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Abstract

An important function of all organisms is to ensure that their genetic material remains intact and unaltered through
generations. This is an extremely challenging task since the cell’s DNA is constantly under assault by endogenous and
environmental agents. To protect against this, cells have evolved effective mechanisms to recognize DNA damage, signal its
presence, and mediate its repair. While these responses are expected to be highly regulated because they are critical to
avoid human diseases, very little is known about the regulation of the expression of genes involved in mediating their
effects. The Nucleotide Excision Repair (NER) is the major DNA–repair process involved in the recognition and removal of
UV-mediated DNA damage. Here we use a combination of in vitro and in vivo assays with an intermittent UV-irradiation
protocol to investigate the regulation of key players in the DNA–damage recognition step of NER sub-pathways (TCR and
GGR). We show an up-regulation in gene expression of CSA and HR23A, which are involved in TCR and GGR, respectively.
Importantly, we show that this occurs through a p53 independent mechanism and that it is coordinated by the stress-
responsive transcription factor USF-1. Furthermore, using a mouse model we show that the loss of USF-1 compromises DNA
repair, which suggests that USF-1 plays an important role in maintaining genomic stability.
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Introduction

Maintaining the integrity of the genome through cell genera-

tions is critical to ensure accurate cell function and to avoid tumor

formation. Cells are continuously challenged by environmental

insults and they are equipped with specific and efficient defense

machinery to remove any DNA alterations. The importance of

these processes is underscored by genetic disorders, such as Bloom,

Werner, Cockayne Syndromes and Xeroderma Pigmentosum

(XP) that result from their impaired function. Despite an

enormous amount of progress in identifying the protein complexes

and their detailed function in DNA repair pathways, very little is

still known about whether these complexes are regulated at a gene

expression level.

The skin is a good model in which to address this question

because it is the organ most exposed to environmental stresses.

The principal cause of DNA damage in the skin is solar

irradiation, which induces cyclobutane pyrimidine dimers (CPD)

and 6-4 photoproducts in the epidermal cell layers and which, if

not removed, can promote skin cancers. The Nucleotide Excision

Repair (NER) is the most versatile DNA repair system and is

responsible for specifically and constantly eliminating any

distorted DNA lesions, including these dimers [1–6]. NER can

be divided into at least two sub-pathways, Global Genome

Repair (GGR) [4] and Transcription Coupled Repair (TCR)

[3,5,7]. Which one is triggered depends on where the distorted

DNA is localized on the genome. GGR, as its name implies, is

responsible for removing DNA lesions across the genome

including the non-coding part, silent genes and the non-

transcribed strands of active genes. The TCR sub-pathway, on

the other hand, is dedicated to repairing only DNA lesions

detected during transcription and is responsible for removing

bulky DNA lesions from the transcribed strands of active genes

[2,3]. The sequence of events implicated in the GGR and TCR

DNA repair pathways include: DNA lesion-recognition (the rate

limiting step), DNA-unwinding, excision and repair synthesis and

except for the damage recognition step, they share common

processes and protein machineries for the remaining events [2].

In the GGR sub-pathway, the XPC-HR23 complex is responsible

for the recognition of DNA lesions. The DNA-binding protein,

XPC, has a strong affinity for damaged DNA [6,8,9]. However,

its interaction with the evolutionarily conserved HR23 proteins

(homologues of the yeast RAD23) is critical for its function.

HR23 increases the physiological stability of XPC and thereby its
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damage recognition activity [10]. In the TCR sub-pathway,

lesion recognition occurs through the arrest of the elongating

RNA Pol II (RNAPII) when it encounters DNA damage. This

essential step initiates the subsequent recruitment of the repair

factors CSA and CSB, which are required for the removal of the

lesion [5].

While it is well accepted that the functional activity of proteins

responsible for the removal of DNA-lesions are regulated and

indeed crucial to ensure an orchestrated cascade of events [6], it is

not known whether this involves modulation in gene expression.

This study addresses this question by using an intermittent UV-

irradiation protocol and investigates the gene expression profile of

key players in the NER DNA-damage recognition step. We show

that UV-induced DNA photo-lesions initiate a specific program of

gene expression with the stress responsive transcription factor

Upstream Stimulatory Factor 1 (USF-1) playing a central role [11–

13]. Using a combination of in vivo and in vitro assays we

demonstrate, in our system, that there is a specific and coordinated

regulation of HR23A, HR23B, CSA and CSB genes and their

protein levels in response to UV-mediated DNA damage. We

show that up-regulation of both HR23A and CSA is driven by a

common p53 independent mechanism involving USF-1. Further-

more, we provide novel evidence that while HR23A and HR23B

share a similar function in DNA-damage recognition, their

temporal expressions are different, which may imply that they

function at different times, in response to UV-induced DNA-

damage.

Results from this study have important implications for our

understanding of the role of gene expression regulation in the

DNA-damage repair pathways and reveal a role for USF-1 in

DNA-repair and in maintaining genome integrity.

Results

CSA and HR23A gene expression is regulated in response
to UV-induced DNA damage

Very little is known about how genes that encode key

components of the NER recognition step are regulated at a

transcriptional level, to mediate their role in DNA lesion

recognition. We thus performed a UV-induced DNA-lesion

protocol (Figure 1A), which generates immediate DNA photo-

lesions through repetitive doses of short wavelength UV pulses

rather than delivery of a single high dose [14,15]. Using RT-

qPCR, we then followed the expression of genes specifically

involved in the recognition events of TCR (CSA and CSB) and

GGR (HR23A and HR23B), immediately post-irradiation. Cul-

tured mouse and human keratinocytes (XB2, HaCaT) were

irradiated with four to eight 10 J/m2 UV pulses (254 nm) at

15 min intervals and collected at the indicated times (from 30 min

to 5 h) after the last pulse (Figure 1A). We first checked for the

presence of CPD post UV-irradiation (Figure S1) and for cell

viability over 24 h confirming that the irradiation procedure was

inducing DNA-damage without compromising cell numbers (90%

and 75% cell survival at respectively 3 and 24 h) (Figure 1B). The

irradiation protocol resulted in a significant increase of CSA

mRNA levels (6-fold after 30 min), while the abundance of CSB

gene transcripts was not affected (Figure 2A). CSA mRNA levels

remained elevated at 1 h and decreased from 2 hours. Compa-

rable results were obtained in p53-deficient human HaCaT

keratinocytes [16] (Figure S1A). Up-regulation of CSA gene

expression was accompanied by a significant increase in CSA

protein levels (Figure 2B), peaking at 3 hours compared to un-

stimulated cells, where CSA protein is almost undetectable. The

increase of CSA protein levels following UV-irradiation was also

observed by immunofluoro-staining in XB2 keratinocytes (Figure

S1B). This increase in CSA protein levels is significantly reduced

over time when cells were pre-treated with a-amanitin, an agent

that disrupts transcription. These results indicate that the increase

in protein levels results in part from transcriptional regulation.

We next investigated the regulation of the GGR pathway-

specific mediators, HR23A and its homologue HR23B, following

Author Summary

UV is responsible for DNA damage and genetic alterations
of key players of the Nucleotide Excision Repair (NER)
machinery promote the development of UV-induced skin
cancers. The NER is the major DNA–repair process involved
in the recognition and removal of UV-mediated DNA
damage. Different factors participating in this DNA repair
are essential, and their mutations are associated with
severe genetic diseases such as Cockayne Syndrome and
Xeroderma Pigmentosum. Here, we show for the first time
that the specific regulation of expression in response to UV
of two NER factors CSA and HR23A is required to efficiently
remove DNA lesions and to maintain genomic stability. We
also implicate the USF-1 transcription factor in the
regulation of the expression of these factors using in vitro
and in vivo models. This finding is particularly important
because UV is the major cause of skin cancers and
dramatically compromises patients with highly sensitive
genetic diseases.

Figure 1. UV-irradiation protocol of XB2 mouse keratinocytes. (A) Schematic representation of the UV (254 nm) treatment time course. Cells
were irradiated with eight successive 10 J/m2 UV pulses lasting 3 sec each at 15 min intervals, and harvested at indicated times after the last UV
pulse. (B) Viability of XB2 keratinocytes after UV-irradiation (465 J/m2 or 8610 J/m2) was determined by the MTT assay.
doi:10.1371/journal.pgen.1002470.g001

USF-1 Regulates CSA and HR23A Gene Expression
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the same irradiation protocol (Figure 1A). While no significant

effect was observed on HR23B mRNA levels, the irradiation

protocol resulted in a mild but reproducible (6 independent

experiments) and significant increase of HR23A mRNA levels (1.5-

fold at 4 h) (Figure 2C). Comparable results were obtained in p53-

deficient human HaCaT keratinocytes (Figure S1C). In parallel

with UV-induced HR23A transcripts, protein levels increased

progressively, reaching a 4-fold increase at 8 hours. This effect was

abrogated when cells were pre-treated with a-amanitin

(Figure 2D). The increase of HR23A protein levels following

UV-irradiation was also observed by immunofluoro-staining in

XB2 keratinocytes and correlates with an increase in CPD (Figure

S1D). In contrast, HR23B protein levels decreased over time after

UV-irradiation suggesting that it is regulated post-transcriptionally

since there was no change in its mRNA levels (Figure 2C). These

results indicate that HR23A and HR23B are regulated differently.

UV irradiation promotes the interaction of USF
transcription factors with the proximal promoters of
HR23A and CSA

UV-induced transcription is a tightly regulated process that

involves both cis and trans UV-responsive elements. We thus

explored potential cis/trans factors involved in UV-induced

regulation of CSA and HR23A expression by in silico analysis of

their respective proximal promoter sequences using Consite and

Figure 2. CSA and HR23A expression is up-regulated in XB2 mouse keratinocytes after repetitive UV irradiation. (A) Quantification of
CSA and CSB expression following UV-irradiation (8610 J/m2) was determined by RT-qPCR (DDCT method). Results are expressed relative to control
(no UV treatment) and normalized to an HPRT transcript standard (comparable results were obtained with other reference genes: GAPDH) n = 3. (B)
Western blotting analysis and quantification of CSA protein level in XB2 cells irradiated as previously described and in UV-irradiated cells following a
pretreatment or not with a-amanitin. Tubulin (a-Tub) is included as a loading control. Signals are detected using LAS-3000 Imaging System (Fujifilm)
and quantified with ImageJ. CSA quantified data are reported in the subpanel, where (&) corresponds to UV-irradiated samples and ( ) to UV-
irradiated samples pre-treated with a-amanitin. The bar graphs compare the intensity of CSA protein normalized to the loading control. (C)
Quantification of HR23A and HR23B mRNA expression following UV-irradiation (8610 J/m2) determined as previously by RT-qPCR (DDCT method)
n = 4. (D) Western blotting analysis of HR23A and HR23B protein levels as described previously in irradiated XB2 cells, pre-treated (&) or not with a-
amanitin ( ). HSC70 is included as a loading control. For all results errors bars indicate s.e.m.; one asterisk, P,0,05 n = 3; two asterisks, P,0.01; three
asterisks, P,0.001.
doi:10.1371/journal.pgen.1002470.g002

USF-1 Regulates CSA and HR23A Gene Expression
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Zpicture (Rvista 2) softwares [17,18]. We found that both

promoters belong to the TATA-less class and that their proximal

regions contain consensus E-box motifs (CACGTG) upstream

from the transcription start site (TSS) at 2246 for CSA (Figure 3A)

and 2154 and 237 for HR23A promoter (Figure 3D), which are

highly conserved across species. By contrast, no such conserved E-

box motif was found in the CSB and HR23B promoter regions

(data not shown and Figure 3D). Given that USF-1 acts as a key

player of UV-regulated gene expression by interacting specifically

with E-box cis-regulatory elements (CACGTG) as homodimers or

as heterodimers with its partner USF-2 [19–21], we suspected that

CSA and HR23A may be USF-1 target genes. To test this

hypothesis, we performed chromatin immunoprecipitation (ChIP)

assays using antibodies specific for either USF-1 or USF-2. DNA

recovered from the HaCaT cell line was amplified by PCR using

primers targeting distinct promoter sequences (Figure 3B). Results

showed specific amplification products corresponding to the

binding of USF-1 and USF-2 factors to the CSA proximal

promoter (2246 bp), whereas no PCR product was observed for

the distal region (22 kb), the proximal CSB promoter or with non-

specific IgG antibodies (Figure 3B). We next investigated the

impact of UV-mediated DNA-damage (8610 J/m2) on the

recruitment of USFs to the CSA proximal promoter over time.

UV-irradiation specifically and rapidly (15 min) promoted an 8-

fold enrichment of USF-1, but not USF-2, at the CSA proximal

promoter (Figure 3B). Using in vitro binding assays (EMSA), we

tested the ability of USFs to bind the identified conserved E-box

motif (2246 bp), which was also present in the ChIP amplified

product. Specific DNA-protein complexes were obtained with a

probe spanning the E-box motif at 2246 (Figure 3C), which were

efficiently competed by homologous cold wild type, but not

mutant probe. These DNA-protein complexes were super-shifted

by antibodies against either USF-1 or USF-2 but not by non-

specific antibodies (IgG or Tbx2). No DNA-protein complex was

formed with probes carrying mutated E-box sequences.

In vivo DNA-binding assays revealed also that USF factors interact

specifically with the HR23A proximal promoter but not the distal

promoter or HR23B promoter and that UV-irradiation promotes

the interaction of the USF-1 transcription factor by a 3-fold and

USF-2 by a 2.5-fold enrichment (Figure 3E). As shown previously

for CSA, EMSA assays confirmed the DNA-protein complexes

spanning the conserved 2154 and 236 E-box motifs, present also

in the ChIP amplified products (Figure 3F). Competition between

the two E-box probes did not reveal any preferential binding site

(data not shown). In addition to the E-box sites present in the

HR23A proximal promoter, in silico analysis identified conserved

GC-rich regions (2131 and 218 from TSS) (Figure 3D) known to

interact with members of the SP1/SP3 transcription factor family

[11]. To examine their respective contribution to the regulation of

HR23A expression, we performed in vitro and in vivo DNA-binding

assays as described above. Specific protein-DNA complexes were

formed only in the presence of the 2131 intact GC box that

interacts with SP1 and SP3 transcription factors (Figure 3G). Also,

under the experimental conditions used, only SP3 was able to bind

the HR23A proximal promoter in vivo and SP3 loading was not

affected by UV-irradiation. Interestingly, a comparable SP3 binding

profile was obtained with the HR23B proximal promoter that shares

homologous GC rich sequences with HR23A (Figure 3H) but whose

mRNA levels were not modulated by UV, suggesting that the GC

motifs might not be UV-inducible. Taken together these results

provided compelling evidence that, in response to UV-irradiation,

USF-1 interacts directly with the CSA and HR23A proximal

promoters, suggesting it may be responsible for the UV-induced

CSA and HR23A expression observed in this study.

USF factors drive CSA and HR23A gene expression in
response to UV via E-box motifs

The relevance of the E-box motifs in mediating USF regulation

of the CSA and HR23A promoters was next assessed by luciferase

assays. We first transiently co-transfected XB2 cells with a wild

type (WT) and E-box mutated CSA promoter (2847/+1) cloned

upstream of a luciferase reporter (pGL3-Luc) (Figure 4A) and

USF-1 or USF-2 expression vectors (pCMV) [12,20]. Both USF-1

and USF-2 expression vectors led to significant increases of CSA-

luciferase activity (Figure 4B). Following UV-irradiation, WT CSA

promoter activity demonstrated a rapid, 6-fold significant increase

(30 min after the last UV pulse) (Figure 4C). Furthermore, this

intact E-box cis-regulatory element proved to be required for UV-

induced activation and to mediate the binding of USF trans-

activators (Figure 4B–4C).

We next transiently co-transfected XB2 cells with a WT and E-

box mutated HR23A promoter (2186/+73) construct cloned

upstream of a luciferase reporter (Figure 4D). USF-1 and USF-2

expression vectors led to mild but significant increases of HR23A-

luciferase activity (Figure 4E). In response to UV-irradiation,

HR23A promoter activity increased slightly but significantly only

in the presence of the USF-1 expressing vector (Figure 4G).

Interestingly, when the two E-box motifs were mutated, we

observed a 4-fold reduction of the basal HR23A-luciferase activity

(Figure 4F) and the USF-1 mediated UV-response was abrogated

(Figure 4G). Mutation of the 2131 GC-rich motif did not

significantly affect HR23A basal activity and did not impair the

USF-mediated UV-response (Figure 4F–4G), supporting the idea

that the UV response is driven by the USF/E-box protein/DNA

complexes.

USF-1 KO mouse tissue shows impaired NER regulation
and DNA–damage removal following UV irradiation

The physiological significance of the regulation of CSA and

HR23A by USF-1 in response to UV-induced DNA damage was

established using genetic approaches with XB2 USF-1 knock-

down (KD) cells (Figure 5) and USF-1 knock-out (KO) mice

(Figure 6) [13].

Firstly, we quantified the level of CPDs in cells in which either

USF-1 or CSA or HR23A mRNA was targeted with two different

and independent siRNA. While the level of CPDs in the un-

stimulated USF-1-KD cells (siUSF-1 Nu1 and Nu2) remained low

and comparable to the control cells (siCtrl Nu1 and Nu2), the level

increased dramatically 4 hours following UV exposure and was

significantly higher than the control cells exposed to UV.

Surprisingly, although confirmed by two independent siRNAs,

levels of CPDs in CSA-KD cells (siCSA Nu1 and Nu2) and in

HR23A-KD cells (siHR23A Nu1 and 2) were both significantly

elevated in the absence of UV-irradiation compared to USF-1-KD

and control cells. Following UV-irradiation, there was a mild

increase in levels of CPDs in CSA-KD and HR23A-KD cells

which was probably due to the initial high level of CPDs in KD-

cells coupled to quantification limits. Nonetheless, these increases

remained significantly higher compared to irradiated control cells

(Figure 5). Secondly, using skin punch biopsies prepared from

USF-1 KO mice and the WT littermates, we analyzed the UV-

response by comparing gene transcription efficiency and levels of

CPD. RNA analysis comparing irradiated versus non-irradiated

WT skin punch biopsies showed that CSA and HR23A mRNA

increased 3.5-fold and 2.5-fold at 1 and 5 h post-irradiation,

respectively (Figure 6A–6B). CSA and HR23A transcript levels

remained at basal levels in USF-1 KO mice and CSB and HR23B

mRNA were not affected by UV-irradiation in both WT and KO

USF-1 Regulates CSA and HR23A Gene Expression
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Figure 3. USF family members interact with CSA and HR23A proximal promoters. (A) Graphic representation of human, mouse, dog and
zebrafish CSA proximal promoter. Conserved E-boxes are represented in dark grey. (B) In vivo chromatin immunoprecipitation assays (ChIP) with
HaCaT cells using USF-1, USF-2 antibodies or non-specific IgG. Recovered DNA under basal or UV-irradiation conditions was subjected to PCR or
quantitative PCR using specific primers of both proximal and distal region (negative control) of the CSA promoter. (C) In vitro Electrophoretic Mobility
Shift Assay (EMSA) experiments were performed using HaCaT nuclear extract and radiolabeled probes centered on the E-box motif present in the CSA
proximal promoter (2246) (shifted complex (R)). Competition assays were performed in the presence or not of cold competitors (WT or mutated
cold probe). Supershift assays were obtained in the presence of anti-USF-1, anti-USF-2, and anti-TBX2 antibodies or IgG as non-specific controls ( = .).
(D) Graphic representation of human, mouse and dog HR23A and human HR23B proximal promoters. Conserved E-box motifs are represented in dark

USF-1 Regulates CSA and HR23A Gene Expression
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mice (Figure 6A–6B). By contrast, UV-inducible but USF-1-

independent genes, such as the Gadd45a prototype displayed UV-

induced transcript profiles in WT and KO USF-1 mice (Figure 6C)

[22,23]. However, we detected a 2 h delay of the mRNA increase

in the USF-1 KO mice (Figure 6C), which is consistent with

RNAPII being arrested to permit DNA-repair of transcribed genes

before the commencement of transcription supporting that TCR is

compromised in USF-1 KO mice. Moreover, because HR23

proteins are crucial to stabilize XPC at the DNA-photolesion sites

to permit removal of damage, we quantified the level of CPD by

ELISA immediately after 3 UV-pulses, and after 4 UV-pulses over

36 h (Figure 6D). While basal levels of CPD were comparable in

both WT and USF-1 KO mice as expected from siRNA results,

UV-irradiation led to rapid increases of DNA-damage that were

comparable immediately after 3 UV-pulses but remained higher

over time in KO mice compared to WT mice after 4 UV-pulses.

Importantly, calculating the rate of CPD-clearance over 36 h, we

observed a difference between WT and KO mice (Figure 6D).

Whereas CPDs were removed in WT mice at 36 h, CPDs

remained elevated in USF-1-KO mice at this time point. Taken

together these results provide compelling evidence that in response

to UV-induced DNA-damage, loss of USF-1 compromises the

tight regulation of the NER resulting in altered removal of UV-

induced DNA-damage.

Discussion

DNA carries the genetic instruction required for the develop-

ment and functioning of all living organisms. This information

must be transmitted to daughter cells with high fidelity, and

therefore specific DNA-repair programs are present to eliminate

DNA-lesions produced by regular threats. The NER pathway is

dedicated to repair distorted DNA, and for decades studies have

focused on elucidating the molecular mechanisms involved in the

recognition, signaling and removal of these DNA-lesions [2,24].

Using a multiple dose UV-irradiation protocol with repetitive

lower UV-doses that more accurately mimics our exposure to solar

irradiation compared to a single high dose, our study identifies an

early and coordinated gene expression regulation program of the

CSA and HR23A genes in mammals that relies on the presence of

the USF-1 transcription factor.

CSA and CSB proteins have been shown to have dedicated and

specific functions in the TCR pathway [5]. It has indeed been

clearly established, even in the absence of DNA damage, that a

large part of the CSB protein is found associated with chromatin

and that RNAPII even in the absence of DNA damage, and this

association increases upon UV-irradiation [25,26]. CSA has

however been shown to interact indirectly with RNAPII [25],

but it is required in cooperation with CSB for the recruitment of

XAB2, HMGN1 and TFIIS, to trigger DNA repair mediated by

XP complexes and PCNA protein [5,24]. The importance of CSA

in the early DNA damage response might also reside in the timing

of its specific gene expression as its levels are low in resting cells but

increase dramatically immediately after UV-irradiation. One

possible explanation would be that because CSA acts as a unique

player in the initial step of TCR, appropriate levels of the protein

is required almost immediately after UV-induced DNA damage

and before RNAPII gets arrested by de novo DNA photo-lesions.

No increase in CSA protein leads to a delay in transcription likely

by an impairment of its associated function: recruitment and

stabilization of the initiation complex on the chromatin [25]. This

is also supported by deficient CSA being directly linked to the

Cockayne syndrome type A genetic disorder [27] and by siRNA

results. However, these patients are not prone to developing skin-

cancers like XP patients, presumably due to 1- the presence of

additional DNA-repair machinery operating post DNA-replication

[28], 2- increased cell-death after DNA-damage [28] and to an

average life-span for these patients generally being limited to 12

years [29]. Interestingly, specific mutations in the repair-enzyme

genes XPB, D and G produce phenotype reflecting a combination

of traits present with XP and CS syndromes. This suggests that

simultaneous alteration of GGR and TCR will promote

mutagenesis in certain cells [29].

HR23A and HR23B proteins share common domains and are

both able to form a complex with XPC [30,31]. The XPC-HR23B

complexes were however reported to be more abundant than the

XPC-HR23A complexes and have been shown to participate

almost exclusively in DNA-photolesions recognition in vivo [32].

The XPC-HR23A complexes were consequently regarded as

having a functionally redundant role to XPC-HR23B. This is

therefore the first study to report conditions under which HR23A

and B protein levels are modulated differently, which suggest that

HR23A may have a function distinct from HR23B in the UV-

induced DNA damage pathway. We show that in response to

repetitive UV-irradiation there is a 4-fold increase in the level of

HR23A protein which is associated with a concomitant loss of

HR23B and we propose that this may favor XPC-HR23A

complex formation which leads to sustained XPC-stabilization

for appropriate recognition of DNA lesions [32,33]. Indeed, while

HR23A and HR23B KO mice are NER proficient, double

HR23A and HR23B KO derived cells show an XPC-like

phenotype [34]. We propose that differential regulation of these

two HR23 homologues may provide a safety mechanism to ensure

the stability of XPC and its function in response to multiple UV-

exposure. This possibility is supported by our data that show (i) a

reduction of DNA–lesion removal in HR23A-KD cells, (ii) a

reduction of DNA-lesion removal in UV-irradiated USF-1 KO

tissue and KD cells, which occurs presumably in part due to an

abrogation of HR23A gene expression in response to UV-rays and

(iii) a diminution of HR23A protein when UV-induced HR23A

transcription is abrogated with a-amanitin. We thus believe that

our study reveals a difference in the DNA damage response to a

single high dose of UV-irradiation compared to repetitive lower

doses and that our conditions mimic the accumulation of DNA-

damage over a short period of time which is more applicable to

every day life. These results are particularly interesting in the light

of the Saccharomyces cerevisiae RAD23 gene, the ortholog of both

HR23A and HR23B, which also presents with an UV-inducible

phenotype [35]. Our results show that the UV-induced function

has been conserved through evolution and restricted to one

member for specific regulatory purposes.

USF-1 is activated by the stress-dependent p38 kinase and then

operates as a transcriptional rheostat of the stress response

[20,21]. Combined regulation of HR23A and CSA gene

expression by USF-1 thus allows a tight and sequential regulation

grey and GC-rich regions in light grey. (E) ChIP assays were performed as in (B) targeting proximal HR23A or HR23B promoters and the distal region of
HR23A promoter (23 kb). (F) EMSA experiments were performed as described in (C) using radiolabeled probes centered on each E-box motif (2154
and 236) present in the HR23A proximal promoter. (G) ChIP assay using SP3 antibody or non-specific IgG were performed as previously described for
HR23A and HR23B promoter occupancy. (H) EMSA experiments were performed as previously with HaCaT nuclear extract and radiolabelled probes
centered on the GC box present in the HR23A proximal promoter (2131) (shifted complex (R)).
doi:10.1371/journal.pgen.1002470.g003

USF-1 Regulates CSA and HR23A Gene Expression

PLoS Genetics | www.plosgenetics.org 6 January 2012 | Volume 8 | Issue 1 | e1002470



of these two genes. The observation that there is first an increase

in USF-1 occupancy on the CSA promoter followed by its

occupancy on the HR23A promoter suggests a sequential and

dynamic recruitment of USF-1 to fulfill specific steps of a

common task. USF-1 as a stress responsive factor is also proposed

to be a key player in regulating pigmentation gene expression in

response to UV-irradiation [12,21,36]. USF-1 may thus elicit a

skin protection program against UV-induced DNA damage by

controlling two independent and complementary pathways: the

DNA-photolesions repair process and the UV-induced tanning

Figure 4. In vitro transcriptional regulation of human CSA and HR23A by USF. (A) Schematic representation of the CSA promoter-luciferase
constructs. The construct contains the sequence from 2847 to +1 of the CSA promoter linked to the luciferase reporter. E-box is represented in dark
gray and its position is indicated on top. Cross shows mutated E-box. (B) CSA promoter-luciferase activity measured after co-transfection of XB2
keratinocytes with WT or mutated CSA promoter-luciferase constructs with pCMV-USF-1, pCMV-USF-2 expression vectors or pCMV empty vector
(control). (C) CSA promoter-luciferase activity measured 30 min or 5 h after UV induction (6610 J/m2) of XB2 cells transfected with WT or mutated
CSA promoter-luciferase constructs. (D) Schematic representation of the HR23A promoter-luciferase constructs. The construct contains the sequences
from 2186 to +73 of the HR23A promoter linked to the luciferase reporter. E-boxes are represented in dark gray, GC-box in light gray, and positions
are indicated on top. Crosses show mutated boxes. (E) HR23A promoter-luciferase activity measured after co-transfection of XB2 keratinocytes with
pCMV-USF-1 or pCMV-USF-2 expression vectors or empty vector. (F) WT and mutated HR23A promoter-luciferase activities in XB2 cells following UV-
irradiation (6610 J/m2). (G) WT and mutated HR23A promoter-luciferase activities transfected in XB2 cells with pCMV-USF-1 expression vector and UV
irradiated (6610 J/m2). Error bars indicate s.e.m.; n = 3; one asterisk, P,0.05, two asterisks, P,0.01, three asterisks, P,0.001.
doi:10.1371/journal.pgen.1002470.g004
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Figure 5. CSA, HR23A, and USF-1 knock-down (KD) affect the level of DNA damage in XB2 cells. (A) ELISA-quantification of CPD DNA-
damage in CSA, HR23A and USF-1 KD XB2 cells or control cells, using two independent siRNA (Nu1 and 2), 4 hours after UV-irradiation (8610 J/m2).
The indicated values correspond to the CPD enrichment (%) against control non UV-irradiated cells. Error bars indicate s.e.m. for three independent
experiments. Statistical analysis was performed using student test in order to compare UV conditions and control (#); and between different siRNA
target (*) two marks, P,0.01, three marks, P,0.001. (B) Western blotting analysis and quantification of USF-1, CSA and HR23A protein levels in XB2
cells irradiated as previously described after KD of each target by two independent siRNA (Nu1 and 2). HSC70 is included as a loading control. Signals
are detected using the LAS-3000 Imaging System (Fujifilm) and quantified with ImageJ.
doi:10.1371/journal.pgen.1002470.g005
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response. More importantly, USF-1 functions independently of

p53 but both pathways are expected to be coupled [37]. Since

USF-1 mediates an independent and crucial DNA-repair

program as highlighted by our USF-1 KO and KD assays, we

propose that impairment of this pathway will promote genome

instability in response to environmental insults, which is a

hallmark of cancer. This hypothesis is supported by the reported

loss of USF activity in breast cancer cells [38], and impairment of

the recruitment of USF factors to specific E-box elements due to

SNPs, as observed in the variant rs1867277 FOXE1 gene,

conferring thyroid cancer susceptibility [39]. Furthermore, CpG

methylation can also impair USF interaction with core E-box

motifs and subsequently alter gene expression, as for the

metallothionein-I gene which is silenced in mouse lymphosarco-

ma [40].

Our findings indicate that, in response to repetitive environ-

mental threats that lead to the accumulation of UV-induced DNA

damage, the NER pathway undergoes a program of gene

expression that correlates with the DNA repair processes and that

the USF-1 transcription factor is central to this program. These

results may thus have important implications for our global

understanding of how genome instability is promoted.

Materials and Methods

Cell and skin biopsies culture
HaCaT (human - p53 deficient) and XB2 (mouse) keratinocytes

were maintained in D-MEM (Invitrogen) supplemented with 10%

FBS (Sigma) and 1% Penicillin-Streptomycin (Invitrogen) at 37uC
in 5% CO2 atmosphere.

Skin biopsies (0.8 cm diameter) were recovered from the backs

of WT and USF-1 knockout mice (8 weeks) [13] and maintained in

culture for up to 24 h in RPMI (Invitrogen) supplemented with

1% Penicillin-Streptomycin at 37uC in a 5% CO2 atmosphere.

UV irradiation
Specific DNA photo-lesions were generated with ultraviolet

bulbs (254 nm) [14], using the Stratalinker apparatus (Stratagene)

as previously described [12,20,21]. The day before UV exposure,

cells were plated at 50–70% confluence, depending on their

Figure 6. UV-induced CSA and HR23A expression is impaired in USF-1 knock-out (KO) mice. (A) Expression analysis of CSA and CSB were
performed by RT-qPCR after UV-irradiation (4650 J/m2) of cultured punch biopsy samples from WT (dark color) or USF-1 KO mice (light color). Results
for UV-treated samples are expressed relative to controls (no irradiation) with the HPRT transcript used as a standard. (B) Expression analysis of HR23A
and HR23B were performed by RT-qPCR as previously described. (C) Expression analysis of the UV response positive control gene, Gadd45a, was
performed by RT-qPCR as previously described. (D) 36 hours kinetics of CPD DNA-damage removal (ELISA quantification) in cultured skin punch
biopsies from WT (black) or USF-1 KO mice (grey). The yellow band corresponds to the irradiation protocol (4650 J/m2). Skin punch biopsies were
analyzed immediately after 3 UV-pulses (3650 J/m2) (time 1 h), and after 4 UV-pulses (4650 J/m2) (at the following times: 3–7–24–36 h). Error bars
indicate s.e.m.; n = 3.
doi:10.1371/journal.pgen.1002470.g006
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doubling time, in 10 cm Petri dishes. Twelve to twenty-four later,

the medium was replaced with fresh medium supplemented with

2% FBS and 1% antibiotics. The following day, cells were UV

irradiated (26 to 86 10 J/m2). UV pulse set at 10 J/m2 lasted

3 seconds. The medium was completely removed before and

replaced after irradiation. At the time point indicated, cells were

washed twice in cold PBS, harvested by scraping, centrifuged and

resuspended in appropriate buffer. For transcription inhibition

experiments, cells were pre-treated with a-amanitin (5 mg/ml;

Sigma) 30 min prior to UV-irradiation.

Mouse skin biopsies were irradiated with four successive pulses

of 50 J/m2 UV, recovered at the indicated time points by placing

the skin biopsy directly in RNA later buffer (Qiagen) and stored at

220uC for subsequent RNA extraction.

Cell viability test
Cell viability in response to UV (254 nm) was analysed in 96

well plates. Briefly, cells were plated at 16104 cells/well, 10 h

before UV induction, tetrazolium salt (MTT, 0.5 mg/ml (Sigma)

was added to culture medium. After 3 h of incubation (37uC), the

medium was removed and 150 ml of DMSO was added to each

well. Percentage of cell viability was then analysed by measuring

the DMSO-optical density (OD), at 690 and 540 nm with a

Multiskan spectrophotometer.

Gene expression analysis
RNA was extracted using Nucleospin RNA II kit (Macherey

Nagel) and quantified using the Nanodrop device. For skin

explants, an extra Trizol/chloroform purification step was needed

to remove protein. cDNA was obtained by reverse transcription

using a High-Capacity cDNA Reverse Transcription Kit (Applied

Biosystem) from 1 mg of total RNA. Gene expression was analyzed

by qPCR in sealed 384-well microtiter plates using the SYBR

Green TM PCR Master Mix (Applied Biosystem) with the

7900HT Fast Real-Time PCR System (Applied Biosystem).

Relative amounts of transcripts were determined using the delta

Ct method. The mRNA levels at each time point following

stimulation are expressed as fold increase, relative to non-

irradiated cells. Data were normalized independently to at least

two housekeeping genes HPRT and GAPDH. Because compara-

ble data were obtained only the HPRT ones are presented. Each

experiment was carried out at least twice and each time point was

repeated in triplicate. Forward (F) and reverse (R) primers were

designed using the Universal Probe Library Assay Design Center

(Roche) and have been previously tested for their efficiency

(Sequences available on request).

Western blot analysis
Harvested cells were immediately lysed by incubation for

30 min in ice-cold RIPA buffer (supplied in protease and

phosphatase inhibitors). Equal amounts of protein were denatu-

rated in Laemmli buffer for 5 min at 95uC and resolved by 15%

SDS-PAGE. Membranes were probed with appropriate antibodies

and signals detected using the LAS-3000 Imaging System

(Fujifilm) were quantified with ImageJ (http://rsbweb.nih.gov/

ij/).

Electrophoresis mobility shift assay
Gel electrophoresis DNA binding assays were performed with

crude HaCaT keratinocyte nuclear extracts under conditions

previously described [12,41,42], with modifications. Double-

stranded oligonucleotides were labeled with T4 polynucleotide

kinase in the presence of P32-cATP (3000 Ci/mmol) and purified

in columns (Mini Quick Spin Oligo Columns, Roche Diagnostic).

Reaction mixtures contained 2–4 mg of total protein and

0.03 pmol of P32 end-labelled probe in binding buffer (Hepes

25 mM, KCl 150 mM, 10% Glycerol, DTT 10 mM, 1 mg of

poly(dIdC), 1 mg salmon sperm DNA). After 20 min of incubation,

samples were loaded onto a low ionic strength 6% polyacrylamide

gel (29:1 cross-linking ratio) containing Tris Borate Na EDTA

buffer pH 8.3.

Supershift and competition assays were performed by adding

competitor probes (16 to 1006) or antibodies (0.2 mg) prior to

incubation with labelled probes (Sequences available on request).

Radioactive bands were quantified with a STORM 840

PhosphorImager (Molecular Dynamics).

Chromatin immunoprecipitation assay
ChIP assays, using 1.5–26106 HaCaT cells, were performed as

previously described [41,43], with specific adaptations. The cells

were cross-linked (1.5% formaldehyde), washed twice and

collected in 1 ml cold PBS. Cells were lysed and the samples

were then sonicated for DNA fragmentation (Sonifier Cell

Disruptor, Branson) in 1 ml lysis buffer (10 mM EDTA, 50 mM

Tris-HCl (pH 8.0), 1% SDS, 0.5% Empigen BB) and diluted 2.5-

fold in IP buffer (2 mM EDTA, 100 mM NaCl, 20 mM Tris-HCl

(pH 8.1), 0.5% Triton X-100). This fraction was subjected to

immunoprecipitation overnight with 3 mg of the appropriate

antibody. These samples were then incubated for 3 h at 4uC with

50 ml of protein A-Sepharose beads slurry. Precipitates were

washed several times, cross-linking reversed and DNA purified

using a Nucleospin Extract II kit (Macherey Nagel).

PCR or qPCR analyses were carried out with primers spanning

HR23A, HR23B and CSA proximal promoters or, as a reference,

with primers targeting an unrelated promoter region (HSP70

promoter region) or unspecific regions of target promoter genes

(sequences available on request). End-point PCR was performed in

semi-quantitative conditions for ChIP (30 amplification Cycles).

For qPCR analysis, fold enrichment was determined using the

DDCt method: Fold enrichment = 22(Dct12DCt2), where DCt 1 is

the ChIP of interest and DCt2 the control ChIP.

Plasmid constructs
2744/+73 and 2185/+73 HR23A promoter region were

obtained by PCR and inserted into the luciferase reporter plasmid

pGL3-basic (Promega). E boxes and the GC box were mutated

using a QuickChange Site-Directed Mutagenesis Kit (Stratagene).

The same protocol was used for the CSA promoter sequence lying

2847/+1.

Luciferase reporter analysis
CSA and HR23A promoter regulation was studied in mouse

XB2 keratinocytes. Cells were plated at 60–70% confluence in 12-

well plates in medium supplemented with 10% SVF without

antibiotics and were maintained for 12 h. Cells were co-

transfected or not with pGL3 reporter vector and pCMV (empty,

USF-1 or USF-2), as previously described [12,20,21]. The

transfection mix, containing up to 500 ng of plasmid DNA, was

prepared in Optimem medium (Invitrogen) and used to transfect

cells for 3 h using Lipofectamin 2000 (Invitrogen). 3 h after

transfection, the medium was replaced with fresh medium

supplemented with 10% SVF and 1% antibiotics. 48 h later, cells

were irradiated with UV, as described above and harvested up to

5 h following UV. Cells were then passively lysed and luciferase

activity was quantified in a Microplate Luminometer Centro LB

960 (Berthold) using the Luciferase Reporter Assay System

(Promega).
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siRNA transfection
XB2 cells were seeded and transfected in 10 cm-diameter dishes

(16106 cells per dish) in DMEM medium complemented with

10% FBS, with 40 pmol of siRNA. Two different siRNA (Nu1 and

2) were used independently for each target gene tested (CSA,

HR23A and USF-1) as for control (siOTP1, siNT1) (Sigma-

Genosys, St Louis, MO) using Lipofectamine 2000 (Invitrogen,

Paisley, UK). Transfections were performed following provider’s

instructions. 72 hours later, the cells were UV irradiated as

previously described and recovered 4 hours after the irradiation

protocol for CPD quantification and western blot analysis. siRNA

sequences are available on request.

CPD quantification by ELISA
Quantifications of CPD in skin explants following UV (254 nm)

(4650 J/m2) were performed by ELISA, accordingly to Cosmo

bio recommendations. DNA purification was performed by

phenol/chloroform extraction and ethanol precipitation. Briefly,

200 ng of denatured DNA was distributed onto protamine sulfate

precoated 96 well plates (Polyvinylchloride flat-bottom). Detection

of DNA-lesion was performed using specific mouse anti-CPD

antibodies, and revealed with the biotin/peroxidase-streptovidin

assay. Quantification was obtained by the absorbance at 492 nm.

Each experiment was performed independently with punch

biopsies of three independent WT and USF-1 KO mice.

Immunofluorescence microscopy
XB2 (mouse keratinocytes) cell lines were cultured in D-MEM

at 37uC on glass coverslips in 35-mm dishes. 24 hours later, cells

were UV-irradiated with 6610 J/m2 in serum free medium

following as previously described. Cells were then fixed and

permeabilized after different times of induction accordingly to

Cosmo bio Co protocol. Previously to CPD immunostaining in

cells, we denatured DNA with HCl 2 M for 30 min at room

temperature. Indirect immunofluorescence was then performed

using specific recommendations of Cosmo bio Co protocol with

specific primary antibodies mouse anti-CPD (TDM2 clone, MBL)

(1:3000). Fluoro-staining was performed with labeled donkey anti-

mouse IgG (Alexa Fluor 488). CSA immunostaining was

performed with specific anti-rabbit antibody from Santa Cruz.

Antibodies
Anti USF-1 (C:20), USF-2 (N-18), Sp1 (PEP 2), Sp3 (D-20),

TBX-2 (C-17), HR23B (P-18), HSC70 (B-6) were purchased from

Santa Cruz. Anti HR23A (ARP42211) was purchased from Aviva.

Anti CSA was purchased from Abcam (ab96780). Anti CPD

(TDM2) was purchased from MBL. Anti a-Tubulin (ARP42211)

was purchased from Sigma.

Statistical analysis
Errors bars represent standard deviation, stars indicate

statistically significant differences (two-tailed Student’s t-test)

between control and irradiated samples * P,0.05; ** P,0.01;

*** P,0.001.

Ethics statement
The present animal study follows the 3R legislation (Replace-

Reduce-Refine). It has been declared and approved by the French

Government Board. Animal welfare is a constant priority: animals

were thus sacrificed under anesthesia.

Supporting Information

Figure S1 CSA and HR23A are up-regulated in p53-deficient

HaCaT human keratinocytes and XB2 mice keratinocytes after

UV induced DNA-damage. (A) Quantification of CSA and CSB

expression in human HaCaT keratinocytes (p53 deficient cells)

following UV-irradiation (8610 J/m2) determined by RT-qPCR

(DDCT method). Results (n = 3) are expressed relative to control

(no UV treatment) and normalized to HPRT transcript. (B) Fluoro-

immunostaining microscopy (663) performed in irradiated

(6610 J/m2) or not XB2 keratinocyte cells, and recovered 1 and

5 h post-irradiation. Detection of CSA protein was performed

using the specific anti-CSA antibody (Santa Cruz) and the

secondary TRITC-coupled antibody. DAPI staining was used to

visualize cell nuclei. (C) Quantification of HR23A and HR23B

mRNA expression in human HaCaT keratinocytes as described in

(A). (D) Fluoro-immunostaining microscopy (640) performed in

XB2 keratinocyte cells, irradiated or not (6610 J/m2), and

recovered at 4 h and 24 h post-irradiation. Detection of HR23A

protein was performed using the specific anti-HR23A antibody

(Aviva) and the secondary TRITC-coupled antibody. Specific

anti-CPD antibody (MBL) was used to visualize DNA damage

(secondary antibody used was coupled to FITC). (For all results

errors bars indicate s.e.m.; n = 3; one asterick, P,0.05, two

asterisks, P,0.01, three asterisks, P,0.001).

(TIF)
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