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Abstract 

Despite recent improvements in therapeutic management of osteosarcoma, ongoing challenges in 

improving the response to chemotherapy warrants new strategies still needed to improve overall 

patient survival. In this study, we investigated vivo the effects of RAD001 (Everolimus®), a new 

orally available mTOR inhibitor, on the growth of human and mouse osteosarcoma cells either alone 

and in combination with zoledronate (ZOL), an osteoporesis drug which is used to treat bone 

metastases. RAD001 inhibited osteosarcoma cell proliferation in a dose- and time-dependent manner 

with no modification of cell cycle distribution. Combination with ZOL augmented this inhibition of 

cell proliferation, decreasing PI3K/mTOR signaling compared to single treatments. Notably, in 

contrast to RAD001, ZOL downregulated isoprenylated membrane-bound Ras concomitantly to an 

increase of non-isoprenylated cytosolic Ras in sensitive- and resistant-osteosarcoma cell lines to both 

drugs. Moreover, ZOL and RAD001 synergized to decrease Ras isoprenylation and GTP-bound Ras 

levels. Further, the drug combination reduced tumor development in two murine models of 

osteoblastic or osteolytic osteosarcoma. We found that ZOL could reverse RAD001 resistance in 

osteosarcoma, limiting osteosarcoma cell growth in combination with RAD001. Our findings 

rationalize further study of the applications of mTOR and mevalonate pathway inhibitors that can 

limit protein prenylation pathways.  
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Introduction 

Current therapeutic strategies of osteosarcoma are based on tumor resection associated 

with highly toxic chemotherapy and fail to improve prognosis (1, 2) due to an absence of 

response to anti-tumor drugs observed in many cases. Failure of anti-cancer therapies often 

occurs from innate or/and acquired drug resistances of tumor cells to chemotherapies (3). In this 

context, therapies based on combinatorial drug approaches (4) appear as adapted clinical 

strategies for improving therapy and overcoming the multi-faceted characteristics of cancer cells.  

Osteoclasts are the main target in bone of nitrogen-containing bisphosphonates (N-BP) 

including such as ZOL on which they induce apoptosis by inhibiting enzymes of the mevalonate 

pathway (5-7). Thus, the most common clinical application is osteoporosis, but bisphosphonate 

application has been extended to the treatment of malignant hypercalcemia. In addition, recent in 

vitro studies demonstrated an anti-tumor activity exerted by ZOL on cancer cells (8-10). Result 

of in vivo experiments also highlighted the therapeutic interest of ZOL alone or in combination 

with conventional chemotherapy on the growth of carcinoma (11) and sarcoma (12). 

mTOR plays a key role in regulating protein metabolism, and dysregulations in mTOR 

signaling are frequently associated with cancer progression (13). Indeed, mTOR is a member of 

the PI3K family such as ATM and ATR proteins involved in DNA repair (14). mTOR functions 

encompass in two signaling complexes, mTORC-1 and -2, which are sensitive to rapamycin at 

very different concentrations (15). Thus, mTOR inhibition revealed its impact on cellular 

function and cell growth (16-19). Rapamycin and its analogues (RAD001, CCI-779, AP23573) 

(13) have shown promise in preclinical models and in clinical trials including patients suffering 

from neoplastic diseases (20-26). Hougthon et al reported that rapamycin extents anti-tumor 

activity in paediatrics tumors in vitro and in vivo including osteosarcoma (27, 28). In this context, 

a phase II clinical trial in patients with advanced soft tissue or bone sarcomas revealed that 
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AP23573 exhibits single-agent activity in patients as shown by the prolonged overall survival 

(29) pointing out the pivotal role of the mTOR pathway in the pathogenesis of osteosarcoma. 

However, resistance to rapamycin has been identified and was associated with a decreased 

binding to it, altered mTOR up- or down-stream signaling or feedback loop associated with 

mTOR pathway (30).  

Because RAD001 appears to be a promising agent for the treatment of neoplastic 

diseases, the effects of RAD001 was investigated on the growth of osteosarcoma cells, both 

alone and in combination with ZOL. We also investigated the mechanisms involved in the 

RAD001-sensitivity and resistance of osteosarcoma cells and assessed a method to abolish 

RAD001 resistance in vitro and in vivo.  
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Materials and Methods 

The rat osteosarcoma OSRGA cell line established from a radio-induced osteosarcoma (31) and 

human MG63 cells purchased from ATCC (Promochem, France) were cultured in DMEM 

(Lonza, Belgium) supplemented with 10% FCS (Hyclone, USA). Murine osteosarcoma POS-1 

and MOS-J cells derived from mouse spontaneous osteosarcoma were provided respectively by 

Dr Kamijo (32) and by Dr Shultz (33) and were cultured in RPMI with 10% FCS. Cells 

expressed osteoblastic markers more specifically cbfa1/Runx2 and bone alkaline phosphatase 

(data not shown) and MOS-J cells are able to form mineralized nodules in vitro (33). These 

parameters were tested before cell implantation. 

Cell Growth and viability 

Cell growth and viability were determined by XTT reagent assay kit (Roche Molecular 

Biomedicals, Germany). Two thousand cells were cultured for 72 h in the presence or absence of 

RAD001 (0.1-100 nM), ZOL (0.1-100 µM) or in combination of 1 or 10 nM RAD001 with 1 µM 

ZOL. ZOL and RAD001 were provided by Pharma Novartis AG (Switzerland). Similar 

experiments were performed in the presence or absence of Clodronate (100-300 µM, Sigma), 

Risedronate (2-100 µM, Procter&Gamble, USA) or Manumycin A (2 or 3 µM, Sigma) combined 

or not with 1 nM RAD001. After the culture period and addition of XTT reagent, the absorbance 

was then determined at 490 nm. Cell viability was also assessed by Trypan blue exclusion, viable 

and non-viable cells were manually counted. 

Caspase Activity 

Twenty thousand cells were treated for 72 h with or without RAD001 (0.1-100 nM), ZOL (0.1-

100 µM) or a combination of 1 or 10 nM RAD001 with 1 µM ZOL. Caspase-3 activity was 
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assessed on 10 µl of total cell lysates using the kit CaspACE Assay System (Promega, USA), 

following the manufacturer’s recommendations. Results were expressed in arbitrary units and 

corrected for protein content quantified using the BCA test (Pierce Chemical Co.). Cells treated 

with 100 nM Staurosporin for 24 h were used as a positive control.  

Time-lapse microscopy 

Cells were cultured at 5 x 10
3

cells/mm
2
 in the presence or absence of 10 nM RAD001. Time-

lapse experiments were started just after adding the pharmaceutical agent. Phase-contrast photos 

were taken every 10 min for 72 h through a Leica DMI 6000B microscope (Germany) using X10 

objective. Cell divisions in each field of observation were then manually scored in a time-

dependent manner. Each condition was performed twice in duplicate. 

Cell cycle Analysis 

Sub-confluent OSRGA, MG63, POS-1 or MOS-J cells were incubated with or without 1 µM 

ZOL and/or 1-10 nM of RAD001 for 24 h to 72 h. After the treatment period, trypsinized cells 

were incubated in PBS containing 0.12% Triton X-100, 0.12 mmol/L EDTA, and 100 µg/mL 

DNase-free RNase A (Sigma). Then, 50 µg/ml propidium iodide were added for 20 min at 4°C in 

the dark. Cell cycle distribution was studied by flow cytometry (Cytomics FC500, Beckman 

Coulter,�France), based on 2N and 4N DNA content, and analyzed by DNA Cell Cycle Analysis 

Software (Phoenix Flow System, USA). 

Cell signaling analysis 

Two hundred thousand cells were treated with 1 µM ZOL or/and 1-10 nM RAD001 for 72 h and 

then lysed in radioimmunoprecipitation (RIPA) buffer (150 mM NaCl, 5% Tris, pH 7.4, 1% NP-
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40, 0.25% sodium deoxycholate, 1mM Na3VO4, 0.5 mM PMSF, 10 mg/ml leupeptin, 10 mg/ml 

aprotinin). Lysates were cleared of debris by centrifugation at 12,000 g for 15 min. Twenty 

microgram of total cell lysate, determined by the BCA kit, were run on 10% SDS-PAGE and 

electrophoretically transferred to Immobilon-P membranes (Millipore, USA). The membrane was 

blotted with antibodies to p-mTOR, p-p70S6K, p-4E-BP1, p-AKT, p-PI3K, p-PTEN, actin 

(supplemental data 1) in PBS, 0.05% Tween 20, and 3% BSA. Similarly, an unprenylated form 

of Rap1A was detected by western blot to indirectly quantified farnesyl di-phosphate synthase 

(FPPS) activity (10). The membrane was washed and probed with the secondary antibody 

coupled to horseradish peroxidase. Antibody binding was visualized with the enhanced 

chemiluminescence system (Roche Molecular Biomedicals). For quantification, the emitted glow 

was acquired with a CCD camera and analysed with the GeneTools program (Syngene, UK). 

Ras isoprenylation and GTP-binding activity 

To measure isoprenylated membrane-bound Ras and non-isoprenylated cytosolic Ras, cells were 

lysed in 1 ml of lysis buffer (50 mM Hepes, 750 mM KCl, 200 mM sucrose, 10 mM NaHCO3, 

pH 7.4), supplemented with: protease inhibitor cocktail set III (100 mM AEBSF, 80 mM 

aprotinin, 5 mM bestatin, 1.5 mM E- 64, 2 mM leupeptin and 1 mM pepstatin; Calbiochem, 

USA), 1 mM NaVO4, 1 mM NaF, 1 mM 4-(2-Aminoethyl) benzenesulphonyl fluoride (PMSF), 

10 mM aprotinin and 10 mM dithiothreitol), then sonicated (Labsonic sonicator; Germany) and 

centrifuged at 13,000 x g for 5 min at 4°C. Supernatants were collected and centrifuged at 

100,000 x g for 1 h at 4°C; the cytosolic fraction contained in the new supernatants  were 

collected, whereas the pellets (membrane fraction) were re-suspended in 100 �l of lysis buffer. 

Thirty microgram of cytosolic fraction and 60 �g of membrane fraction were subjected to 15% 

SDS-PAGE and western blot analysis, using an anti-Ras antibody (supplemental data 1). The 
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Ras-GTP binding assay was performed as previously described (34). Briefly, cells were lysed in 

MLB buffer (125 mM Tris-HCl, pH 7.4, 750 mM NaCl, 1% NP40, 10% glycerol, 50 mM MgCl2, 

5 mM EDTA, 25 mM NaF, 1 mM NaVO4, 10 µg/ml leupeptin, 10 µg/ml pepstatin, 10 µg/ml 

aprotinin and 1 mM PMSF) and centrifuged at 13,000 x g for 10 min at 4°C. An aliquot of 

supernatant was taken out for determination of protein content (BCA kit). 30 µg of cell lysate 

were incubated for 45 min at 4°C with the Ras Assay Reagent (Raf-1 RBD, GST-tagged Agarose 

beads, Millipore), then the beads were washed and re-suspended in 20 µl Laemmli buffer (125 

mM Tris, 4% w/v SDS, 20% v/v glycerol and 1% �-mercaptoethanol). The amount of active 

GTP-bound Ras was detected by SDS-PAGE and western blotting as reported above.  

In vivo experiments  

Mice (Elevages Janvier, France) were housed under pathogen-free conditions at the Experimental 

Therapy Unit (Faculty of Medicine, Nantes) in accordance with the institutional guidelines of the 

French Ethical Committee and under the supervision of authorized investigators. 

Osteoblastic osteosarcoma model: Four-week-old male C57BL/6J mice were 

anesthetized by inhalation of a combination Isoflurane/air associated with an i.m. injection of 

Buprenorphine (Temgésic®, Schering-Plough) before i.m. injection of 2 x 10
6
 MOS-J cells. 

Tumors appeared in contact with the tibia approximately 8 days later and lead to osteoblastic 

lesions reproducing the osteoblastic form of human osteosarcoma (33).  

Osteolytic osteosarcoma model: Four-week-old male C3H/He mice were anesthetized as 

previously described before s.c. inoculation of POS-1 cell suspension (containing 2 x 10
6
 cells) 

in the hind footpad of the mice. Under these conditions, mice develop a primary tumor at the site 

of injection in 3 weeks that can be transplanted to mice of the same strain as a small fragment (2 

x 2 x 2 mm) in close contact with the tibia. For this purpose, the periostum of the diaphysis was 
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opened and resected along a length of 5 mm, and the underlying bone was intact. The 

osteosarcoma fragment was placed contiguous to the exposed bone surface without the 

periostum, and the cutaneous and muscular wounds were sutured. Tumors appeared at the graft 

site approximately 8 days later associated with the development of pulmonary metastases in a 3-

week period. The tumors that develop in contact to the femora lead to osteolytic lesions that 

reproduce the osteolytic form of human osteosarcoma (35). 

For both models, the tumor volumes (V) were calculated from the measurement of two 

perpendicular diameters using a caliper according to the following formula: V = 0.5 x L x S
2
, 

where L and S represent respectively, the largest and smallest perpendicular tumor diameters. 

Four groups of eight mice each were assigned as controls (placebo by oral administration and 

PBS injection subcutaneously twice a week), RAD001 (5 mg/kg, oral administration, twice a 

week), ZOL (100 µg/kg, s.c, twice a week) and RAD001+ZOL (combined treatment with s.c 100 

µg/kg ZOL and 5 mg/kg RAD001 oral administration, twice weekly) groups. The treatment 

started one day after tumor cell implantation. Treatment continued until each animal showed 

signs of morbidity including cachexia or respiratory distress, at which point they were sacrificed 

by cervical dislocation. Analysis of architectural parameters was done using high-resolution X-

ray micro-computed tomography (CT) (SkyScan-1072). Relative volume (BV/TV) of the tibia 

[total bone (cortical + trabecular) or trabecular bone] was quantified at necropsy on a 6.4 cm 

length area located between superior metaphysis and diaphysis. Radiographs were taken at the 

same time (PLANMED Sophie apparatus, Finland). Each experiment was repeated twice and 

only one set of experiments was shown. 
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Statistical analysis 

Each experiment was repeated independently three times in triplicate. The mean + SD was 

calculated for all conditions and compared by ANOVA followed by Bonferroni post hoc test. 

Differences relative to a probability of two-tailed p < 0.05 were considered significant.  
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Results 

RAD001 exerts a cytostatic activity on osteosarcoma cells and synergizes with N-BP in vitro

RAD001 significantly reduced MG63, OSRGA and POS-1 osteosarcoma cell number in a 

dose-dependent manner (p<0.01) (IC50: 0.5 nM, 1.26 nM and 45 nM for OSRGA, MG63 and 

POS-1 cells respectively) with a maximum effect at 100 nM (concentrations tested up to 1 µM) 

(Fig. 1A).  ZOL strongly diminished the number of MG63, OSRGA and POS-1 cells assessed in 

a dose-dependent manner (Fig. 1B). Manual counting of viable cells did not evidence cell death 

in any condition tested, as confirmed by the absence of caspase activity in (data not shown). 

Time-lapse microscopy revealed that 10 nM RAD001 clearly induced a marked decrease of 

mitotis in MG63, OSRGA and POS-1 osteosarcoma cells detectable at early times of the 

treatment (6-11 h) (Fig. 1C). Moreover, osteosarcoma cells treated with RAD001 were not 

blocked in any phase of the cell cycle, but the cancer cells passed through the different phases at 

a slightly inferior rate compared to the untreated control (data not shown). These data 

demonstrate that RAD001 therefore can be considered as a cytostatic drug for osteosarcoma. 

Figure 2 clearly shows a significant additive effect between RAD001 and ZOL for MG63, 

OSRGA and POS-1 cells (Fig. 2A) (p < 0.001). In contrast to the combination RAD001 and 

risedronate (another N-BP), which induced similar combinatory effect on cell proliferation (Fig. 

2B, p < 0.001), Clodronate (a non N-BP, 100-500 µM) did not significantly modulate RAD001 

activity. This combinatory effect between RAD001 and ZOL was confirmed by western blot 

analysis (Fig. 2C) (supplemental data 2). In contrast to treatment with 1 nM RAD001 which had 

no effect on the mTOR signaling pathway, 10 nM RAD001 significantly inhibited the mTOR 

signaling pathway in POS-1 and OSRGA cells, as revealed by a decrease of mTOR 

phosphorylation, but not in MG63 osteosarcoma cells (Fig. 2C). 1 µM ZOL did not affect mTOR 
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signaling (Fig. 2C). Interestingly, the combination of 10 nM RAD001 and 1 µM ZOL totally 

abolished P-mTOR and drastically inhibited its main downstream signaling partners, 

demonstrating a crosstalk between ZOL and mTOR signaling pathways in all MG63, OSRGA 

and POS-1 cells (Fig. 2B). Treatment of cells with 1 µM ZOL did not alter unRAP1A 

expression, as did treatment with higher doses (data not shown, 10). Furthermore, the 

combination of RAD001 with ZOL strongly reduced P-PI3K, down-regulated the 

phosphorylation of PTEN in MG63, OSRGA and POS-1 cells and also altered AKT 

phosphorylation in POS-1 cells (Fig. 2C). Consequently, this combination dysregulated the 

mTOR downstream signaling and decreased the phosphorylation of 4EBP1 in the three cell lines 

assessed (Fig. 2C). p70S6K was decreased in MG63 and OSRGA and slightly in POS-1 cells 

(Fig. 2C).  

Combined treatment with RAD001 and ZOL is efficient on RAD001 resistant-osteosarcoma 

cells in vitro

Mouse osteosarcoma MOS-J is totally refractory to RAD001 (up to 1 µM tested) and 

ZOL (up to 10 µM, 100 µM being cytotoxic) (Fig. 3A). Interestingly, combination of RAD and 

ZOL at low doses induced a synergistic anti-proliferative effect on MOS-J cells (Fig. 3B, p < 

0.001). The biological activity of RAD001 in MOS-J cells was demonstrated by western blot 

analyses. Indeed, 10 nM RAD001 decreased the phosphorylation of PI3K, PTEN, Akt, mTOR, 

P-4EBP1 and P-p70S6K (Fig. 3C) without any effect on MOS-J cell proliferation (Fig. 3B). 

Although ZOL alone did not also modulate these activities, ZOL and RAD001 exert an additive 

effect to strongly inhibit mTOR signaling (Fig. 3C).  
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Ras-prenylation is strongly decreased by the combined treatment with RAD001 and ZOL  

Ras is located at the crossroads between ZOL and mTOR signaling pathways. Indeed, 

ZOL is a powerful inhibitor of FPPS activity implicated in the prenylation of small GTPases (7, 

13), and the PI3K/mTOR pathway belongs to the downstream cascades of Ras activation. In this 

context, we first analyzed the effects of the ZOL and RAD001 combination on Ras 

isoprenylation (Fig. 4). 1 µM ZOL induced a significant decrease of isoprenylated membrane-

bound Ras and a concomitant increase of non-isoprenylated cytosolic Ras in all osteosarcoma 

cell lines tested, in contrast to 1 or 10 nM RAD001 which had no effect on Ras isoprenylation 

(Fig. 4A). The combined treatment of RAD001 with ZOL induced a marked decrease of Ras 

isoprenylation (Fig. 4A). Simultaneously, this combination reduced Ras bound to GTP (Fig. 4A). 

To determine the role of Ras activity in the additive effect of RAD001 and ZOL, the effect of 

Manumycin A, an inhibitor of Ras farnesylation, was assessed on osteosarcoma cell proliferation 

in combination with RAD001 (Fig. 4B). In all osteosarcoma cell lines tested (sensitive and 

resistant to RAD001), Manumycin A and RAD001 exert an additive effect in inhibiting cell 

proliferation thus mimicking ZOL activity (Fig. 4B, p < 0.001).  

The combination of RAD001 and ZOL reduces the growth of osteosarcoma cells in 

syngeneic murine models  

Preliminary dose-response experiments were carried out in vivo to determine the sub-

optimal efficient doses of RAD001 and ZOL (data not shown). The ZOL dose (100 µg/kg ZOL 

as research grade disodium salt) used in the present study is equivalent to the clinical dose of 4 

mg IV every 3–4 weeks. However, even if dosing frequency of twice a week is greater, these 

doses are justified by the very aggressive nature of the osteosarcoma models used and the short 
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animal survival. Both drugs did not exert any side-effects on animal body weight loss or any 

toxic effects in MOS-J and POS-1 osteosarcoma models. 

The in vivo effects of single- or combinatory treatment on tumor growth were first studied 

in a MOS-J osteosarcoma model, cells which are resistant to both agents in vitro. Doses of 5 

mg/kg RAD001 or 100 µg/kg ZOL were chosen for the subsequent combination experiments 

because they had no significant effect alone on tumor growth, as compared to the control group 

(Fig. 5A,B). RAD001 and ZOL combination reduced the tumor volume compared to single 

treatment (Fig. 5A, p < 0.001). The relative tumor progression calculated between day 19 and 

day 31 confirmed the synergistic action between RAD001 and ZOL (Fig. 5B). Interestingly, 

combined treatment of RAD001 and ZOL significantly slowed down the tumor progression 

compared to a single treatment and to the control group (Fig. 5B). Furthermore, radiographs 

revealed that 100 µg/kg ZOL strongly reduced bone degradation (Fig. 5C) even if it had no effect 

on the tumor progression (Fig. 5A, B). Indeed, the metaphyses of long bones exhibited high bone 

density reflecting inhibition of bone resorption and retention of the primary spongiosa in contrast 

to 5 mg/kg RAD001, which had no protective effect of bone loss (Fig. 5C). The combination of 

RAD001 with ZOL had no additive inhibitory effect of bone resorption as compared to ZOL 

alone. By combining micro-CT image registration, the bone remodeling associated with 

osteosarcoma development has been followed and confirmed the radiographic analysis (Fig. 5D). 

One hundred µg/kg ZOL and 100 µg/kg ZOL + 5 mg/kg RAD001 significantly increased bone 

mass in contrast to 5 mg/kg RAD001 alone. This was confirmed by the quantification of relative 

bone volume (BV/TV). Indeed, BV/TV increased by approximately 40% in the presence of ZOL 

and ZOL + RAD001 compared to the control group (Fig. 5D, p < 0.001). RAD001 and ZOL 

induce additive effects on tumor development and reduce the growth of resistant-MOS-J 

osteoblastic osteosarcoma cells in syngeneic mice. Histological analyses demonstrated that the 
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residual bone mass of animals treated with the combination of 100 µg/kg ZOL and 5 mg/kg 

RAD001 was mainly composed of an extensive fibrosis associated with non-tumorigenic cells 

and with extensive necrotic foci compared to the other groups (Supplemental data 3). These non-

tumorigenic cells which were non-responding cells to the treatment used and the necrotic tissue 

did not allow a complete in vivo analysis of the phosphorylation status of mTOR 

pharmacodynamic markers such as p70S6k and 4EBP1.  

 Similar experiments were carried out using an osteolytic-POS-1 osteosarcoma 

model (35). Five mg/kg RAD001 had no effect on POS-1 tumor growth compared to the control 

group (Fig. 6B). ZOL slightly but not significantly reduced the tumor volume (Fig. 6A, B) but 

markedly decreased bone degradation as shown by an increase of bone mineral density of the 

metaphysis (Fig. 6C). Contrarily, 5 mg/kg RAD001 alone had no effect on tumor-induced 

osteolysis, and the combination of RAD001 with ZOL had no additive inhibitory effect of bone 

resorption as compared to ZOL alone  (Fig. 6C). Interestingly, RAD001 and ZOL in combination 

significantly decreased the tumor volume compared to the control, as well as to single treatments 

(Fig. 6A). Such combination treatment slowed down the tumor progression (Fig. 6B, p < 0.001). 

Micro-CT analysis confirmed the significant impact of ZOL on osteolysis with an increase in 

BV/TV (Fig. 6D). The combinatory treatment clearly improved the quality of bone tissue 

compared to the control group and the single treatments (Fig. 6D).  
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Discussion 

The absence of response of patients suffering from osteosarcoma to chemotherapy and the 

lack of effectiveness of single-drug therapy led to the development of new therapeutic 

approaches. Indeed, therapy based on combinatorial drug regimens targeting different metabolic 

pathways would prevent the emergence of resistance phenomena and increase the effectiveness 

of treatment while reducing toxicity for patients (36). Dysregulation of the PI3K/mTOR 

pathway, mainly due to redundant autocrine pathways rather than mutations, is clearly involved 

in the pathogenesis of sarcomas. mTOR is a central crossroads of many signaling pathways 

induced by growth factors and nutritional status and this crossroad is deregulated in numerous 

cancer cells (36). It directly and indirectly controls many cellular events such as translation, 

transcription and protein stability and regulates cell growth, proliferation, survival and cell size 

(37). In this context, its functions have positioned mTOR as a potential target for cancer therapy 

and have stimulated the development of selective inhibitors of mTOR complexes (13). mTOR 

inhibitors have been already assessed in numerous malignancies (20) but only few data have 

been published on osteosarcoma.  

The present work demonstrates the therapeutic interest of a rapamycin analogue, 

RAD001. RAD001 slowed down cell cycle phases in all osteosarcoma cell lines studied, but in 

absence of a cell cycle arrest or increase of cell death, this effect may be explained by the role 

exerted by mTOR on protein synthesis. Indeed, protein synthesis is regulated by mTOR complex 

1 [composed by mTOR, Regulatory Associated Protein of mTOR (raptor) and G-protein subunit-

like (G L)] which phosphorylates several substrates including ribosomal S6 kinase (S6K) and the 

eukaryote initiation factor 4E binding protein-1 (4EBP-1) (38). Once activated, S6K 

phosphorylates the ribosomal protein S6, resulting in the translation of a subset of mRNAs 

encoding for essential ribosome proteins, including eukaryotic initiation factor-4B (eIF4B) and 
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increasing translation mechanisms. Similar to other immunosuppressive and chemotherapeutic 

agents, adverse events related to RAD001 are frequent and lead to moderate dropout rates (39). 

Interestingly, the combination of RAD001 and ZOL clearly synergized to slow down cell 

proliferation in all osteosarcoma cells studied, with a marked down regulation of mTOR, 4EBP1 

and p70S6K phosphorylation. Thus, this combination may be used to limit the side effects of 

high drug doses. mTOR signaling is controlled by an upstream signal including PI3K, Akt 

activation (directly on mTOR or indirectly via TSC1/TSC2 complex) and complex feedback 

inhibitions. Such feedback loops could explain that mTOR inhibition induces upstream receptor 

tyrosine kinase signaling activating Akt as observed in human breast and prostate carcinoma cells 

(40), and in OSRGA and MG63 osteosarcoma cells.  

Unfortunately, resistance phenomena to rapamycin have been described (41). This is the 

case for mouse osteosarcoma cells used in the present study which are resistant to RAD001 and 

rapamycin (data not shown). In vitro experiments point out the additive effect between ZOL and 

RAD001 as revealed by the down-regulation of mTOR downstream signaling (4EBP1, p70S6K) 

in RAD001-sentitive and –resistant osteosarcoma cells. ZOL strongly affects the mechanism of 

prenylation of small GTAPases leading to its inhibition (7, 13) (Fig. 7). Indeed, farnesyl di-

phosphate and geranylgeranyl di-phosphate are required for the posttranslational lipid 

modification (prenylation) of small GTPases (i.e. Ras, Rho, and Rac). Among small GTPases, 

Ras activates the PI3K/mTOR cascade and like mTOR, it plays a central role in the regulation of 

various cellular processes. However, Ras bound to GTP is able to interact strongly with PI3K 

(42, 43). In the present work, low doses of ZOL alone or combined with RAD001 decreased the 

isoprenylated-membrane bound form of Ras and increased the non-isoprenylated cytosolic Ras 

leading to the decrease of Ras bound to GTP and to the inhibition of the PI3K/mTOR signaling 

pathway. These data were confirmed by the use of manumycin A which mimicked ZOL activity. 
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, clearly evidencing the involvement of Ras (Fig. 7). However, if Ras is potentially involved in 

the additive activity between ZOL and RAD001, the alterations of other prenylated proteins can 

be excluded.   

The additive effect of ZOL and RAD001 was confirmed in two different murine 

osteosarcoma models. Combination of ZOL with RAD001 resulted in a significant down-

regulation of tumor progression associated with an increase of bone mass. However, no additive 

effect on bone the inhibition of bone resorption was evident in histomorphometric analysis 

confirming that ZOL potentiates RAD001 activity and not the contrary. ZOL also contributed to 

the decrease of tumor mass by inhibiting osteolysis. The interactions between tumor cells, tumor 

factors and the bone marrow microenvironment are crucial for the initiation and promotion of 

skeletal malignancies. These observations suggest a vicious cycle driving the formation of 

osteolytic bone tumors: tumor cells secrete soluble factors in bone (such as hormones, cytokines 

and growth factors), which stimulate osteoclastic bone resorption through indirect RANKL 

production by osteoblastic stromal cells (44). The osteosarcoma models used in the present work 

are very aggressive and did not allow the investigation of curative treatments using critical tumor 

volumes. Indeed, at the critical tumor size around 200-300 mm
3
, the bone erosion has been 

already set up especially for the POS-1 model and the therapeutic benefit could not be gained by 

starting the treatment later. In this context, the combined treatment with ZOL and RAD001 

appears potentially interesting for patients who have been diagnosed at early stages of their 

disease. 

Overall, these data provide new insights in the molecular crosstalk between mTOR and 

the mevalonate pathway and underline the therapeutic interest of multidrug treatment combining 

nitrogen bisphosphonate and mTOR inhibitors in osteosarcoma. The significance of this 
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combination opens new areas in the field of therapeutic multidrug strategies for the treatment of 

primary bone tumors, especially in osteosarcoma. 
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Figure legends 

Figure 1: ZOL and RAD001 differentially affect osteosarcoma cell proliferation. Viability of 

osteosarcoma cells treated with RAD001 (A) or ZOL (B) for 72 h, Mean ± SD of three 

independent experiments performed in triplicate. * p < 0.05; ** p < 0.01; *** p < 0.001 

compared to the control. (C) Kinetic of cell divisions analyzed by time-lapse microscopy with or 

without 10 nM of RAD001. 

Figure 2: ZOL and RAD001 crosstalk: ZOL potentiates the RAD001 inhibition on 

osteosarcoma cell proliferation. (A) Viability of osteosarcoma cells treated with 1 µM ZOL 

combined or not with 1 or 10 nM RAD001 for 72h. (B) Viability of MG63 cells treated with 10 

nM RAD001 combined or not with 100 µM clodronate (Clo.) or 20 µM risedronate (Ris.), 

determined by XTT assay. Graphs represent the mean + SD of three independent experiments 

performed in triplicate. *** p < 0.001, NS: not significant. (C) Representative blots of 

PI3K/mTOR signaling pathways.  

Figure 3: RAD001 and ZOL exert additive effect on the proliferation of resistant-

osteosarcoma cells. (A) Number of viable MOS-J cells treated by ZOL (0.1 to 100 µM) or 

RAD001 (0.1 to 100 nM) or (B) a combination of both agents for 72 h. Graphs represent the 

mean + SD of three independent experiments performed in triplicate. *** p < 0.001. (C) 

Representative blots of PI3K/mTOR signaling pathways.  
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Figure 4: The inhibition of Ras prenylation is involved in the additive effect between 

RAD001 and ZOL. (A) Representative blot of isoprenylated-membrane bound Ras, non-

isoprenylated cytosolic Ras and Ras bound to GTP in osteosarcoma cells treated with 1 µM ZOL 

combined or not with 1 or 10 nM RAD001 for 72 h. (B) Viability of osteosarcoma cells treated 

for 72h with 1 nM RAD001 in the presence or absence of 2 µM manumycin A. *** p <0.001 

compared to single treatment. 

Figure 5: Effect of combinatory treatment of RAD001 with ZOL on the growth of resistant-

MOS-J osteosarcoma cells in syngeneic mice. Mice bearing MOS-J tumors (n=8/group) were 

assigned as CT (vehicle), RAD001 (5 mg/kg, twice weekly), ZOL (100µg/kg, twice a week) or 

RAD001+ZOL groups. (A) The treatment started one day after tumor cell implantation (arrow). 

Evolution of tumors volumes (V). (B) Follow up of tumor progressions. * p < 0.05; *** p < 

0.001. (C) Radiographs taken at the time of sacrifice. (D) micro-CT analyses performed on bones 

explanted. Bone Volume: BV, Total Volume: TV. 

Figure 6: ZOL and RAD001 induce additive inhibition of tumor growth in osteolytic POS-1 

osteosarcoma model. Mice bearing POS-1 tumors (n=8/group) were assigned as CT (vehicle), 

RAD001 (5 mg/kg, twice weekly), ZOL (100 µg/kg, twice weekly) or RAD001+ZOL groups. 

(A) The treatment started one day after tumor cell implantation (arrow). Follow up of tumor 

progressions. *** p < 0.001. (C) Radiographs taken at the time of sacrifice. (D) micro-CT 

analyses performed on explanted bones. Bone Volume: BV, Total Volume: TV. 
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Figure 7: Diagram summarizing the mechanism of action of ZOL and RAD001 on 

osteosarcoma cells and the crosstalk between mTOR and mevalonate pathways.
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Table 1 : Primary antibodies used for cell signaling analysis 

 

Antibodies and 

origin 

Phosphorylated 

residue 

Species Dilution  Reference 

Cell signalling 

(U SA) 

    

P-mTOR Ser 4228 Rabbit 1/1000 2971 

mTOR  Rabbit 1/1000 2972 

P-P70S6K Thr 421/Ser424 Rabbit 1/1000 9204 

P70S6K  Rabbit 1/1000 9202 

P-4EBP1 Thr 70 Rabbit 1/1000 9455 

4EBP1  Rabbit 1/1000 9452 

P-AKT Ser 473 Rabbit 1/1000 9271 

AKT  Rabbit 1/1000 9272 

P-PI3Kp85/p55 Tyr 458/Tyr 199 Rabbit 1/1000 4228 

PI3K  Rabbit 1/1000 4292 

P-PTEN Ser 380 Rabbit 1/1000 9551 

PTEN  Rabbit 1/1000 9552 

Sigma (France)     

Actin NA Rabbit 1/1000 A5060 

Santa Cruz 

(U SA) 

    

UnRAP1A NA Goat 1/1000 SC 1482 

Millipore 

(U SA) 

    

Ras NA Mouse 1/1000 05-516, clone 

RAS10 
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