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Abstract 
 
The bone microenvironment (e.g. glycosaminoglycans (GAGs), growth factors) plays a major 

role in bone resoption, especially in the formation of osteoclast which differentiate from the 

hematopoietic lineage in the presence of RANKL. Previous studies revealed that GAGs may 

influence osteoclastogenesis, but data are very controversial, some studies showing an 

inhibitory effect of GAGs on osteoclastic differentiation whereas others demonstrated a 

stimulatory effect. To clarify their activities, we investigated the effect of 5 families of GAGs 

in three different models of human/mouse osteoclastogenesis. The present data revealed that 

heparin inhibited osteoclastogenesis in these 3 models, which was confirmed by a decrease in 

mRNA expression of osteoclastic markers and by an inhibition of the bone resorption 

capacity. We also demonstrated in RAW 264.7 cells that other families of GAGs different 

from heparin inhibited RANKL-induced osteoclastogenesis, and that this inhibition was 

dependent on the length and the level of sulfation of GAGs. In the present work, heparin did 

not bind to RANKL and did not modulate RANKL signaling. Heparin acted at 2 distinct steps 

of osteoclastogenesis from human CD14+ cells: first, heparin strongly decreased the 

adherence of osteoclast precursors, and secondly inhibited osteoclasts to spread and to be 

active. Furthermore, the second action of heparin was reversible as the removal of heparin at 

the end of the culture time allowed the condensed cells to spread out and showed the 

formation of morphological active osteoclasts. The present work clearly evidences that GAGs 

inhibit osteoclastogenesis in vitro and strengthens the therapeutic interest of defined GAGs in 

osteolytic diseases. 
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Introduction 

 
 Bone metabolism is regulated by a functional balance between catabolic and anabolic 

activities of bone cells. Thus, osteoclasts are multinucleated cells specialized in bone 

catabolism which participate to phosphocalcic homeostasis together with cells playing 

anabolic functions named osteoblasts. Osteoclasts originate from the monocyte/macrophage 

lineage through a series of events associating membranous, soluble and extracellular matrix 

compounds (Bruzzaniti et al, 2006). Among these factors, some are required for proliferation 

and differentiation of osteoclast progenitors such as macrophage-colony stimulating factor 

(M-CSF) (Biskobing et al, 1995; Felix et al, 1990; Witkor-Jedrzejcak et al, 1990) while other 

factors such as receptor activator of nuclear factor kB ligand (RANKL) are more specifically 

involved in the commitment of mononuclear precursors to the fusion and formation of 

multinucleated resorbing osteoclasts (Baud’huin et al, 2007). In this system, RANKL 

expressed by osteoblasts and stromal cells binds to its receptor RANK expressed at the 

surface of osteoclast precursors and consequently activates specific signal pathways leading 

to the formation, maturation and survival of osteoclasts (Boyle et al, 2003; Wittrant et al, 

2004). Furthermore, the RANKL/RANK activities are controlled by osteoprotegerin (OPG) 

which acts as a soluble decoy receptor blocking the binding of RANKL to RANK, 

subsequently reducing osteoclastogenesis and bone resorption (Simonet et al, 1997; Yasuda et 

al, 1998). 

 Extracellular matrix components such as glycosaminoglycans (GAGs) also participate 

to bone metabolism (Lamoureux et al, 2007). GAGs are linear polymers which are bound to a 

core protein to form proteoglycans (Lamoureux et al, 2007). GAGs are composed of repeated 

disaccharidic units of hexosamine and hexuronic acid, except for keratan sulfate in which 

hexuronic acid is replaced by galactose. According to the epimerization of hexosamine and 

uronic acid, several families of GAGs have been established. Proteoglycans and GAGs 



contribute to the maintenance of bone mass through their involvement in collagen 

organization (Corsi et al, 2002). They could exert several activities on bone cells as co-factors 

in cell-to-cell adhesion, or to modulate the binding and activation of several growth factors or 

receptors such as OPG by syndecan-1 (Bernfield et al., 1999; Hildebrand et al., 1994; 

Robinson et al., 2005; Mosheimer et al., 2005; Standal et al., 2002). Unfortunately, the data 

available on the effects of GAGs on osteoclastogenesis are very limited and controversial. For 

example, Ariyoshi et al. (2005) showed that hyaluronic acid, the most abundant GAG in 

mammalian tissues, enhances osteoclast formation and function, whereas in 2007, Chang et 

al. described an opposite effect on osteoclastogenesis. Irie et al. (2007) recently demonstrated 

that heparin in combination with 1,25(OH)2D3/PGE2 enhances the pit-forming activity of 

osteoclasts obtained from the coculture of mouse osteoblasts with bone marrow cells. 

However, they did not observe any direct effect of heparin on osteoclastogenesis. On the other 

hand, Shinmyouzu et al. (2007), demonstrated that high concentrations of dermatan sulfate 

inhibit osteoclastogenesis, and the same group showed similar activities with heparin 

(Ariyoshi et al, 2008). The authors suggested that GAGs act through an inhibition of RANKL 

signaling (inhibition of p38 and ERK phosphorylation following RANKL stimulation) to 

achieve their inhibitory effect on osteoclastogenesis. Moreover, these controversial findings 

on GAG effects on osteoclastogenesis are strengthened by the study of Folwarczna et al. 

(2005) who pointed out species differences in the sensitivity of bone marrow cells to standard 

and low-molecular weight heparins. For instance, in a rat model, low concentrations of 

heparin increased the formation of osteoclasts, whereas it decreased with the highest 

concentrations. In mouse bone marrow cell cultures, heparin suppressed the formation of 

osteoclasts, with the exception of low concentrations of standard heparin which intensified 

this process (Folwarczna et al, 2005). 



In this high controversial context, the aim of our study was to clarify the direct effect 

of GAGs on osteoclastogenesis using three different cellular models: murine RAW 264.7 

monocytic cell line, murine purified CD11b+ cells and human purified CD14+ monocytes. 

These models are characterized by the absence of osteoblastic/stromal cells, allowing us to 

investigate the direct effect of GAGs on osteoclast precursors. GAGs from various origins 

(bovine and porcine heparins with different sulfation levels, heparan-, chondroitin- and 

dermatan-sulfate, hyaluronic acid and oligosaccharides of different lengths) were assessed in 

in vitro osteoclastogenesis models.  

 

 



Materials and methods 

 

Materials 

 Human M-CSF (hM-CSF), mouse M-CSF (mM-CSF) and human OPG (hOPG) were 

obtained from R&D Systems (Abington, UK). Human RANKL (hRANKL) was kindly 

provided by Amgen Inc. (Thousand Oaks, USA). Heparin sodium salt, heparan sulfate from 

bovine kidney (bHS), heparan sulfate from porcine intestinal mucosa (pHS), chondroitin 

sulfate from shark cartilage (CS), dermatan sulfate from porcine intestinal mucosa (DS) and 

hyaluronic acid were purchased from Sigma (St Quentin Fallavier, France). Heparin-derived 

oligosaccharides of defined size were prepared by digestion of porcine mucosal heparin with 

heparinase I followed by gel filtration chromatography on a Bio-Gel P-10 column [24]. 

Heparin initially contained 97.7% of N-sulfate groups, 89.3% of 2-O-sulfate groups, and 

92.4% of 6-O-sulfate groups. De-N-sulfated/re-N-acetylated heparin contained 90.5% of 2-O-

sulfate groups, 85.3% of 6-O-sulfates, and a very low amount of remaining N-sulfate groups 

(2.4%). De-2-O-sulfated heparin contained 80.2% of 6-O-sulfate groups, 91.4% of N-sulfate 

groups, and a residual 2.2% of the 2-O-sulfates. De-6-O-sulfated heparin contained 98.2% of 

N-sulfate groups, 54.7% of 2-O-sulfate groups, and a residual 4.2% of 6-O-sulfates (Lyon et 

al, 2000). 

 

Osteoclastogenesis assays 

Differentiation from the murine RAW 264.7 monocytic cell line 

 Murine RAW 264.7 monocytic cells (ATCC, Promochem, Molsheim, France) were 

cultured in phenol red-free α-Minimal Essential Medium (α-MEM) (Invitrogen, Eragny, 

France) supplemented with 10% fetal calf serum (FCS) (Perbio, Logan, USA), 1% non 

essential amino acids (Invitrogen). To induce osteoclast formation, RAW 264.7 cells were 



scrapped then incubated at 37°C for 2 minutes to allow adherence of the more differentiated 

cells. Non adherent cells were then seeded in fresh medium, at a density of 3 x 103 cells/well 

in a 96-well plate. After 2 hours of culture, the medium was changed for a fresh one 

containing 100 ng/ml hRANKL and various forms of glycosaminoglycans at different 

concentrations (see result section and figure legends). Multinucleated cells (>3 nuclei) were 

counted under a light microscope (Leica DM IRB, Nanterre, France; Camera: Olympus D70, 

Analysis software: Olympus DP Controller/Manager, Hamburg, Germany) after TRAP 

staining (Sigma, Saint Quentin-Fallavier, France). 

 

Differentiation from murine CD11b+ monocytes 

CD11b+ monocytes were purified from murine bone marrow cells, obtained by 

flushing the bone marrow from femora and tibiae of 4 week-old C57BL6 male mice. CD11b+ 

cells were magnetically labelled with CD11b Microbeads and positively selected by MACS 

technology (Miltenyi Biotec, Bergisch Gladbach, Germany). CD11b+ cells were seeded in 24-

well plates (500 x 103 cells / well) in α-MEM without phenol red, containing 10% FCS and 25 

ng/ml mM-CSF. After 3 days of culture, medium was replaced by fresh medium containing 

10% FCS, 25 ng/ml mM-CSF, with or without 100 ng/ml hRANKL, and with or without 5 

µM heparin. Thereafter, medium was changed every 4 days. The formation of osteoclasts 

occurred after around 15 days of culture and was observed by TRAP staining. 

 

Osteoclastogenesis and dendritic cell formation from purified human CD14+ cells 

 Human peripheral blood mononuclear cells (PBMCs) were isolated by centrifugation 

over Ficoll gradient (Sigma). CD14+ cells were magnetically labeled with CD14 Microbeads 

and positively selected by MACS technology. For osteoclast differentiation, CD14+ cells were 

seeded at 250 x 103 cells/well in 24-well plates or 45 x 103 cells/well in 96-well plates in α-



MEM supplemented with 10% FCS and 25 ng/ml hM-CSF (Duplomb et al, 2008). At day 3 of 

the culture, medium was changed for fresh medium containing 10% FCS, 25 ng/ml hM-CSF 

and 100 ng/ml hRANKL, with or without heparin (5 µM). Then medium was changed every 4 

days. The formation of osteoclasts occurred after around 15 days and was observed by TRAP 

staining. In some experiments, heparin was added at different time points of the culture 

period, as indicated. To test the capacity of osteoclasts to resorb bone, CD14+ cells were 

cultured on dentine slices in the conditions previously described. At the end of the culture 

period, osteoclasts were removed by bleach; dentin slices were fixed with 4% glutaraldehyde 

in 0.2 M sodium cacodylate solution for 30 minutes, followed by staining with 1% toluidine 

blue in 0.5% sodium tetraborate solution for 3 minutes (Chu et al, 2006). Resorption lacunae 

were identified by light stereomicroscopy (Zeiss, STEMI 2000-C, Göttingen, Germany) and 

resorbed surfaces were measured using QWin software (Leica, France). To determine the 

effect of heparin of mature osteoclasts, we used a technique established by Fuller et al (2006). 

Briefly, after formation of osteoclasts as described above, the medium was removed and the 

cell layer washed three times with PBS without calcium and magnesium. Six hundred 

microliters of 0.02% EDTA were added per well (6-well plate) and cells were incubated for 

20 min at room temperature.EDTA was then removed from the dish and replaced with 600 µl 

of calcium/magnesium-free PBS. A cell scraper was used to scrape the cells in PBS, and the 

resulting cell suspension was mixed using a pipette to ensure uniform cell dispersal. Two 

hundred and fifty microliters of this cell suspension were added to each well (24-well plate) 

on a dentin slice in 250 µl αMEM, 10% FCS. Cells were allowed to sediment for 20 min at 

37°C before dentin slices were washed. Cells were incubated in 300 µl αMEM, 10% FCS in 

the presence or the absence of heparin. After incubation, bone resorption was assessed as 

described above. 

 



Adherence of CD14+ cells was analyzed by counting the adherent cells after 3 days of 

culture in the presence of hM-CSF (25 ng/ml) with or without heparin (5 µM). Briefly, cells 

were washed 3 times with PBS (Lonza, Verviers, Belgium) and adherent cells were detached 

with trypsin solution (Lonza); cells were counted using trypan blue exclusion. 

Dendritic differentiation was obtained upon stimulation with 5 ng/ml hIL-4 (Invitrogen) 

+ 100 ng/ml human GM-CSF (kindly provided by UTCG, CHU Nantes) (Sallusto and 

Lanzavecchia, 1994). Briefly, 1 x 106 CD14+ cells or PBMCs were cultured in 6-well plates in 

3 ml of RPMI 1640 (Lonza) supplemented with 10% FCS, in the presence or the absence of 

glycosaminoglycans. Medium was replaced after 3 days of culture. After 2 more days, cells 

were harvested and double stained for 15 min at 4°C with antibodies against CD1a-APC 

(Becton Dickinson, Le Pont de Claix, France) and CD14-PE (Immunotech, Marseille, France) 

in PBS and then washed and fixed in PBS containing 1% formaldehyde. Irrelevant isotype-

matched antibodies were used to determine levels of nonspecific binding. Flow cytometry 

analysis was carried out on a FACScan using the CELLQuest software (both from Becton 

Dickinson).  

 

Surface plasmon resonance-binding assay 

Experiments were carried out on a BIAcore 3000 instrument (Biacore, Sweden). 

RANKL (2 µg/mL) in 5 mM maleate, pH 5.75 was covalently immobilized to the dextran matrix 

of a CM5 sensor chip (BIAcore) at a flow rate of 5 µl/min. Immobilization levels in the range 

of? 4000 RU were obtained. Binding assays were performed at 25°C in 10 mM Hepes buffer, 

pH 7.4, containing 0.15 M NaCl and 0.005% P20 surfactant (HBS-P buffer, BIAcore) at a 

flow rate of 30 µl/min for heparin (1 to 20 nM) and 20 µl/min for hOPG (25nM). The 

resulting sensorgrams were fitted using BiaEval 4.1 software (Biacore).  

 



Western Blot Analysis 

After 5 hours of culture in serum-free medium, undifferentiated CD14+ cells were 

stimulated with 100 ng/ml of hRANKL for 15 minutes at 37°C in the presence or absence of 

125 µg/ml heparin. Cell lysates were obtained and protein concentrations were determined as 

described previously (Duplomb et al., 2008). Proteins were run on 10% SDS-PAGE gels and 

transferred to Immobilon-P membranes (Millipore, USA) which were then incubated with 

antibodies to Phospho-ERK1/2, Phospho-p38, Phospho-p105, Total-ERK1/2, Total-p38 and 

Total-p105 (Cell Signaling Technologies, USA). Bands were visualized using ECL reagent 

(Roche, Germany).  

 
Statistical analysis 

 Each experiment was repeated in triplicate three times independently. The mean + SD 

was calculated for all conditions and compared by ANOVA. Differences relative to a 

probability of two-tailed p < 0.05 were considered significant. 

 

 

 

 

 

 

 

 

 

 

 

 



Results 

 

Glycosaminoglycans inhibit RANKL-induced osteoclastogenesis in murine and human 

models 

RAW 264.7 cells are murine monocyte/macrophage cells which can differentiate into 

TRAP-positive multinucleated cells in 5 days upon RANKL stimulation. As shown in figures 

1A and 1B, addition of heparin inhibited RANKL-induced osteoclastogenesis by 83% 

(p<0.01). This result was confirmed by the analysis of osteoclastic markers using real-time 

PCR. Indeed, after 5 days of culture, mRNA expression of osteoclastic markers such as TRAP 

and Cathepsin K was strongly increased in the presence of RANKL, while addition of heparin 

diminished the expression of these markers by around 50% (Figure 1C). These results were 

confirmed in a second model of murine osteoclastogenesis involving CD11b+ monocytes 

purified from bone marrow and cultured in the presence of RANKL and heparin. As shown in 

figure 1D, heparin totally inhibited RANKL-induced osteoclastogenesis of CD11b+ cells. 

Similar effects were observed in a human model of osteoclastogenesis, using CD14+ purified 

monocytes. As shown in figures 2A and 2B, RANKL stimulation of CD14+ cells induced 

their differentiation into TRAP+ multinucleated cells. Again, the addition of heparin strongly 

inhibited RANKL-induced osteoclastogenesis (76%, p<0.01). Heparin had no effect on the 

proliferation of CD14+ cells cultured in the presence or absence of M-CSF for 3 or 6 days 

(aditional data 1). Furthermore, when cultured on dentine slices, TRAP+ osteoclasts showed a 

strong capacity of resorption (Figure 2C) which was significantly reduced in the presence of 

heparin (Figure 2D, p<0.05). Similar experiments were performed using mature osteoclasts 

isolated from differentiated RANKL-CD14+ cell cultures, and in this context heparin had no 

effect on dentin resorption (data not shown). 



To investigate the effect of other GAG families on RANKL-induced 

osteoclastogenesis, heparan sulfate (bovine and porcine origin), chondroitin sulfate and 

dermatan sulfate at a concentration of 5 µM were added to the culture of RAW 264.7 cells. 

After 5 days, all the GAGs tested inhibited RANKL-induced osteoclastogenesis between 65 

and 80% (Figure 3A) while GAGs alone had no effect on the RAW 264.7 cell line (at the 

proliferation or apoptosis levels) and did not reveal any cell toxicity (data not shown). 

Furthermore, addition of heparin-derived oligosaccharides [4, 14 and 24 

(corresponding respectively to 4, 14 and 24 disaccharide-unit length)] to the culture inhibited 

RANKL-induced osteoclastogenesis in a dose- and size-dependent manner (Figure 3B). 

Indeed, 1.56 µM of oligosaccharide 4 inhibited osteoclastogenesis by 6%, whereas at the 

same concentration oligosaccharides 14 and 24 inhibited osteoclastogenesis by respectively 

24% and 53%. In the same way, inhibition of RANKL-induced osteoclastogenesis using 12.5 

µM oligosaccharide was around 17% with oligosaccharide 4, 44% with oligosaccharide 14, 

and 72% with oligosaccharide 24. At 100 µM, osteoclastogenesis was almost totally abolished 

with all oligosaccharides, whatever their size. These oligosaccharides had no effect on RAW 

264.7 cells cultured in medium without RANKL. We then analyzed the effect of hyaluronic 

acid which is a huge non-sulfated molecule. As shown in figure 3C, hyaluronic acid also 

inhibited osteoclastogenesis in a dose dependent manner.  

 

Sulfation of oligosaccharides is a key parameter for the inhibition of RANKL-induced 

osteoclastogenesis 

To decipher the mechanisms involved in the inhibition of osteoclastogenesis observed 

in the presence of oligosaccharides and GAGs, we analyzed the importance of quantitative 

and qualitative sulfation by comparing the effects of normal standard heparin with several 

forms of specifically desulfated heparins on N- or O-residues: de-N-sulfated re-N-acetylated 



heparin, completely desulfated heparin, de-2O-sulfated heparin, de-6O-sulfated heparin, and 

de-N-sulfated heparin. As shown in figure 4, RANKL-induced osteoclastogenesis was 

inhibited by normal heparin (83% of inhibition, p<0.01), by de-N-sulfated re-N-acetylated 

and de-N-sulfated heparins (around 50% of inhibition), and by de-2O- and de-6O-sulfated 

heparins (around 75% of inhibition, p<0.01). However, totally desulfated heparin poorly 

inhibited RANKL-induced osteoclastogenesis (around 14%; p<0.05).  

 

GAGs induce differentiation of human monocytes into dendritic cells 

To determine whether the inhibitory activity of GAGs was specific of 

osteoclastogenesis, the effects of heparin-derived oligosaccharide 16 (32-mer), dermatan 

sulfate and heparin were investigated during the differentiation process of human monocytes 

into dendritic cells (non adherent cells) using two different approaches: isolated CD14+ 

monocytes (Figure 5A) or monocytes obtained after 2h of adherence of total PBMCs (Figure 

5B). As shown in figure 5, oligosaccharide 16, dermatan sulfate and heparin potentiated the 

effect of the GM-CSF/IL-4 cocktail to induce dendritic cell differentiation from both isolated 

CD14+ cells and total PBMCs. For example in the model of CD14+ monocytes, GM-CSF/IL-4 

induced around 20% of CD14- / CD1a+ dendritic cells after 5 days of culture, whereas 

oligosaccharide 16 or heparin addition significantly enhanced this differentiation process by 

10 to 20% (Figure 5A). The same effect was observed using total PBMCs:  oligosaccharide 

16, dermatan sulfate and heparin significantly increased the dendritic cell differentiation with 

a mean average of about 12.5% (Figure 5B) whereas these GAGs/oligosaccharides have no 

effect alone. Thus the inhibitory effect of GAGs observed on osteoclast differentiation is 

specific to this commitment because no inhibition could be shown with other differentiation 

systems such as dendritic cell differentiation.  

 



Heparin does not bind to RANKL and does not modulate RANKL signaling 

Shinmyouzu et al. demonstrated that dermatan sulfate inhibits RANKL-induced 

osteoclastogenesis in a mouse model of osteoclast differentiation from bone marrow 

(Shinmyouzu et al., 2007). They showed that this inhibition occurred through the binding of 

dermatan sulfate to RANKL leading to the inhibition of RANKL interaction to its receptor 

RANK, and thus to the inhibition of RANKL signaling. Based on these observations, the 

authors suggested that the same phenomenon could be involved in the inhibition of RANKL-

induced osteoclastogenesis which they also observed with heparin or chondroitin sulfate E. In 

the present work, surface plasmon resonance experiments demonstrated that heparin did not 

bind to RANKL (Figure 6A). Similarly, chondrotin sulphate, dermatan sulphate, heparin 

sulphate and oligosaccharides did not bind immobilized RANKL in contrast to immobilized 

OPG (Théoleyre et al, 2006; Lamoureux et al, 2009). However, soluble OPG and soluble 

RANK bound to immobilized RANKL with high affinity (data not shown). In agreement with 

these data, heparin did not inhibit RANKL signaling in RAW 264.7 cells nor in CD14+ human 

monocytes (Figure 6B). 

 

Heparin inhibits the adherence and spreading of osteoclasts and thus their functionality 

To better characterize the mechanisms by which heparin inhibits osteoclast formation, 

especially in the early adherence and spreading phases, the effect of heparin was assessed at 

different times during the culture period. When heparin was added during the first 4 days (D0-

D4) of culture in the presence of M-CSF only very few osteoclasts were generated after 14 

days (Figure 7A). Moreover, when heparin was added during the first 4 days, it inhibited by 

around 40% the number of adherent CD14+ osteoclast precursors compared to the control 

condition (Figure 7B). Thus in this culture condition, fewer osteoclast precursors adhered to 

the plastic surface and less osteoclasts were generated in the presence of RANKL at D14. The 



addition of heparin during intermediate culture step (D4-D10) did not inhibit osteoclast 

formation, and the number of osteoclasts formed was similar to the control group in the 

presence of RANKL (Figure 7A). In contrast, when heparin was added during the fusion step 

of osteoclastogenesis (D10-D14), heparin inhibited significantly the number of osteoclast 

formed (Figure 7A). 

In the presence of heparin and RANKL, CD14+ cells, as well as RAW 264.7 cells, 

developed two different morphological shapes: large multinucleated TRAP+ cells and 

condensed cells (see arrows on Figures 1A and 2A). As this latter group of cells were TRAP+ 

and seemed multinucleated, we suggested that heparin inhibited the spreading of RANKL-

generated osteoclasts. Such modifications of cell morphology were not observed in the 

presence of OPG (Figure 7D). Thus, after the formation of large osteoclasts in the control 

medium containing RANKL (after 14 days), heparin was maintained (D4-D17) or removed 

(D4-D14) and the cells cultured for 3 more days. Osteoclasts did not die during this additive 

period and surprisingly, the number of condensed cells decreased whereas the number of large 

osteoclasts increased, suggesting a recovery of the spreading of the initially condensed cells 

during these 3 days (Figures 7C and 7D). We confirmed this phenomenon using time laps 

experiment. The same protocol was performed and a picture was taken every 10 min during 

11 hours to create a time lapse movie (aditional data 2-4). These movies showed that 

condensed cells observed in the presence of RANKL and heparin recovered spreading ability 

when heparin was removed of the culture.  

These result clearly demonstrated a sequential effect of heparin on RANKL-induced 

osteoclastogenesis. Heparin acted at two distinct levels of osteoclastogenesis: i) at the early 

steps of the process by affecting and decreasing cell adherence and ii) at the end of the 

osteoclastogenesis process by inhibiting the spreading of the preformed osteoclasts, which 

were no more functional as shown by the inhibition of their ability to resorb dentine substrate. 



Furthermore, as shown in figures 7C and 7D, this second effect is reversible as condensed 

osteoclasts are able to spread again when heparin was removed only 3 days after the predicted 

end of the culture. In summary, these results suggest that heparin did not inhibit the fusion of 

osteoclast precursors (CD14+ monocytes), but induced a morphological change of the 

generated osteoclasts leading to an inhibition of the functionality of these cells. 



Discussion 

 

Bone is a connective tissue composed of cells and mineralized extracellular matrix. Its 

normal remodeling and volume are maintained through the balance of bone formation by 

osteoblasts and resorption by osteoclasts. Although this equilibrium between osteoblast and 

osteoclast activities is controlled by a plethoric number of cytokines and growth factors, 

components of the extracellular matrix including proteoglycans and glycosaminoglycans 

(GAGs) are also involved in this phenomenon (Lamoureux et al, 2007). Indeed, heparan 

sulfate proteoglycans are found ubiquitously on both the surface of cells as well as within the 

extracellular matrix where they bind and modify the function of numerous ligands 

(Lamoureux et al, 2007). The influence of GAGs on bone metabolism has been revealed 

many years ago by long-term administration of heparin which can lead to the development of 

osteoporosis. Rats treated once daily by subcutaneous injections of heparin exhibited 

decreased trabecular bone volume both by decreasing the rate of bone formation and 

increasing the rate of bone resorption (Muir et al, 1996). Similarly, Barbour et al. (1994) 

showed that 36% of pregnant women undergoing long-term treatment with heparin had a 10% 

reduction in femoral bone mineral density. However, the mechanism sustaining this 

osteoporosis was unclear and it was difficult to determine if these effects on bone resorption 

were due to the direct effect of heparin on osteoclasts or indirectly via its osteoblast activity. 

This study takes place in this context and analyzes the influence of GAGs on 

osteoclastogenesis and resorption activity.  

The effect of GAGs on osteoclastogenesis is controversial, as some studies showed a 

stimulation of osteoclastogenesis (Irie et al, 2007; Fuller et al, 1991) and others an inhibition 

(Shinmyouzu et al, 2007; Ariyoshi et al, 2008). It has been suggested that the mechanisms of 

action of GAGs on osteoclasts involved the inhibition of OPG, the decoy receptor for 



RANKL (Irie et al, 2007), or a direct interaction with RANKL leading to its inactivation 

(Shinmyouzu et al, 2007; Ariyoshi et al, 2008). It is worth  noting that there are differences in 

the models used by these two teams. Indeed, Irie et al., used a system of coculture of mouse 

bone marrow with calvarial osteoblasts in a medium supplemented with 1,25(OH)2D3/PGE2 

(Irie et al, 2007) whereas Shinmyouzu et al. (2007) performed their studies on mouse bone 

marrow cells alone. To better understand the precise role of GAGs on osteoclastogenesis, we 

used three different models of osteoclastogenesis (murine or human) and various tested 

GAGs. Our results clearly demonstrated that all GAGs inhibited osteoclastogenesis in all 

systems tested. Furthermore, we demonstrated the importance of the length and the sulfation 

of the GAGs in their inhibitory effect. Such structural significance has been already shown in 

other biological models (Hallak et al, 2000; McDonnell et al, 2004; Rajgopal et al, 2008). The 

influence of GAG length on osteoclastogenesis has been also suggested by in vivo study. 

Indeed, in contrast to unfractioned heparin which seems to decrease bone formation and 

increase bone resorption, low molecular weight heparins cause less bone loss because they 

only decrease bone formation and have no effect on bone resorption (Rajgopal et al, 2008). 

The sulfation also plays a key role in GAGs biological activities, as revealed by the present 

work. The sulfation has clearly been shown to participate to the control of cell biology. For 

example, Hallak et al. demonstrated that efficient infection of cells by the Respiratory 

Syncycial Virus requires an interaction of the virus to GAGs containing N-sulfation and a 

minimum saccharide chain length of 10 (McDonnell et al, 2004). McDonnell et al. showed 

that reduced GAG chain sulfation by chlorate treatment decreases the frequency of 

spontaneous acetylcholine receptor clustering in skeletal muscle cells (McDonnell et al, 

2004). Furthermore, sulfation strongly modulates the interaction of GAGs with proteins such 

as growth factors or enzymes (Lamoureux et al, 2007; Gallagher, 2006). Similarly, osteoclast 

differentiation and activity are regulated by GAGs at different levels, as revealed in previous 



studies. For instance, in an in vitro model of osteoclastogenesis, FGF-2 upregulated the 

expression of RANKL on rheumatoid arthritis synovial fibroblasts which was diminished by 

the removal of heparan sulfate with heparatinase (Nakano et al, 2004). Heparan sulfate can 

also participate in bone resorption regulation through the inhibition of cathepsin K activity, as 

demonstrated by the study of Li et al. (2004). Cathepsin K is a lysosomal papain-like cysteine 

protease mainly involved in bone matrix destruction that forms complexes with chondroitin 

sulphate. If sulfation clearly modulates GAG activities on osteoclastogenesis, their length 

appears to be another key parameter in their biological functions. Indeed, although hyaluronic 

acid is not sulfated (Lamoureux et al, 2007), its large size can explain its inhibitory activity on 

osteoclastogenesis. These data then revealed a complementary influence of length and 

sulfation of GAGs on osteoclastogenesis. We also have obtained some evidence that heparin 

and other GAGs inhibit osteoblast differentiation of bone marrow mesenchymal stem cells in 

vitro (unpublished data), demonstrating that GAGs exert their activities on osteoclasts as well 

as on osteoblasts. Overall, our data are in favour of a direct inhibitory activity of GAGs on 

osteoclastogenesis, and the effect of unfractionated heparin observed in vivo may be explained 

by its effects on the bone osteoblast compartment and subsequently by the dysregulation of 

the balance between osteoblasts and osteoclasts or by a slow down of bone remodeling. 

However, how can we explain the strong discrepancies between previous published 

data? First, the models used were different and the present work is the first comparing 

simultaneously the GAG effects on human and murine cells (purified primary culture cells 

and cell lines). Ariyoshi et al. (2008) previously had shown that hyaluronic acid upmodulates 

osteoclastogenesis through activation of CD44 signaling pathway whereas Chang et al. (2007) 

demonstrated opposite effects revealing an activation of TLR4 signaling pathway without any 

involvement of CD44. However, the present work did not show any evidence for alteration in 

the RANK/RANKL signaling pathway and no specific induction of other signaling pathways 



has been observed after GAG treatments. Ariyoshi et al. (2008) demonstrated the binding of 

heparin to RANKL, but our experiments using surface plasmon resonance methodology did 

not confirm such binding, in contrast for instance to OPG, a heparin binding protein [data not 

shown, (Theoleyre et al, 2006; Lamoureux et al, 2009)]. Moreover, Shinmyouzu et al. (2007) 

published that dermatan sulfate inhibits osteoclast formation by binding to RANKL. 

However, these authors used non relevant physiological concentrations of dermatan sulfate 

(300 µg/ml) and non purified osteoclast precursors to study osteoclastogenesis. Such effects 

may be due to the activation of Toll-like receptors as shown by Chang et al. (2007). In this 

context, i.e. the absence of RANKL-GAG binding and signalisation, we analyzed the effects 

of GAGs on adhesion and fusion of osteoclast precursors. Thus, the second major finding of 

this study is the morphological changes induced by heparin on the cells obtained in the 

presence of RANKL. First, these cells can not be counted as active osteoclasts because the 

number of nuclei is less than 3, and second, these cells are not able to resorb dentine, 

indicating that they can be considered as immature osteoclasts or as non resorbing-osteoclasts. 

However, this effect is reversible by removing heparin from the culture medium and few 

hours only are needed to get normal osteoclasts. We clearly showed that GAGs inhibit the 

osteoclast precursor adhesion, as well as the step of cell fusion. The alteration of cell adhesion 

and morphology avoids the cell fusion of osteoclast precursors and blocks osteoclast 

resorption, which is particularly sensitive to cell morphology to develop their brush border 

(Rousselle and Heymann, 2002). 

The present work evidences a novel mechanism of action of GAGs on osteoclasts and 

their precursors. However, although a direct activity of GAGs on osteoclasts has been 

demonstrated, the mechanisms of action of low molecular weight heparin which have 

gradually replaced the use of unfractionated heparin in part due a lower risk of inducing 

osteoporosis, are not yet totally elucidated (Rajgopal et al, 2008). Indeed, if short 



oligosaccharides are less efficient to inhibit osteoclastogenesis, the effect of low molecular 

weight heparins on osteoblasts and on osteoblast-osteoclast communications needs to be 

investigated. Moreover, complementary studies to determine whether the effects of heparin on 

bone are reversible are needed. 
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Figure legends 
 

Figure 1: Heparin inhibits RANKL-induced osteoclastogenesis in two murine models of 

osteoclastogenesis. RAW 264.7 cells were cultured in the presence of hRANKL (100 ng/ml) 

and heparin (5 µM). After 5 days, cells were stained for TRAP expression. Small osteoclasts 

(arrowheads) and condensed cells (arrows) formed in the presence of heparin are shown. (A) 

TRAP+ multinucleated cells (more than 3 nuclei) were counted under a light microscope 

(original magnification x 40). Each value represents the mean (± SD) of multinucleated cells 

per well of a triplicate experiment (B). mRNA expressions of osteoclastic markers (RANK, 

TRAP, Ctsk) were analyzed by real-time PCR after 5 days of culture. Cyc1 and Hprt1 were 

used as internal control. Results are expressed as fold increase compared to the control (C). 

Experiments were performed independently at least 3 times in triplicate. CD11b+ purified 

cells from mouse bone marrow were cultured for 15 days in presence of 25 ng/ml mM-CSF 

with or without hRANKL (100 ng/ml) and heparin (5µM). At the end of the culture period, 

TRAP staining was performed and TRAP+ multinucleated cells (more than 3 nuclei) were 

counted under a light microscope (D) (** p<0.01). 

 

Figure 2: Heparin inhibits RANKL-induced osteoclastogenesis in human CD14+ 

monocytes. CD14+ purified monocytes were cultured for 15 days in the presence of 25 ng/ml 

hM-CSF with or without hRANKL (100 ng/ml) and heparin (5 µM). At the end of the culture 

period, TRAP staining was performed (original magnification x 40) (A) and TRAP+ 

multinucleated cells (more than 3 nuclei) were counted under a light microscope (B). In some 

conditions, CD14+ monocytes were cultured on dentine slices for 15 days. Resorption areas 

were visualised on dentine slices after the culture of CD14+ cells in the presence or absence of 

hRANKL, heparin or hRANKL+heparin (C) and were measured using Qwin software (Leica) 

(D). (* p<0.05). 



 

Figure 3: Various GAG families are able to inhibit RANKL-induced osteoclastogenesis. 

RAW 264.7 cells were cultured in presence of hRANKL (100 ng/ml) and 5µM of heparan 

sulfate (bHS: heparan sulfate from bovine kidney, pHS: heparan sulfate from porcine 

intestinal mucosae), chondroitin sulfate C (CS-C) and dermatan sulfate (DS) (A) or increasing 

concentrations of heparin oligosaccharides: 4 (8-mer, grey bar), 14 (28-mer, dark bar) and 24 

(48-mer, hatched bar) (B) or increasing concentrations of hyaluronic acid (C). After 5 days, 

RAW 264.7 cells were stained for TRAP expression and multinucleated cells (more than 3 

nuclei) were counted under a light microscope. Results are expressed as number of 

multinucleated cells per well: each value represents the mean (± SD) of multinucleated cells 

per well of a triplicate. Experiments were performed at least 3 times in triplicate (* p<0.05, ** 

p<0.01, *** p<0.001). 

 

Figure 4: Sulfation is a key parameter in the inhibition of RANKL-induced 

osteoclastogenesis by heparin. RAW 264.7 cells were cultured in the presence of RANKL 

(100 ng/ml) and different forms of heparin (5µM). After 5 days, RAW 264.7 cells were 

stained for TRAP expression and multinucleated cells (more than 3 nuclei) were counted 

under a light microscope. Results are expressed as number of multinucleated cells per well: 

each value represents the mean (± SD) of multinucleated cells per well of a triplicate. 

Experiments were performed at least 3 times in triplicate (* p<0.05, ** p<0.01). 

 

Figure 5: Oligosaccharides promote dendritic differentiation. Human CD14+ cells (A) or 

total PBMCs (B) were cultured in cell media supplemented with 100 ng/ml GM-CSF + 5 

ng/ml IL-4, in the presence or absence of heparin oligosaccharide 16 (32-mer, Oligo 16), 

heparin or dermatan sulfate at 5 µM. After 5 days, cells were double stained for CD1a and 



CD14, and analyzed by flow cytometry. Percentages of CD1a+ cells (dendritic cells) were 

plotted. 

 

Figure 6: Heparin does not bind to hRANKL and does not modulate RANKL 

signalization.  (A) Heparin (1 to 20 nM) or hOPG (25nM) were injected at a flow rate of 30 

µl/min and 20 µl/min, respectively, over the immobilized-RANKL sensorchip for 6 min. In a pH 

7.4 buffer, hOPG but not heparin binds to hRANKL. (B) Human CD14+ monocytes were 

incubated for 15 min at 37°C with 100 ng/ml hRANKL in the presence or the absence of 5 

µM heparin. Protein lysates were prepared and expression of Phospho-ERK1/2, total- total-

ERK1/2, Phospho-p38, total-p38, Phospho-p105, total-p105 was analyzed by western 

blotting. All experiments were repeated three times, and a representative blot is shown. 

 

Figure 7: Heparin acts at two different levels of RANKL-induced osteoclastogenesis of 

human CD14+ cells. CD14+ cells were cultured in the presence of hM-CSF and hRANKL 

with or without heparin (5 µM) or OPG (100 ng/ml) added at different time points of the 

culture. After TRAP staining, osteoclasts were counted under a light microscope. (A) Heparin 

was added during the first 4 days (D0-D4) of the culture, added after 4 days of culture to  days 

10 (D4-D10), or added during the last 4 days of the culture (D10-D14) or maintained all along 

the culture (D0-D14). (B) Heparin inhibits the adherence of CD14+ cells when added only 

during the first 4 days of the culture, in the presence of hM-CSF only. (C and D) Heparin 

inhibits osteoclast spreading: CD14+ monocytes were cultured with hM-CSF and hRANKL, 

with or without heparin (5 µM) until the formation of osteoclasts in the control condition (D4-

D14). Heparin was then removed from the medium or maintained and culture was extended 

for 3 more days (D14-D17). TRAP staining was then performed and osteoclasts were counted 

under a light microscope (original magnification x 40). Black arrows show the condensed 



cells obtained in heparin conditions after the normal culture period + 4 additional days (* 

p<0.05) 

 

Aditional data 1 

 GAGs and heparin do not modulate the proliferation of osteoclast precursors. 

Osteoclast precursors (CD14+ cells) were treated from the day of cell plating by 25 ng/ml M-

CSF and increased doses of heparin. The number of viable cells was measured by XTT assays 

72h later. In the second set of experiments, CD14+ cells were first incubated with 25 ng/ml 

M-CSF for 3 days before addition of increased doses of heparin for 11 days. The number of 

viable cells was determined by using XTT three days later. The results revealed that heparin 

and other GAGs (only experiment performed with heparin and DS after 3 days of culture in 

the presence of M-CSF has been shown, similar results have been obtained with chondroitin 

sulfate and oligosaccharides, after 6 days of culture or in the absence of M-CSF) did not 

affect the proliferation of osteoclast precursors. 

 

Aditional data 2-4 

CD14+ monocytes were cultured in a 24-well plate with hM-CSF and hRANKL as described 

in the present paper, and with our without heparin (5 µM). At the end of the culture, heparin 

was removed or not from the medium and the culture was extended for 11 more hours. A 

picture was taken every 10 minutes during 11 hours, and the movies were reconstituted using 

the ImageJ software. 
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