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Abstract 

Osteolysis is a complex mechanism resulting from an exacerbated activity of osteoclasts 

associated or not with a dysregulation of osteoblast metabolism leading to bone loss. This 

bone defect is not compensated by bone apposition or by apposition of bone matrix with poor 

mechanical quality. Osteolytic process is regulated by mechanical constraints, by 

polypeptides including cytokines and hormones and by extracellular matrix components such 

as proteoglycans (PGs) and glycosaminoglycans (GAGs). Several studies revealed that GAGs 

may influence osteoclastogenesis, but data are very controversial: some studies showed a 

repressive effect of GAGs on osteoclastic differentiation whereas others described a 

stimulatory effect. The controversy also affects osteoblasts which appear sometimes inhibited 

by polysaccharides and sometimes stimulated by these compounds. Furthermore, long-term 

treatment with heparin leads to the development of osteoporosis fueling the controversy. After 

a brief description of the principal osteoclastogenesis assays, the present chapter summarizes 

the main data published on the effect of PGs/GAGs on bone cells and their functional 

incidence on osteolysis. 

 

 

 

 

 

 

 



1. Introduction 

Bone metabolism is tightly regulated by a balance between two bone cell types 

combining catabolic and anabolic activities. Bone catabolism is supported by multinucleated 

cells specialized in bone resorption and named osteoclasts. Osteoclasts originate from the 

monocyte lineage and differentiate by the action of membranous, soluble and extracellular 

matrix compounds (1). Among these factors, some are required for proliferation of osteoclast 

mononuclear progenitors such as macrophage-colony stimulating factor (M-CSF) while other 

factors such as receptor activator of nuclear factor-kB ligand (RANKL) are more specifically 

implicated in the commitment of these precursors to their fusion and in the formation of 

multinucleated resorbing osteoclasts (2-4). Bone catabolism depends on the ability of the 

osteoclast to generate an acidic extracellular compartment between itself and the bone surface 

which is essential for solubilization of the alkaline salts of bone mineral (5). This acidic pH is 

also necessary for the digestion of the organic bone matrix by lysosomal enzymes secreted by 

osteoclasts (6). According to their ability to solubilize hydroxyapatite crystals and to digest 

organic matrix, osteoclasts contribute to the orchestration of the phosphocalcic homeostasis 

together with the second main bone type cells, the osteoblasts. Osteoblasts originate from 

mesenchymal stem cells and perform anabolic functions consisting in the formation of 

extracellular matrix composed by 95% type I collagen (7). Osteoblast activities are not limited 

to the formation of bone extracellular matrix but also extend to the osteolytic process. While 

osteoblasts produce and secrete gelatinase activities (8) controlling partly the collagenic 

matrix, they release more particularly cytokines and growth factors regulating osteoclast 

differentiation and activation (2, 3, 9). Among these polypeptides, RANKL/OPG 

(osteoprotegerin) is the main molecular couple involved in the communication between 

osteoblasts and osteoclasts (2, 3). In this system, RANKL expressed by osteoblasts and also 

by stromal cells binds to its receptor RANK expressed on the surface of osteoclast precursors 



and consequently activates TRAF6/NFκB signaling pathway leading to the fusion of 

osteoclast activity and survival (10, 11). RANK/RANKL interactions are controlled by OPG 

which is also produced by osteoblasts/stromal cells. OPG acts as a soluble decoy receptor 

blocking the binding of RANKL to RANK and subsequently the osteoclastogenesis and the 

osteolytic process (12, 13). 

 Extracellular matrix components, especially proteoglycans (PGs) and 

glycosaminoglycans (GAGs) contribute to the bone remodelling and to the maintenance of 

bone mass (14). Thus, PGs and GAGs are involved in the organization of collagen fibers (14). 

However, the role of GAGs and PGs in bone metabolism is more complex than initially 

envisaged and this complexity is mainly related to the structure and the localization of these 

compounds. PGs exhibit numerous locations and more precisely are associated with 

intracellular compartments, expressed on the cell surface or anchored in the extracellular 

matrix and basement membrane in almost all tissues in adults (15). The composition of GAGs 

is very heterogenous and includes linear polymers which are bound to a core protein to form 

PGs. There is no unifying feature for core protein structures and then PGs display a great 

diversity of protein forms. Many core proteins have complex modular structures with protein 

motifs which have similar sequence to those found in other protein families. GAGs are 

composed of repeated disaccharidic units of hexosamine and hexuronic acid, except for 

keratan sulfate in which hexuronic acid is replaced by galactose. According to the 

epimerization and sulfation of hexosamine and uronic acid, several families of GAGs have 

been described. All together, this diversity of composition explains in part their very complex 

biological activities in all tissues and that GAGs/PGs functions are not limited to the control 

of fibrillogenesis. 

 The aim of the present review is to better define the function of GAGs and PGs in 

bone remodeling and more specifically in osteolysis. The first part of the manuscript will 



describe the main osteoclastogenesis assays currently used. The review will then focus on the 

role of PGs in the control of physiological and pathological osteolysis regarding the 

osteoblastic and osteoclastic components.  

 

2. In vitro assays of osteoclastogenesis 
 

Numerous cell culture systems derived from different species have been established to 

study the molecular and cellular mechanisms of osteoclastogenesis (3). Recently, osteoclasts 

have been generated from a single-cell suspension of embryonic stem (ES) cells seeded on a 

feeder monolayer. Bone-resorbing cells expressing osteoclastic markers such as TRAP 

(Tartrate-Resistant Acid Phosphatase) or RANK were obtained within 11 days (16). However,  

the main systems used to study the mechanisms of osteoclastogenesis are based on culture of 

osteoclast progenitors isolated from monocytic cells (peripheral blood monocyte fraction / 

umbilical cord blood monocytes / spleen cells / monocytic cell lines) in the presence or 

absence of stromal cells (osteoblastic cells) but after addition of a cytokine cocktail including 

M-CSF and RANKL. The following paragraphs will describe the most effective methods to 

study osteoclastogenesis in vitro. 

2.1. Differentiation assay from the murine RAW 264.7 monocytic cell line 

Materials and reagents 

- Murine RAW 264.7 monocytic cells (ATCC, Promochem, France) (17)  

- Phenol red-free α-Minimal Essential Medium (α-MEM) (Invitrogen, France) 

- Fetal calf serum (FCS) (Perbio, Logan, USA), batch specifically selected for 

osteoclast differentiation 

- Non essential amino acids (Invitrogen) 



- Solution of trypsin (0.25%) and ethylenediamine tetraacetic (EDTA) (1mM) 

(Invitrogen) 

- Human or murine RANKL (hRANKL or mRANKL, R&D System, UK) is dissolved 

in phosphate buffer/0.1%BSA at 1 mg/mL and stored in single use aliquots at -80°C 

until use. Final concentration used is 100 µg/mL (dilution in α-MEM supplemented 

with 10% FCS) 

- Leukocyte (TRAP) staining kit n°387A (Sigma, France) 

Cell culture 

RAW 264.7 cells were routinely cultured in α-MEM supplemented with 10% FCS and 1% 

non essential amino acids. Fresh medium is replaced twice a week and cell culture 

amplifications are performed after cell detachment by scraping. RAW 264.7 are frozen in 

DMSO solution diluted at 20% in FCS and frozen at 5 x 106 cells/mL in liquid nitrogen until 

use. 

Osteoclast differentiation 

To induce osteoclast formation, RAW 264.7 cells are scraped then incubated at 37°C for 2 

minutes to allow adherence of the most differentiated cells. Non adherent cells are then 

collected and seeded in fresh medium, at a density of 3 x 103 cells/well in a 96-well plate. 

After 2 hours, medium is changed for a fresh one containing 100 ng/mL hRANKL. After 5 

days of culture, multinucleated cells (>3 nuclei) are counted under a light microscope 

(contrast phase) (Figure 1A) or after TRAP staining according the recommendation of the 

manufacturer (17, 18). Osteoclasts can be observed from 30 ng/mL of RANKL.  

 



 

2.2 Differentiation from murine CD11b+ monocytes 

Materials and reagents 

- 4 week-old C57BL6 male mice (Elevage Janvier, France)  

- CD11b microbeads and MACS technology (Miltenyi Biotec, Germany) 

- Phenol red-free α-Minimal Essential Medium (α-MEM) (Invitrogen, France) 

- Fetal calf serum (FCS) (Perbio, Logan, USA), batch specifically selected for 

osteoclast differentiation 

- Murine M-CSF (mM-CSF, R&D System, UK) is dissolved in phosphate buffer 

/0.1%BSA at 25 µg/mL and stored in single use aliquots at -80°C until use. Final 

concentration used is 25 ng/mL (dilution in α-MEM supplemented with 10% FCS) 

- Human or murine RANKL (R&D System, UK) is dissolved in phosphate buffer 

/0.1%BSA at 100 µg/mL and stored in single use aliquots at -80°C until use. Final 

concentration used is 100 ng/mL (dilution in α-MEM supplemented with 10% FCS) 

- Leukocyte (TRAP) staining kit n°387A (Sigma, France) 

Cell preparation and osteoclast differentiation 

CD11b+ monocytes are purified from murine bone marrow cells, obtained by flushing the 

bone marrow from femora and tibiae of 4 week-old C57BL6 male mice. Mice are 

anesthetized using isoflurane and euthanized by cervical dislocation. CD11b+ cells are 

magnetically labelled with CD11b Microbeads and positively selected by MACS technology. 

CD11b+ cells are seeded in 24-well plates (500 x 103 cells / well) in phenol red-free α-MEM, 

containing 10% FCS and 25 ng/mL mM-CSF. This step is absolutely necessary to improve 

adhesion of osteoclast precursor to the plastic and to stimulate their proliferation. After 3 days 



of culture, medium is replaced by fresh medium containing 10% FCS, 25 ng/mL mM-CSF, 

with 100 ng/mL hRANKL. Thereafter, complete medium (with cytokines) are changed every 

4 days. The formation of osteoclasts occurred between 15 to 21 days of culture and was 

detected by TRAP staining (Figure 1B) (21, 22). Fluorescent osteoclasts can be obtained 

using similar technique with CD11b+ isolated from GFP-mice (Figure 1C). 

 

2.3 Differentiation assay from human CD14+ cells 

Materials and reagents 

- Human peripheral blood from healthy volunteer donors and collected on EDTA or 

citrate buffer 

- CD14 microbeads and MACS technology (Miltenyi Biotec, Germany) 

- α-Minimal Essential Medium (α-MEM) (Invitrogen, France) 

- Fetal calf serum (FCS) (Perbio, Logan, USA), batch specifically selected for 

osteoclast differentiation 

- Human M-CSF (R&D System, UK) is dissolved in phosphate buffer /0.1%BSA at 25 

µg/mL and stored in single use aliquots at -80°C until use. Final concentration used is 

25 ng/mL (dilution in α-MEM supplemented with 10% FCS) 

- Human or mouse RANKL (R&D System, UK) is dissolved in phosphate buffer 

/0.1%BSA at 100 µg/mL and stored in single use aliquots at -80°C until use. Final 

concentration used is 100 ng/mL (dilution in α-MEM supplemented with 10% FCS) 

- Ficoll
®

 solution, d = 1,077 (Sigma, France) 

- Leukocyte (TRAP) staining kit n°387A (Sigma, France) 

 



Selection of CD14+ cells 

Blood samples are first diluted with phosphate buffer at 50% and diluted samples are layered 

onto Ficoll solution in a centrifuge tube. Human peripheral blood mononuclear cells (PBMCs) 

were then isolated by centrifugation over Ficoll gradient for 25 minutes at 500 g. Whether 

osteoclasts can be differentiated directly from PBMC or from purified monocytes obtained 

after 45 min adhesion followed by a differentiation step in the presence of M-CSF and 

RANKL, enrichment and purification of osteoclast precursors (CD14+) allow the 

differentiation of high number of osteoclasts. CD14+ cells are magnetically labeled with 

CD14 Microbeads and positively selected by MACS technology.  

Osteoclast differentiation 

To induce osteoclast formation, CD14+ cells are seeded at 250 x 103 cells/well in 24-well 

plates or 45 x 103 cells/well in 96-well plates in α-MEM supplemented with 10% FCS and 25 

ng/ml M-CSF. From day 3 of the culture, medium is changed twice a week with fresh 

medium containing 10% FCS, 25 ng/mL human M-CSF and 100 ng/mL human RANKL. The 

formation of osteoclasts occurs after around 11 days and is confirmed by TRAP staining 

(Figure 1D) (21, 22). 

The two main factors involoved in osteoclast differentiation process and survival are: 

i) M-CSF which modulates cell adhesion, differentiation, fusion, resorbing activity and ii) 

RANKL which is dedicated to the osteoclast fusion, activation and survival. 

Osteoclastogenesis can be observed from 30 ng/mL and mRANKL can replace human 

RANKL with 2 fold higher concentration. RANKL and M-CSF then represent the canonical 

pathway of osteoclastogenesis and they can be substituted by other protagonists (23). It has 

been shown that several cytokines can be substituted for RANKL to promote 

osteoclastogenesis in vitro (TNF-α, IL-11, IL-8) (23). However, osteoclast differentiation is 



absolutely dependent on RANKL in vivo as confirmed by RANKL knock-out mice which 

completely lack TRAP-positive immature and mature multinucleated osteoclasts [24]. In 

contrast, M-CSF can be replaced in vitro and in vivo by VEGF, HGF, FLt-3 ligand or IL-34 

for instance (23, 25). 

Resorption assay 

The best validation of the osteoclastic phenotype is to assess the ability of differentiated cells 

to resorb a mineralized matrix in vitro.  For this, CD14+ cells are cultured on dentine or 

cortical bone slices (for bovine bone for instance, animal dentine: horse, bovine, etc) in the 

conditions previously described. At the end of the culture period, osteoclasts are removed by 

bleach; dentin/bone slices are fixed with 4% glutaraldehyde in 0.2 M sodium cacodylate 

solution for 30 minutes, followed by staining with 1% toluidine blue in 0.5% sodium 

tetraborate solution for 3 minutes (26). Resorption lacunae are identified by light 

stereomicroscopy (Zeiss, STEMI 2000-C, Göttingen, Germany) and area of resorbed surfaces 

are measured using QWin software (Leica, France).  

To study the resorption ability of fully mature osteoclasts, technique established by 

Fuller et al (27) can be used. Briefly, after formation of osteoclasts as described above, the 

medium are removed and the cell layer is washed three times with PBS without calcium and 

magnesium. Six hundred microliters of 0.02% EDTA are added per well (6-well plate) and 

cells are incubated for 20 min at room temperature. EDTA is then removed from the well and 

replaced by 600 µl of calcium/magnesium-free PBS. A cell scraper is used to harvest the cells 

in PBS, and the resulting cell suspension is mixed using a pipette to ensure uniform cell 

dispersal. Two hundred and fifty microliters of this cell suspension is then added to each well 

(24-well plate) on a dentin slice in 250 µl αMEM, 10% FCS. Cells are allowed to sediment 

for 20 min at 37°C before dentin/bone slices are washed. Cells are incubated in 500 µl 



αMEM, 10% FCS in the presence or the absence of tested compounds/drugs. After 

incubation, resorption surfaces are assessed as described above (Figure 1E) (28). Resorption 

lacunae and resorbed surface area can be also revealed and measured by scanning electron 

microscopy (29, 30). 

In all models described, the main markers used to determine the presence of 

osteoclasts are TRAP, calcitonin receptor, vitronectin receptor, cathepsin K, and the capacity 

for resorbing mineralized matrix. In all models, RANKL-induced osteoclastogenesis is 

specifically inhibited by addition of recombinant OPG or RANK-Fc (4).  

 

3.  Functional activities of PGs and GAGs on osteoclasts 
 

Numerous growth factors/cytokines/receptors carry a heparin binding domain and 

consequently can bind to isolated GAGs or GAGs from PGs. Thus, GAGs have many 

biological activities by holding various extracellular molecules which play key roles in bone 

metabolism and in bone remodelling. Indirect evidence of the role of GAGs in bone 

remodelling has been published by Kram et al (31). These authors have shown that 

heparanase, a heparin sulfate-degrading endoglycosidase, is weakly expressed throughout the 

bone marrow with a substantial increase in osteoblasts and osteocytes and in contrast 

heparanase is absent from osteoclasts. Interestingly, heparanase transgenic mice exhibit a 

marked increase of trabecular bone mass, cortical thickness, and bone formation rate, but no 

difference in osteoclast number. Their data suggest that proteoglycans in bone reduce 

osteoblast function and heparanase limits this reduction by degrading heparan sulfate (31).  

The effect of GAGs on osteoclastogenesis in vitro is controversial. For example, 

Ariyoshi et al (32) and Shinmyouzu et al (33) showed an inhibition of osteoclastogenesis after 

a direct interaction of GAGs with RANKL. In contrast, Irie et al (34) showed a stimulation of 



osteoclastic bone resorption by inhibiting OPG activity. However, more recently, using 

unfractionated osteoblast-derived GAGs that reflect the complex tissue microenvironment 

within which osteoclasts reside, Ling et al (35) demonstrate that GAGs block the 

osteoclastogenic activity of RANKL. Similarly, Baud’huin et al (28) demonstrated using 

three various models of osteoclastogenesis (RAW264.7, murine CD11b+ cells and human 

CD14+ cells) that GAGs downregulate RANKL-induced osteoclastogenesis. The mechanism 

by which GAGs control osteoclastogenesis remains unclear. Baud’huin et al (28) gave some 

arguments indicating that GAGs inhibit consecutively osteoclast precursor-adhesion and the 

fusion of these precursors. Size and sulfation of GAGs are key parameters for the inhibition of 

RANKL-induced osteoclastogenesis (28) but GAGs (heparin, chondrotin sulfate, dermatan 

sulfate, heparin sulfate or oligosaccharides) do not bind to RANKL as studied by surface 

plasmon resonance experiments (28, 36, 37). Shinmyouzu et al (33) published that dermatan 

sulfate inhibits osteoclast formation by binding to RANKL. However, these authors used non-

relevant physiological concentrations of dermatan sulfate (300 µg/ml) and non-purified 

osteoclast precursors to study osteoclastogenesis. To continue in the controversial data, 

Ariyoshi et al (32) observed that hyaluronic acid increases osteoclastogenesis through 

activation of CD44 signaling pathway whereas Chang et al (38) demonstrated opposite 

activities and showed an activation of TLR4 signaling pathway without any involvement of 

CD44. Finally, using fully differentiated osteoclasts derived from human peripheral blood 

monocytes, Pivetta et al (39) revealed that hyaluronan inhibits their migration on collagen as 

well as their ability to resorb bone matrix. These effects are mainly due to a decrease of 

TRAP, MMP-9 and cathepsin K activities and to the increased levels of TIMP-1. The role of 

CD44 was confirmed by using blocking anti-CD44 antibodies which fully abrogated 

hyaluronan effects. Hyaluronan then hampers osteoclast migration through its activity on 

CD44 (40). Overall, the data published show that GAGs inhibit osteoclastogenesis and their 



resorption activity by inhibiting the adhesion and fusion of osteoclast precursors. These 

activities appear independent of RANKL signaling pathway but may involve CD44 and TLR4 

depending on the GAGs used. 

 In contrast to RANKL, OPG has a heparin binding domain. OPG belongs to the family 

of the TNF receptor family and contains three structural domains specifically influencing its 

biological activities. The first one is a cysteine-rich domain in the N-terminal position which 

is essential for the inhibition of osteoclastogenesis as well as for the dimerization of OPG via 

the Cys400. The second domain corresponds to two death domain homologous regions. The 

third domain is a heparin-binding domain which is able to interact with numerous 

proteoglycans (41). Full length OPG binds to GAGs with a high affinity (Kd: 0.28 nM for 

heparin) in contrast to OPG-Fc in which the heparin-binding domain is lacking (36, 37). 

Therefore, the first role of the OPG heparin-binding domain has been revealed by Standal et al 

(42) who demonstrated that myeloma cells internalize and degrade OPG through its binding 

to syndecan-1 and consequently induce osteolysis in patients. Thus, PGs control the 

bioavailability of OPG one of the main inhibitor of osteoclastogenesis and bone resorption. 

PGs are involved in OPG-induced chemotaxis of monocytes (43). Indeed, OPG can interact 

with syndecan-1 expressed by monocytes (potential osteoclast precursors) and can stimulate 

the cell migration. In this context, OPG is a chemotactic factor for monocytes which can be 

recruited in inflammatory context or during osteolysis process. In light of these studies, PGs 

and GAGs exert a very complex pattern of activities which are not arguable if the biological 

context is taken into account (inhibition of osteoclastogenesis in vitro, bioavailability of OPG 

and monocyte chemotaxis in favour of pro-osteolytic activity). 

 

 

4. Functional activities of PGs and GAGs on osteoblasts  



Bone remodelling is a balance between osteoblast and osteoclast activation and the 

functional activity of the first is influenced by the other one. In this context, similarly to their 

activities on osteoclasts, PGs and GAGs strongly modulate osteoblast metabolism (14, 44). In 

bone microenvironment, membrane or soluble forms of RANKL are mainly expressed by 

stromal cells and osteoblasts which control osteoclastogenesis by this pathway (2, 4). OPG 

regulates the half-life of membrane RANKL and GAGs inhibit the OPG-induced shortened 

half-life of RANKL (36). In this specific context, GAGs may increase the half-life of RANKL 

by inhibiting OPG activity and thus act as a pro-osteoclastic factor.  Furthermore, RANKL 

significantly reduces ERK activity, a putative suppressor of osteoclastogenesis but 

unfractionated osteoblast-derived GAGs abolish the inhibitory effects of RANKL on ERK 

activity (35) underlining the fact that osteoblast microenvironment is a potent source of GAGs 

that promote bone anabolic activities. Although the exact mechanism by which GAGs 

regulate RANKL activity remains unclear, Cao et al (45) showed that hyaluronan increases 

RANKL expression in bone marrow stromal cells through CD44 which in turn could 

stimulate osteoclast activity. 

GAGs can be considered as polysaccharides containing protein-binding domains that 

coordinate mesenchymal stem cell commitment and growth, and ultimately, osteoblast 

phenotype (44). Among the heparan sulfate-binding factors known to be essential in to this 

process, FGFs, their receptors and members of the TGF superfamily are the most important 

molecule families. Fibroblast growth factor-2 (FGF2) is a crucial growth factor family driving 

the proliferation of osteoblasts as many other cell types. Robinson et al demonstrated that 

GAGs, heparin and heparan sulfate are essential for the activity of the fibroblast growth factor 

(FGF) family (46). GAGs promote FGF oligomerization that, in turn, triggers FGFRs 

dimerization and signal transduction (47). Like OPG, heparan sulfate PGs (HSPGs) mediate 

cell internalization of FGF and possibly its nuclear delivery (48). When FGF binds to free 



heparin/HSPGs, FGF is sequestered in the extracellular environment. Similar observations 

have been made for BPM2 and the depletion of cell surface HSPGs by enzymatic treatment 

enhances BMP2 bioavailability and osteogenic activity (49). FGFs also bind to 

transmembrane HSPGs and then enhance osteoblast proliferation and mineralization, effect 

partly abolished by an anti-syndecan 4 antiboby (49). Another example is given by the paper 

of Haupt et al (50). These authors demonstrated that MC3T3-E1 cells under osteogenic 

conditions decrease their chondroitin and dermatan sulfate PGs (biglycan, decorin, and 

versican) but increase glypican-3. This shift in expressed HSPGs is concomitant to the switch 

of FGR1 to FGR3 expression related to the commitment to osteoblast differentiation (51). 

Similarly to FGF, TGFs stored into the bone matrix could be released during bone resorption 

and modulate in turn osteoblast and ostoclast metabolism (52). Bi et al (53) revealed that the 

absence of the critical TGFβ-binding proteoglycans, biglycan and decorin, prevents TGFβ 

from proper sequestration within the extracellular matrix. Thus proteoglycans appear essential 

for maintaining an appropriate number of osteoblasts and osteoclasts by modulating their 

proliferation and/or differentiation. More recently, Bi et al revealed that biglycan deficiency 

upmodulates osteoclast differentiation and activation due to defective osteoblasts but 

independently of RANKL and OPG production (53). The effects of GAGs on osteoblast 

lineage are dependent on their sulfation. Indeed, sulfation strongly enhances the biological 

activity of BMPs (TGF member family) by continuously binding the ligands to their receptors 

and by enhancing osteoblast differentiation (54). In agreement with these data, desulfation of 

GAGs expressed by MG63 cells delayed in vitro mineralization process (55). Overall, these 

data point out the key role of GAGs in bone formation and their ability to modulate osteoblast 

differentiation by indirect mechanism and more specifically by controlling bone 

cytokines/growth factors. It is also important to keep in mind, that osteolysis is the result of 



both osteoblast and osteoclast activity and even if osteoblasts are bone cells specialized in 

bone formation they contributes in part to the degradation of osseous organic matrix.  

 

5.  PGs/GAGs and bone remodelling: a complex dysregulation of the anabolic/catabolic 

balance 

It is well known that long-term administration of heparin was shown to lead to the 

development of osteoporosis (56-58). Thus, rats treated once daily by subcutaneous injections 

of heparin exhibited decreased trabecular bone volume both by decreasing the rate of bone 

formation and increasing the rate of bone resorption. Barbour et al (59) also showed that 36% 

of pregnant women undergoing long-term heparin treatment had a 10% reduction in femoral 

bone mineral density. However, the mechanism sustaining this osteoporosis was unclear and 

it was difficult to determine if the effects on bone resorption were due to the direct effect of 

heparin on osteoclasts or indirectly via its osteoblast activity. Furthermore, these controversial 

findings on GAG effects on osteoclastogenesis are intensified by the study of Folwarczna et al 

(60) who showed that in a rat model, low concentrations of heparin increased the formation of 

osteoclasts, whereas it decreased with the highest concentrations. In mouse bone marrow cell 

cultures, heparin suppressed the formation of osteoclasts, with the exception of low 

concentrations of standard heparin which intensified this process (60). In fact, heparin activity 

on bone remodelling probably results from a more complex mechanisms altering 

simultaneously osteoclast and osteoblast metabolisms. Heparin may increase the resorption 

process through the release of pro-resorptive factor by osteoblast/stromal cells (62) explaining 

in part the discrepancy between the in vivo and in vitro results and heparin may also exert an 

inhibitory activity on bone formation by decreasing osteoblast number and by inhibiting the 

mineralization process (56-58, 61).   

 



 

6. Conclusions 

GAGs and PGs exert a broad panel of action targeting simultaneously osteoblasts and 

osteoclasts. Unfortunately long-term administration of heparin leads to the development of 

osteoporosis. In this context, although the mechanisms of action of low-molecular-weight 

heparins are not yet totally elucidated their use is preferred to unfractionated heparin (61). 

More specifically, the effect of low-molecular-weight heparins on osteoblasts and on 

osteoblast–osteoclast communications needs to be investigated and complementary studies to 

determine whether the effects of heparin on bone are reversible are needed. 
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Figure legend 

 
Figure 1: Study of osteoclastogenesis and osteoclast function from human and murine 

models. 

A) Osteoclasts formed from murine RAW264.7 cells after 5 days of culture in the presence of 

human RANKL (light microscopy, phase contrast); B) Osteoclasts formed from murine 

CD11b+ cells cultured in the presence of murine M-CSF and human RANKL for 15 days 

(after TRAP staining); C) Osteoclasts obtained from bone marrow of GFP-mice in the 

presence of murine M-CSF and human RANKL for 15 days; D)  Human CD14+ cells 

differentiated in osteoclasts in the presence of human M-CSF and human RANKL for 11 days 

(after TRAP staining); E) Typical resorption lacunae formed by osteoclasts derived from 

human CD14+ cells cultured on dentin slice and observed by scanning electron microscopy. *: 

osteoclast; arrow: resorption lacuna. 
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