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Planning for the next influenza H1N1 season:
a modelling study
Fabrice Carrat1,2,3,5*, Camille Pelat1,2, Daniel Levy-Bruhl4, Isabelle Bonmarin4, Nathanael Lapidus1,2

Abstract

Background: The level of herd immunity before and after the first 2009 pandemic season is not precisely known,

and predicting the shape of the next pandemic H1N1 season is a difficult challenge.

Methods: This was a modelling study based on data on medical visits for influenza-like illness collected by the

French General Practitioner Sentinel network, as well as pandemic H1N1 vaccination coverage rates, and an

individual-centred model devoted to influenza. We estimated infection attack rates during the first 2009 pandemic

H1N1 season in France, and the rates of pre- and post-exposure immunity. We then simulated various scenarios in

which a pandemic influenza H1N1 virus would be reintroduced into a population with varying levels of protective

cross-immunity, and considered the impact of extending influenza vaccination.

Results: During the first pandemic season in France, the proportion of infected persons was 18.1% overall, 38.3%

among children, 14.8% among younger adults and 1.6% among the elderly. The rates of pre-exposure immunity

required to fit data collected during the first pandemic season were 36% in younger adults and 85% in the elderly.

We estimated that the rate of post-exposure immunity was 57.3% (95% Confidence Interval (95%CI) 49.6%-65.0%)

overall, 44.6% (95%CI 35.5%-53.6%) in children, 53.8% (95%CI 44.5%-63.1%) in younger adults, and 87.4% (95%CI

82.0%-92.8%) in the elderly.

The shape of a second season would depend on the degree of persistent protective cross-immunity to descen-

dants of the 2009 H1N1 viruses. A cross-protection rate of 70% would imply that only a small proportion of the

population would be affected. With a cross-protection rate of 50%, the second season would have a disease bur-

den similar to the first, while vaccination of 50% of the entire population, in addition to the population vaccinated

during the first pandemic season, would halve this burden. With a cross-protection rate of 30%, the second season

could be more substantial, and vaccination would not provide a significant benefit.

Conclusions: These model-based findings should help to prepare for a second pandemic season, and highlight

the need for studies of the different components of immune protection.

Background
On 11 June 2009, WHO announced the first influenza

pandemic of the 21st century, following the emergence of

a new influenza A/H1N1 virus in Mexico and its rapid

worldwide spread. By March 2010 most countries had

experienced a season of pandemic influenza H1N1, with

one or occasionally two peaks. Surveillance reports

showed that the burden of illness during this first season

did not differ much from that of recent seasonal influ-

enza epidemics [1-4], apart from a risk of unusually

severe pneumonia in young people[5-15]. However, the

true infection rates in the general population remain

poorly documented.

Two parameters are of critical importance for inter-

preting surveillance data collected during this first pan-

demic season: first, the proportion of the population that

was susceptible to infection before the 2009 pandemic

influenza A/H1N1 virus (hereafter referred to as 2009

H1N1) started to circulate; and second, the rate of

asymptomatic or paucisymptomatic infection. Several

studies suggest that a substantial proportion of the popu-

lation, and particularly the elderly, had pre-existing

cross-reactive antibodies against 2009 H1N1 [16-18],

and that asymptomatic or paucisymptomatic infection

was relatively frequent [18,19]. Consequently, the level of
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pre- or post-exposure immunity is difficult to estimate,

hindering attempts to predict the shape of a subsequent

pandemic H1N1 season.

Here we estimate the infection attack rates during the

first 2009 pandemic H1N1 season in France and attempt

to predict the shape of a second season of pandemic

H1N1 by using an individual-centred model [20]. We

estimated the first season infection attack rates in three

age groups: children, adults under 65, and the elderly,

based on different postulates for the proportion of

asymptomatic or paucisymptomatic infection. We then

fitted the model to these attack rates according to pre-

exposure cross-immunity and vaccine uptake, in order to

derive the size of the immune population after the first

pandemic season. Finally, we envisaged various scenarios

in which pandemic influenza H1N1 viruses escaping

immunity (due to viral evolution and loss of immunity)

would be reintroduced, and evaluated the likely impact of

extending 2009 H1N1 influenza vaccination.

Methods

Estimates of the infected population from national

surveillance data

We used data from the French General Practitioner

(GP) Sentinel network [21]. The network is a continu-

ous epidemiological surveillance system based on volun-

tary GPs and operating since 1984 in France. Sentinel

GPs report cases of influenza-like illness (ILI), defined

as abrupt-onset fever above 39°C accompanied by

respiratory signs and symptoms and myalgia or stiffness.

Weekly national ILI incidence was estimated from the

average number of ILI cases reported by GPs participat-

ing in surveillance during a week, multiplied by the ratio

of all French GPs to participating sentinel GPs [22]. Sur-

veillance criteria and procedures were not modified dur-

ing the first pandemic season.

Three age groups were considered: children (0-18 years),

younger adults (< 65 years), and the elderly (≥65 years). In

order to estimate the total size of the infected population,

we took into account the fact that some cases of ILI might

have been caused by other pathogens (poorly specific case

definition), and that not all cases of influenza virus infec-

tion would result in ILI corresponding to the case defini-

tion (lack of sensitivity). The latter cases would include

asymptomatic and paucisymptomatic infection. We also

took into account the fact that not all patients with typical

ILI seek medical advice (figure 1).

To overcome the poor specificity of the clinical case

definition, we calculated the excess of GP consultations

by children and adults under 65, relative to baseline

rates, using seasonal regression models fitted to histori-

cal data since 1985, as described elsewhere [23]. The

seasonal regression model was used to fit all-ages weekly

incidence data between 1985 to 2010, defining the first

French pandemic season as the period during which the

incidence of medical visits for ILI exceeded the upper

90% limit of the predicted incidence for at least two

consecutive weeks. The excess attributed to 2009 H1N1

was calculated in the same way, using a separate model

for each age group, by summing the weekly differences

between the observed and predicted incidence rates dur-

ing the first pandemic season. We used a different

method for elderly subjects, among whom the seasonal-

ity of medical visits for ILI was less clear-cut. We

assumed that 50% of medical visits for ILI in this age

group during the first pandemic season were associated

with 2009 H1N1 infection, while rates of 0-100% were

used to calculate confidence intervals. In children and

younger adults, excess medical visits attributed to 2009

H1N1 represented, on average, 85% of all medical visits

for ILI during the first pandemic season.

The proportion of patients with ILI who did not seek

medical advice was estimated from a monthly telephone

survey, conducted since May 2009, of a representative

sample of 800 members of the general population

(unpublished data). Overall, approximately 40% of per-

sons who reported having typical ‘flu-like symptoms did

not consult a GP, which is consistent with the results of a

prospective follow-up survey of 817 household contacts

of index cases with seasonal influenza virus infection

(43%) [24]. Finally, we used values from a meta-analysis

of experimental human influenza challenge studies show-

ing that approximately 65% of infected volunteers did not

develop typical ‘flu-like illness (33% did not have symp-

toms, 32% did not have fever), and who would not thus

have matched our case definition [25]. The proportion of

Figure 1 Relationship between medical visits for influenza-like

illness (ILI) and 2009 pandemic H1N1 infection. Numbers

associated with arrows indicate the percentages of the population

from a source compartment that are expected in the next

compartment, by age group (0-18, 19-64, ≥65)
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infections not matching the ILI definition was assumed

to be lower in children (45%), who are considered more

likely than adults to develop fever [26].

Population data and demographic parameters were

obtained from national censuses [27]. In France, pan-

demic influenza vaccination started in November 2009,

initially in groups at risk of complications. Influenza

vaccine coverage rates were obtained from the French

national security database. Adjuvanted vaccines were

used in the vast majority of cases. At the end of first

pandemic season the vaccine coverage rates were 12.6%

in children, 6.8% in younger adults, and 6.7% in the

elderly, most subjects having received a single injection.

Confidence limits for proportions were calculated with

the delta method.

Fitting the first pandemic H1N1 season

We used an individual-centred model, which permits rich

parameterization of the simulated population [20]. The

model included detailed descriptions of healthcare use

and interventions aiming at controlling influenza. It also

included demographic characteristics and household

sizes, and simulated the spread of influenza through the

use of randomly generated graphs. The random graphs

were a mixture of bidirectional graphs, comprising fully-

connected graphs for describing contact pattern within

the household, and Barabasi-Albert scale free graphs [28]

for describing other social contacts. The networks exhibit

a substantial level of clustering meaning that two simu-

lated individuals have an increased chance to be contacts

of each other given that they share a common network

contact. The connectivity of the simulated network fol-

lowed a power law distribution, with some individuals

having a large number of contacts which allows genera-

tion of superspreading events

The mean number of contacts per subject (the con-

nectivity of the network) was 13.9 overall (standard

deviation SD = 0.4), 15.3 (SD = 0.06) for children, 14.6

(SD = 0.59) for younger adults, and 5.1 (SD = 0.16) for

the elderly, in keeping with the results of recent large

surveys [29,30]. New networks were generated at each

simulation.

We made the following assumptions:

- We used realistic modelling of infectivity based on

experimental infection viral shedding data [25]. Rather

than assuming that infectivity was constant, we mod-

elled it as a function depending on the time elapsed

from infection [31]. We assumed the kinetics of infectiv-

ity had a gamma density function form (shape para-

meter = 5.2, scale parameter = 1), with an offset of 0.5

day (a latent period) and the function was truncated at

ten days. Infectivity did not depend on age [32] and

peaked at 2.1 days, with a calculated generation time of

2.6 days [33-35]. Infectivity was scaled during the fitting

process to adjust the observed data. The resulting prob-

ability of transmission during a hypothetical meeting

lasting throughout the infective period between a sus-

ceptible and a single infected individual was 40%.

- Children were fully susceptible to infection, and

unknown proportions of the younger adult and elderly

populations (to be calculated) were immune to 2009

H1N1 before it started to circulate. We assumed that

these immune subjects could not be infected, irrespec-

tive of the number of contacts with infectious persons

(“all-or-nothing” protection) [36].

- Subjects with asymptomatic infection were half as

infective as other subjects, and, among subjects who

consulted a GP, 40% did so the first day after symptom

onset, 30% the second day, and 30% later than the sec-

ond day [24].

- We postulated that 70% of individuals who consulted

a GP would remain confined to home for five days, as

recommended [37].

- We assumed that 50% of patients who visited a doc-

tor within two days of symptom onset received antiviral

therapy. We also assumed that antiviral treatment

reduced an individual’s infectiousness by 28% [38], and

their risk of severe influenza by 80% [5,7,12,13]. Anti-

viral prophylaxis was not considered, as it was not

recommended in France during the first H1N1 season.

- For consistency with observed vaccine coverage rates,

we assumed that vaccination started 4 weeks after the

outset of the epidemic and increased linearly over the

next 7 weeks. We assumed that influenza vaccination

was 80% protective against infection and illness, irrespec-

tive of age, starting 15 days after vaccination. Vaccination

was administered irrespective of the individual’s history

of exposure or immunity to influenza viruses.

The model was calibrated by varying the proportion of

younger adults and elderly subjects with pre-exposure

immunity to fit the excess rates of medical visits attribu-

ted to 2009 H1N1 in the relevant age group. For each

set of parameters we ran 400 simulations, starting with

a single infectious individual at the first day of the first

French pandemic season. We classified as “outbreaks”

situations in which more than 5 per 1000 subjects were

infected [20]. Goodness-of-fit was optimized by mini-

mising the difference by age group between the

observed and average rates in simulated outbreaks. The

size of the post-exposure immunized population was

estimated in each of the three age groups as the propor-

tion of individuals who were infected during the first

pandemic season or who were immunized naturally or

by vaccination prior to the first pandemic season. Confi-

dence limits for the rates of post-exposure immunity

were calculated, assuming that the rate of pre-exposure

immunity could vary between +5% and -5% of the

values obtained in the fitted model.
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We also simulated a scenario in which the entire

population was susceptible before introducing infectious

individuals, all other parameters being equal, in order to

examine how a total lack of pre-exposure immunity

might influence the first pandemic season.

We calculated the effective reproductive number by

simulating the first generation of secondary cases after

introducing a single infectious subject, as described else-

where [20]. We also calculated a basic reproductive

number by setting all parameters related to healthcare

use (treatment, isolation, etc.), and the size of the pre-

exposure immune population, to zero.

Scenarios: reintroduction of pandemic H1N1 viruses with

modified antigenic properties, varying levels of cross-

protection, and different vaccination strategies

We simulated reintroduction of individuals infected by a

pandemic H1N1 virus exhibiting modified antigenic

properties (due to antigenic drift for example), at a rate

of 2/1000, in a population in which individuals who were

immune after the first season had varying levels of persis-

tent protective cross-immunity against the new virus

[39]. For these individuals, the chance of being infected

during contact with an infected individual was reduced

by 90% to 30%. All other parameters (transmission para-

meters, pathogenicity, contact networks and healthcare

use) remained identical to those used to adjust the first

epidemic curve. We completed each scenario by postulat-

ing that 10% to 50% of the entire population (or children)

who were not vaccinated during the first pandemic sea-

son would receive the 2009 H1N1 vaccine before the

reintroduction of infectious individuals. Vaccine effec-

tiveness was reduced in proportion to the postulated

cross-protection (vaccine effectiveness = 80% x cross-

protection), as the mechanism underlying the loss of

naturally acquired immunity would also concern vaccina-

tion-induced immunity, as vaccines being prepared for

the 2010-2011 season cover 2009 H1N1 [40].

Results

Estimates of the infected population from national

surveillance data

The first pandemic season in France lasted 16 weeks,

from 7 September 2009 to 27 December 2009. The inci-

dence of medical visits for ILI increased moderately and

remained at a stable low level during the first 6 weeks,

then increased more sharply and peaked between 6 and

12 December.

During the course of the first pandemic season, we

estimated that the proportions of the population who

consulted a GP for ILI were 4.86% overall (95%CI

3.62%-6.11%), 12.7% among children (95%CI 11.3%-

14.0%), 3.11% (95%CI 1.67%-4.56%) among younger

adults, and 0.34% among the elderly (95%CI 0-0.68%)

(figure 2). The estimated proportion of the population

infected by pandemic H1N1 was 18.1% overall (95%CI

12.2%-23.9%), 38.3% (95%CI 30.8%-45.9%) among chil-

dren, 14.8% (95%CI 7.01%-22.6%) among younger adults,

and 1.62% (95% CI 0%-3.60%) among the elderly.

Fitting the first pandemic H1N1 season

The model was fitted to the excess rates of medical vis-

its attributed to 2009 H1N1 by setting the pre-exposure

immune populations to 36% among younger adults and

85% among the elderly. The simulated proportion of

infected persons was 18.2% overall (InterQuartile Range

(IQR) 17.2%-20.7%), 39.3% in children (IQR 37.3%-

44.0%), 14.8% in younger adults (IQR 13.0%-17.1%) and

1.49% in the elderly (IQR 1.21%-1.76%). The simulated

outbreaks lasted an average of 13.1 weeks (IQR 11-14

weeks), 10% of outbreaks exceeding 16 weeks.

The post-exposure immune population represented

57.3% overall (95%CI 49.6%-65.0%), 44.6% (95% CI

35.5%-53.6%) in children, 53.8% (95%CI 44.5%-63.1%) in

younger adults, 87.4% (82.0%-92.8%) in the elderly.

Postulating no pre-exposure immunity in younger

adults and elderly persons, the simulated proportions of

infected persons would be 47.9% overall (IQR 46.2%-

49.7%), 64.2% in children (IQR 62.6%-65.4%), 47.6% in

younger adults (IQR 45.4%-49.7%) and 26.7% among the

elderly (IQR 25.2%-27.9%). An estimated 11.9% (11.4%-

12.4%) of the total population would consult a GP for

ILI caused by 2009 H1N1.

The effective reproductive number was 1.03 and the

basic reproductive number 1.54 (figure 3). An average of

1.57 persons were infected (1.11 children, 0.45 younger

adults and 0.01 elderly persons) when the index patient

Figure 2 Estimated excess medical visits for 2009 pandemic

H1N1 infection during the first season (flat blue lines) and

simulated curves of the first pandemic season obtained with

the calibrated model in the pre-exposure immunized

population (thin orange lines).
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was a child, 0.96 (0.23 children, 0.72 younger adults,

0.01 elderly) when the index patient was a younger

adult, and 0.43 (0.14 children, 0.25 younger adults, 0.04

elderly persons) when the index patient was an elderly

person.

Scenarios: reintroduction of pandemic H1N1 viruses with

modified antigenic properties, varying levels of cross-

protection, and different vaccination strategies

As shown in Table 1, persistent cross-protection above

70% would be necessary to markedly limit the size of a

second pandemic season due to a virus with different

antigenic properties. Cross-protection of 50% would

imply attack rates of 23.1% overall, and rates notably

higher in younger adults and the elderly than during the

first pandemic season. Influenza vaccination of 30 to

50% of the population, in addition to the population

vaccinated during the first pandemic season, would

halve the attack rates, provided that cross-protection

was not below 50%. With cross-protection below 30%,

vaccination of 50% of the population would have little

impact. Vaccination of children alone would limit the

burden of influenza in all age groups if cross-protection

was between 50% and 70% and the vaccine coverage

rate exceeded 50%; in contrast, this measure would have

little impact in case of cross-protection greater than

70%; and would be barely effective in case of cross-

protection below 50%.

Discussion

Between 12% and 24% of the French population were

infected by the 2009 H1N1 pandemic virus during

autumn and winter 2009. The cumulative incidence rate

was much higher in children (38.3%) than in younger

adults (14.8%) and the elderly (1.62%).

Here, using a modelling approach parameterized with

the best available epidemiological data for the French 2009

H1N1 season, and taking into account the behaviour of

patients with ILI and implementation of control measures,

we show that substantial pre-exposure immunity to 2009

H1N1 – 36% in younger adults and 85% in the elderly –

would be necessary to fit the observed incidence rates.

The likelihood of a major second 2009 H1N1 season

would depend on the degree of persistent protective cross-

immunity against new 2009 H1N1 variants. Assuming

cross-protection of 70% among people infected during the

first 2009 H1N1 season and among those who were

already protected, a second season would affect only a

small proportion of the population. With cross-protection

of 50%, the second season would have a disease burden

similar to that of the first season, and vaccination of 50%

of the entire population, in addition to the population vac-

cinated during the first pandemic season, would more

than halve this burden. With cross-protection of 30%, the

second season could be substantial, even if vaccine cover-

age increased by 50%.

Our estimates of the cumulative incidence rates of 2009

H1N1 infection during the first pandemic season are

slightly higher than those obtained in a serological survey

conducted in London and the West Midlands, which sug-

gested that 21.3% of < 5-year-olds, 42.0% of 5- to 14-

year-olds, 20.6% of 15- to 24-year-olds, 6.2% of 25- to 44-

year-olds and only 0.9% of the elderly were infected [18].

These incidence rates were based on differences in the

proportion of samples with haemagglutination inhibition

titres of 1:32 or higher between 2008 and September

2009, and did not take into account 2009 H1N1 infec-

tions occurring in late October-early November 2009.

Also, 11% of individuals who had PCR-confirmed 2009

H1N1 infection had not seroconverted after 21 days,

indicating that 2009 infection rates were underestimated.

In another study, post-exposure 2009 H1N1 seropreva-

lence rates were 45% in children aged 10 to 19 years, 14%

to 22% in adults under 60, and 5% to 26% in adults aged

60 to 89 [41], giving an overall rate of 21.5%. Our find-

ings are compatible with these data. Interestingly, in this

latter study, several findings pointed to protective cross-

immunity due to exposure to previous H1N1 viruses. In

the elderly population, antibodies to the 1918 H1N1

virus were found in 48% to 57% of cases, while antibodies

to the 1957 H1N1 virus (a descendant of 1918 H1N1)

were found in 37% to 58% of adults aged 40 to 59. Cross-

Figure 3 Distribution of the number of secondary infections

engendered by a single infectious individual in a population of

younger adults and elderly subjects with pre-exposure

immunity (R) and in an entirely susceptible population (R0),

according to age group. 4000 simulations were made.
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Table 1 Simulated infection rates during a second pandemic influenza H1N1 season according to persistent cross-protection and increasing vaccine coverage

Increased vaccine coverage
(%)

All ages 0-18 yrs

Persistent protective cross-immunity (%) No vaccination 10 30 50 30 50 70

90 2.35 (0.66-2.85)
1.76 (0.48-2.49)
0.29 (0.12-0.36)
1.65 (0.51-2.31)

1.42 (0.53-1.89)
1.11 (0.31-1.35)
0.16 (0.06-0.18)
1.02 (0.35-1.35)

0.68 (0.26-0.88)
0.59 (0.20-0.72)
0.10 (0.00-0.12)
0.53 (0.23-0.66)

0.30 (0.13-0.39)
0.26 (0.12-0.30)
0.05 (0.00-0.06)
0.23 (0.13-0.26)

1.05 (0.39-1.58)
1.40 (0.33-1.86)
0.21 (0.06-0.30)
1.12 (0.34-1.44)

0.65 (0.26-0.88)
1.21 (0.33-1.70)
0.14 (0.00-0.18)
0.91 (0.27-1.21)

0.40 (0.13-0.57)
1.26 (0.31-1.94)
0.16 (0.06-0.24)
0.88 (0.24-1.32)

70 14.0 (11.2-18.4)
10.3 (7.33-14.3)
2.65 (1.94-3.63)
9.91 (7.29-13.9)

8.44 (2.68-13.8)
6.17 (1.66-10.4)
1.56 (0.55-2.48)
5.92 (1.71-9.82)

3.51 (0.83-5.04)
2.81 (0.59-3.94)
0.66 (0.18-0.97)
2.61 (0.59-3.65)

1.24 (0.48-1.62)
1.13 (0.30-1.20)
0.29 (0.06-0.36)
1.02 (0.32-1.18)

6.20 (1.54-9.96)
6.05 (1.63-10.2)
1.45 (0.42-2.42)
5.32 (1.37-8.78)

4.76 (1.36-7.11)
6.56 (1.45-10.2)
1.46 (0.42-2.18)
5.31 (1.31-8.39)

2.73 (0.66-4.30)
4.61 (0.69-8.14)
1.06 (0.18-1.76)
3.60 (0.63-6.20)

50 33.2 (30.9-36.3)
23.1 (20.7-25.8)
8.85 (7.70-10.1)
23.1 (20.7-25.2)

29.4 (26.3-33.3)
21.3 (18.4-24.3)
7.99 (7.09-9.03)
20.9 (18.6-23.5)

20.2 (18.1-25.4)
15.5 (12.0-20.4)
5.76 (4.73-7.27)
15.0 (12.4-19.2)

14.0 (9.91-19.4)
11.6 (6.95-15.5)
4.16 (2.55-5.82)
10.9 (0.69-15.2)

25.6 (23.8-28.4)
20.9 (18.4-24.2)
7.82 (6.91-8.97)
19.8 (18.0-22.8)

21.4 (19.6-24.6)
19.5 (16.4-22.8)
7.13 (6.42-8.18)
17.9 (15.6-20.6)

17.3 (14.9-21.8)
18.7 (16.0-23.7)
6.47 (5.33-8.24)
16.4 (13.7-20.7)

30 49.7 (48.3-51.4)
35.2 (32.5-37.8)
16.6 (15.2-17.9)
35.4 (33.2-37.5)

46.5 (44.9-48.9)
34.0 (31.6-36.3)
15.7 (14.4-17.0)
33.8 (32.3-36.2)

43.6 (41.3-45.9)
31.7 (28.9-33.7)
14.7 (13.6-15.8)
31.6 (29.1-33.4)

39.7 (37.5-42.5)
29.1 (27.2-31.6)
13.7 (12.8-14.5)
29.0 (27.3-31.1)

45.1 (43.0-47.1)
34.6 (32.4-36.9)
15.9 (14.9-16.9)
33.9 (31.9-35.8)

41.7 (40.2-44.0)
32.6 (30.3-35.3)
15.1 (13.9-16.6)
31.8 (30.2-34.0)

39.8 (37.7-42.4)
32.8 (30.0-36.0)
15.2 (14.1-16.4)
31.5 (29.2-34.2)

In each cell, mean infection rates per 100, in children (0-18 years), adults under 65 years and elderly (standard style) and total population (bold style) are given with their interquartile ranges (in parentheses).
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reactivity between antibodies elicited by H1N1 viruses

circulating up to 1957 is further supported by the anti-

genic similarity [42] and reported cross-neutralization

[43] between these viruses and 2009 H1N1. Together,

these findings help to explain the low attack rates

observed in the adult and elderly populations. However,

the precise level of pre- or post-exposure immunity to

2009 H1N1 is difficult to evaluate. Serological analyses

only measure adaptive immunity, failing to quantify cel-

lular and innate immunity. Moreover, the protection

associated with haemagglutination inhibition or neutrali-

zation antibody titres is not known for 2009 H1N1.

We found evidence of elevated levels of pre-exposure

immunity in the French adult and elderly populations,

yielding a reproductive number slightly higher than 1.

Such a low reproductive number is supported by the

highly variable patterns of the first 2009 H1N1 seasons

across various countries, with one or two peaks, a lack of

spatial synchrony, and moderate clinical attack rates [44].

We estimated the reproductive number on our data

using the early epidemic growth rate (fitted on incidence

data from one week before to two weeks after the epi-

demic onset, using the method described in [45], with a

generation time of 2.6 days and a ratio of infectious per-

iod to the generation time of 0.61). The value obtained

(1.18) was close to our estimate and lower than the aver-

age estimate of 1.3 during seasonal influenza epidemics

in France [46]. Estimates of the final size of the infected

population, taking into account relative susceptibilities in

different age groups also closely matched our estimates

(17.5%) [47]. However, our reproductive number was

substantially lower than those reported in the US or

Mexico for the first pandemic season [33,34]. This appar-

ent discrepancy may be the consequence of estimations

in different time, settings or countries but may also be

explained by our modelling framework. In scale-free net-

works of finite size, the heterogeneity of scale-free con-

nectivity patterns favors epidemic spreading by lowering

the epidemic threshold [48]. In contrast with homoge-

neous network, the scale-free network allows epidemic

spreading for a low average number of infections pro-

duced by an infected individual [49].

Our calculations of pre-exposure protective cross-

immunity may have been influenced by assumptions

concerning the proportion of infected individuals who

did not develop ILI. It has been estimated that the pro-

portion of all infected subjects who visited their GP in

France was 19.6% among pregnant women [19], a figure

in line with our postulate of 21% in the 19- to 64-year

age group. When we postulated lower proportions of

individuals with ILI among those infected with 2009

H1N1 [18], the cumulative incidence rates of infection

increased and the level of pre-exposure immunity neces-

sary to fit the epidemic curve therefore decreased. In

this case, transmission parameters would also increase,

and our estimates of the post-exposure immunized

population would not be markedly affected.

There are few reports on cross-protection between

successive pandemic or seasonal influenza seasons. The

cross-protective effect was estimated to range from 35%

to 94% for clinical illness between the spring and sum-

mer waves and the autumn wave during the 1918 pan-

demic [50], while no evidence of cross-protection was

found between the autumn wave and a third winter

wave. As the 1918 pandemic H1N1 virus was antigeni-

cally close to 2009 H1N1, a strong decline in protection

could occur if the same situation is repeated. Genetic

characterization of 2009 H1N1 has already identified dif-

ferent evolving clades and complex spatio-temporal

dynamics [51], and significant drift before the next sea-

son is likely.

Mass vaccination with the 2009 H1N1 influenza vaccine

would be effective only within a limited range of cross-

protection against a re-emerging H1N1 strain. Even if

cross-reactive antibodies might have been elicited by adju-

vanted influenza vaccination (used in late 2009/early 2010

in France), there is no evidence that adjuvanted vaccines

provide superior cross-protection than naturally-acquired

infection against drifted strains, and we therefore applied

the same reasoning to individuals who were naturally

immunized and those who were vaccinated.

The next pandemic season, if it occurs, could affect

more adults and elderly subjects than the first. This was

the case in past pandemics [52] and has been carefully

analyzed in a network-based modelling study, in which

a shift to older age between the first and subsequent

seasons was predicted [53]. As the case-fatality ratio was

higher in the adult and elderly populations than in chil-

dren [15,54], the mortality burden of a subsequent

H1N1 pandemic season due to a virus with unchanged

pathogenicity could be higher than during the first

season.

Conclusions

Pre-exposure immunity to 2009 H1N1 influenza virus

was higher than anticipated in French adults and elderly

people. A sustained high level of cross-protection

against descendants of the 2009 H1N1 virus would be

necessary to avoid a second significant 2009 H1N1 sea-

son. Extending influenza vaccination across all age

groups would be effective if cross-protection against

descendants of the 2009 H1N1 virus ranged between

30% to 70%, but would not provide a significant benefit

in other situations. This study therefore highlights the

need for comprehensive studies of the different compo-

nents of immune protection, and the need to maintain

worldwide virological and ILI surveillance for early

detection of antigenic drift.
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