

the preliminary step of experience classification, our refer-
ence neurosurgeon wondered whether this surgeon had to
be considered as being junior or senior regarding his inter-
mediate experience (i.e. seventh year of resident training),
which could explain this classification error. On the other
hand, the two senior surgeries classified as being juniors
were not particularly complicated surgeries, as the total
time of both surgeries was quite low. This classification
error could be explained by a lower gesture economy by the
corresponding senior surgeons, or even by lower manual
dexterity.

According to Figure 4, two sub-clusters of senior sur-
geons can be extracted. Similarly to the correlation with the
surgeons experience, explanations with other pre-operative
data (e.g. patient age, patient outcome, difficulty of the
surgery, etc.) were explored, without success. However,
both sub-clusters contain surgeries performed by same se-
nior surgeons. This reveals that seniors can have different
operating techniques and preferably sequences of activities
that differ from one senior to another and can explain this
distinct separation.

Figure 5 illustrates the evolution of the results accord-
ing to the noise added to the data. The results obtained
reveal that the addition of noise quickly perturbs the results.
Even with only 10% noise, the accuracy of the supervised
classification dropped from around 80% to almost 60%.
This sharp difference highlights the fact that DTW is able
to accurately evaluate the similarity of very similar surg-
eries but also to discriminate between different surgeries.
Our method turned out to have good sensitivity to noise
evolution.

5.2. A new metric for surgery comparisons

The DTW approach for surgery comparisons enables
us to focus on the sequentiality of surgeries alone by disre-
garding time differences. Indeed, the DTW algorithm was
first used to synchronize two time series, for instance in the
context of speech recognition. Using this method for syn-
chronizing surgeries makes it possible to take into account
differences in activity sequences, without time constraints.
Assuming that time is not a major parameter for skill
evaluations, the number of activities associated with their
sequentiality is more relevant and surgery dissimilarities
can be objectively quantified using the DTW distance. This
metric is therefore an interesting and innovative way of
comparing surgeries and has proven to be a complementary
approach to standard approaches comparing time/number
of occurrences [2].

We focused in this paper on the supervised and unsu-
pervised classification of SPs according to surgeons level
of expertise. Using the proposed similarity metric, we can
imagine correlations with other data in order to highlight
other types of information. Using pre-operative data, cor-
relations could be found using the age of patients or the
specific type of syndrome, as performed in [39]. Using post-
operative data, the patient outcomes could be introduced
into the analysis. Likewise, the analysis could be carried on
specific parameters of the intervention, as already presented
by [40] for evaluating the effects of low dose protocols in
the context of neurointerventional procedures.

5.3. Specific applications: training and assessment

Training and assessment of surgeons are now considered
as crucial issues for patient safety. Training of junior sur-
geons is a very time-consuming, interactive and subjective
task. As all juniors currently learn with the teaching help
of seniors, there has been a new demand for simulation
devices. Moreover, some surgeons are clearly superior to
others in performing tasks, resulting in a growing pressure
to demonstrate their skills. These two challenges have
motivated the creation of automatic systems for the ob-
jective assessment of surgical skills. With the automatic
techniques recently proposed using sensor devices, systems
are able to precisely recognize activities through different
levels of granularity, from the simple gesture to the global
steps of the surgery, which is a powerful tool for automating
surgical assessment and surgical training without human
bias. For assessment, surgical activities can be scored for
precision, dexterity or overall performance. For training,
it would allow surgeons to benefit from constructive feed-
back and to learn from their mistakes. Similar methods
can also be employed for other types of surgery, or even
other members of the surgical team. For the introduction
of our system into the clinical routine, the extraction of
activities should be done automatically. At the moment,
an operator has to be present in the OR to record the
intervention. While this task has been performed manually
until now, there are advantages of automating this process.
One can imagine the automatic extraction of information
using different kinds of sensor devices, such as tracking
systems [41, 42], sensors on instruments [43], OR global
view videos [44] or surgical scene videos [45]. As a long
term objective, the combination of all these sensors will
create complete recognition systems that would be able to
recognize surgical tasks from all levels of granularity(i.e.
from the simple subtask to the global step) and automate
the creation of SPs. Then, SP analysis (e.g. clustering and
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Figure 5: Evolution of the means over ten experiments of the three
evaluation criteria according to the different noise levels. The bars
correspond to the standard deviations over the ten experiments.

classification) could also be automated to identify relevant
patterns in order to carry out comparisons and evaluations.

6. Conclusion

The creation of new metrics for the comparison and the
evaluation of SPs is a major challenge. In this paper, we
have proposed a new surgery metric based on the DTW
algorithm that enables us to focus the analysis on the
different types of activity performed during the surgery
and their sequencing, rather than on the time differences.
Supervised and unsupervised classification experiments
have allowed us to establish that DTW similarity metrics
were capable of discriminating groups of SPs, and that
correlations between these groups and pre-operative data
then enable us to highlight specific information. Results
on the classification of surgeons level of expertise were

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%M
e

a
n

 e
v
o

lu
ti
o

n
 o

f 
th

e
 d

is
ta

n
c
e

Percentage of noise

Jun vs. Jun
Sen vs. Sen
Jun vs. Sen

Figure 6: Mean evolution of the distance within the groups Ju-
nior/Junior Junior/Senior and Senior/Senior.

(a) Without noise. (b) 10% of noise (c) 60% of noise

Similar Dissimilar

Figure 7: Similarity matrices of the 24 SPs using DTW according to
three levels of noise.

shown. One possibility for improving the analysis would be
to introduce semantics into the surgery similarity metrics.
In this research, at each time step, a binary comparison of
two surgical activities is performed. The idea would be to
introduce a semantic matrix in order to link each activity
using different distance values in a predefined similarity
scale for a more complex analysis of SPs.
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aging method for dynamic time warping, with applications to
clustering. Pattern Recognition 2011;44:678--693.

[37] Manning, C., Schutze, H., MITCogNet, . Foundations of
statistical natural language processing; vol. 59. MIT Press;
1999.

[38] Neumuth, T., Durstewitz, N., Fischer, M., Strauß, G.,
Dietz, A., Meixensberger, J., et al. Structured recording of
intraoperative surgical workflows. In: SPIE Medical Imaging;
vol. 6145. 2006, p. 61450A.

[39] Jannin, P., Morandi, X.. Surgical models for computer-assisted
neurosurgery. NeuroImage 2007;37(3):783--791.

[40] Gentric, J., Jannin, P., Trelhu, B., Riffaud, L., Gauvrit, J..
Effects of low dose protocols in neurointerventional procedures:
A workflow analysis study. In: European Society of Radiology.
2011,.

[41] James, A., Vieira, D., Lo, B., Darzi, A., Yang, G.. Eye-gaze
driven surgical workflow segmentation. International conference
on Medical Image Computing and Computer-Assisted Interven-
tion (MICCAI) 2007;:110--117.

[42] Nara, A., Izumi, K., Iseki, H., Suzuki, T., Nambu, K., Saku-
rai, Y.. Surgical workflow analysis based on staff’s trajectory
patterns. In: M2CAI workshop, International conference on
Medical Image Computing and Computer-Assisted Intervention
(MICCAI). 2009,.

[43] Padoy, N., Blum, T., Feussner, H., Berger, M., Navab,
N.. On-line recognition of surgical activity for monitoring in
the operating room. In: National Conference on Innovative
Applications of Artificial Intelligence. 2008, p. 1718--1724.

[44] Bhatia, B., Oates, T., Xiao, Y., Hu, P.. Real-time identifica-
tion of operating room state from video. In: National Conference
on Artificial Intelligence; vol. 22. 2007, p. 1761.

[45] Blum, T., Feussner, H., Navab, N.. Modeling and seg-
mentation of surgical workflow from laparoscopic video. In:
International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI). 2010, p. 400--407.

12


	Introduction
	Related work
	Methods
	A Surgical Process (SP) as a sequence of activities
	Comparing SPs using Dynamic Time Warping (DTW)
	Breakdown of SPs and component weighting
	Visualizing SPs using an index plot
	Mining patterns within Surgical Processes (SPs)
	Data presentation
	Introducing noise into the data to evaluate the metric's behavior

	Results
	Results of data clustering
	Results according to noise

	Discussion
	Classification of the surgeon's experience
	A new metric for surgery comparisons
	Specific applications: training and assessment

	Conclusion

