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ABSTRACT 

 

Accumulating evidences indicate that the cellular and molecular microenvironment of 

follicular lymphoma (FL) plays a key role in both lymphomagenesis and patient 

outcome. Malignant FL B cells are found admixed to specific stromal and immune cell 

subsets, in particular CD4pos T cells displaying phenotypic features of follicular helper 

T cells (TFH). The goal of our study was to functionally characterize intratumoral CD4pos 

T cells. We showed that CXCR5hiICOShiCD4pos T cells sorted from FL biopsies 

comprise at least two separate cell populations with distinct genetic and functional 

features: i) CD25pos follicular regulatory T cells (TFR), and ii) CD25neg TFH displaying a 

FL-B cell supportive activity without regulatory functions. Furthermore, despite their 

strong similarities with tonsil-derived TFH, purified FL-derived TFH displayed a specific 

gene expression profile including an overexpression of several genes potentially 

involved directly or indirectly in lymphomagenesis, in particular TNF, LTA, IL4, or 

CD40LG. Interestingly, we further demonstrated that these two last signals efficiently 

rescued malignant B cells from spontaneous and Rituximab-induced apoptosis. 

Altogether, our study demonstrates that tumor-infiltrating CD4pos T cells are more 

heterogeneous than previously presumed, and underlines for the first time the crucial 

role of TFH in the complex set of cellular interactions within FL microenvironment. 

 

Keywords: follicular lymphoma, follicular helper T cells, follicular regulatory T cells 
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INTRODUCTION 

 

Follicular lymphoma (FL), the most frequent indolent non-Hodgkin lymphoma (NHL), 

results from the transformation of germinal center (GC) B cells (1). Besides a 

complex set of intrinsic genetic abnormalities, FL B cells retain, like their normal 

counterpart, a strong dependence on their molecular and cellular microenvironment. 

Indeed, malignant B cells are found admixed with specific stromal cell subsets (2) 

and CD4pos T cells (3), which form a specialized malignant cell niche within invaded 

lymphoid organs. Importantly, gene expression profile studies performed on whole 

tissue biopsies have revealed that the outcome of FL patients was not primarily 

predicted by the gene expression pattern of tumor B cells, but by gene signatures of 

non-malignant tumor infiltrating cells, with a favorable outcome related to T-cell 

restricted genes (4). 

Several reports have confirmed that the nature and the localization of T cells within 

invaded lymph nodes (LN) could be used as prognostic biomarkers. Interestingly, the 

localization of CD4pos T cells within neoplastic follicles, unlike their absolute number, 

was consistently associated with poor survival and rapid transformation (5), 

suggesting that different CD4pos T cell subsets could display different functions in FL. 

Among them, regulatory T cells (Treg) are supposed to play a central role. 

Surprisingly, an increased number of FOXP3pos Treg has been first associated with 

improved overall survival (6). However, their follicular localization was thereafter 

associated with poor progression-free and overall survival, as well as a high risk of 

transformation (7). Furthermore, convincing functional studies revealed that natural 

and induced FL Treg were endowed with suppressive capacities towards infiltrating 

CD4pos effector T cells and CD8pos cytotoxic T cells (8-10). Overall, these data 

suggest that, like in solid tumors, Treg inhibit antitumor responses in FL. Other 

immunohistochemistry studies have focused on markers harbored by follicular helper 

T cells (TFH), the specialized subset of CD4pos T cells present within secondary 

lymphoid organs (SLO). TFH provide survival signals to antigen-selected GC B cells, 

and help them to achieve class-switch recombination and differentiation into 

antibody-secreting plasma cells. Highly controversial findings were reported 

concerning the prognostic value of the number and localization of PD1pos and 

CD57pos T cells (5, 11-13). However, the phenotypic definition of TFH requires a 

combination of several markers thus limiting the impact of single marker-based 
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immunohistochemistry studies. In addition, whereas we recently identified a TFH-

dependent IL-4 centered pathway in FL, no functional study has been performed yet 

to explore the specific role of the TFH compartment on malignant FL B cells.  

TFH are characterized by a strong expression of CXCR5 associated with a lack of 

CCR7 allowing their migration and retention into the CXCL13-rich light zone of GC. In 

addition, they express high levels of inducible costimulator (ICOS), CD200, PD-1, 

and produced IL-21 and CXCL13 (14). These features are essentially associated with 

the expression of the transcription factor BCL-6, the master regulator of TFH 

differentiation (15). Importantly, TFH subset has emerged as an independent CD4pos T 

helper lineage with distinct developmental program and effector functions. However, 

several recent reports revealed a higher plasticity within T helper lineages than 

previously anticipated. In particular, studies conducted in mice and humans 

demonstrated that TFH could secrete IFN-γ, IL-4, and IL-17, the prototypic Th1, Th2, 

and Th17 cytokines (16-18).  

Owing to the demonstration that, in both mice and human, CXCR5 and ICOS are two 

of the most relevant phenotypic TFH cell markers (19, 20), we aimed to fully 

characterize CXCR5hiICOShiCD4pos T cells infiltrating FL tumors. In addition, since i) 

human tonsil CD4posCD57pos TFH have been described to exert regulatory functions in 

vitro (21), and ii) Treg could localize within malignant follicles in FL (7) whereas they 

are essentially found in the extrafollicular zones in reactive lymph nodes (22), we 

decided to explore the relationship between TFH and Treg in the FL context. We 

encompassed that the CXCR5hiICOShiCD4pos phenotypic definition merged two 

distinct functional T-cell populations in FL based on the expression of CD25: a 

CD25pos follicular Treg (TFR) subset and a CD25neg TFH subset. Finally, we 

demonstrated that FL-derived TFH displayed a gene expression pattern close but 

distinct from that of tonsil-derived TFH and exhibited a strong supportive activity on 

malignant FL B cells mediated in part by CD40L and IL-4. 

 

 

MATERIALS AND METHODS 

 

Cell samples 

All tissues used for this study came from subjects recruited under institutional review 

board approval and informed consent process according to the Declaration of 
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Helsinki. Samples were obtained from LN of patients with de novo FL, diffuse large 

B-cell lymphoma (DLBCL), or with reactive non-malignant diseases considered as 

normal counterpart, and from tonsils collected from children undergoing routine 

tonsillectomy. All FL LN showed a predominant follicular growth pattern and were 

classified into grades 1, 2, or 3a according to the WHO diagnostic criteria. Tissues 

were cut into pieces and flushed using syringes and needles. The CD4pos T cell 

enriched fraction was obtained as previously described (17). TFH, TFR, and nonTFH 

were sorted using a FACSAria (Becton Dickinson, San Diego, CA) as 

CD3posCD4posCXCR5hiICOShiCD25neg, CD3posCD4posCXCR5hiICOShiCD25pos, and 

CD3posCD4posCXCR5negICOSneg cells, respectively. Purity of each fraction was 

greater than 98%. Primary FL B cells were purified as previously described (23). 

Purity of CD19pos B cells was greater than 99%, and more than 95% of these cells 

expressed the appropriate tumor isotype light chain. Magnetic cell sorts using the 

StemSep CD4pos T Cell Enrichment Kit (Stemcell Technologies, Vancouver, Canada) 

and the CD25 Microbeads II (Miltenyi Biotech, Gladbach, Germany) were performed 

to isolate CD4posCD25neg effector T cells from PBMC, and tonsil CD4posCD25pos cells 

required for the sorting of CD4posCD25hiCD127low Treg. Th1, Th2, and Th17 clones 

were obtained from biopsies taken from active inflammatory lesions of patients 

suffering from chronic inflammatory or auto-immune diseases, as previously 

described (24). 

 

Quantitative RT-PCR 

Total RNA was extracted using RNeasy Kit (Qiagen, Valencia, CA). All samples used 

displayed an RNA integrity number of at least 9.4. cDNA was then generated using 

Superscript II reverse transcriptase (Invitrogen, Carlsbad, CA). For quantitative RT-

PCR, we used assay-on-demand primers and probes (Table S1), and the Taqman 

Universal Master Mix from Invitrogen. Gene expression was measured using the ABI 

Prism 7000, or the ABI Prism 7900HT Sequence Detection System when 

predesigned TaqMan Array Micro Fluidic Cards were used. B2M, CASC3, and 18S 

was determined as appropriate internal standard genes (25). For each sample, the 

CT value for the gene of interest was determined, normalized to the geometric mean 

value of the 3 housekeeping genes, and compared to the value obtained from a pool 

of peripheral blood naive CD4pos T cells. A hierarchical clustering algorithm was used 

to group genes on the basis of similarity and data visualization was carried out with 
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Cluster and Treeview (Eisen softwares, Stanford, CA). Supervised analyses included 

two approaches: 1) Significance Analysis of Microarrays (SAM) software, using 500 

permutations, a fold change > 2 or < 0.5 and an false discovery rate < 3%; 2) 

Unpaired Mann-Whitney non-parametric test carried out with Partek® Genomics Suite 

software (Partek, Saint Louis, MO), and selection of gene with a P-value less than 

0.05. Generated gene lists were then crossed to retain only overlapping genes. 

Principal Component Analysis (PCA) was conducted using Partek® Genomics Suite. 

 

Flow cytometry characterization 

Monoclonal antibodies (mAbs) used are listed on Table S2. Data were analyzed 

using Kaluza software (Beckman Coulter, Miami, FL). For IL-4 and IFN-γ detection, 

total FL LN or tonsil cell suspensions were stimulated with 100 ng/mL of phorbol 12-

myristate 13-acetate and 750 ng/mL of ionomycine for 6 hours in RPMI 10% fetal calf 

serum (FCS) at 37°C. Ten µg/mL of brefeldin A (BD Biosciences) were added for the 

last 4 hours of stimulation. The percentage of viable CD3pos T cells, nonTFH, and TFH 

producing IL-4 and IFN-γ was determined by staining with live/dead fixable yellow 

dead cell stain kit (Invitrogen) and cell-subset gating mAbs before fixation and 

permeabilization using the Cytofix/Cytoperm Fixation/Permeabilization Solution Kit 

(BD Biosciences) and incubation with anti IL-4 or anti-IFN-γ mAbs.  

 

Immunohistochemistry studies 

Immunohistochemistry was performed on deparaffinized tissue sections of FL LN, 

reactive LN with follicular hyperplasia, and tonsils using a standard indirect avidin-

biotin immunoperoxidase method. Briefly, after appropriate antigen retrieval, sections 

were incubated with anti-human ICOS (provided by Dr T. Marafioti) and anti-human 

FOXP3 (clone 236A/E7 Abcam, Cambridge, UK) mAbs. Double immunostainings 

were performed as previously described (26). Images were captured with a Zeiss 

Axioskop2 microscope (Zeiss, Oberkochen, Germany) and Neofluar 100x/0.1 NA 

optical lenses (Zeiss). Photographs were taken with a DP70 Olympus camera 

(Olympus, Tokyo, Japan). Image acquisition was performed with Olympus DP 

Controller 2002, and images were processed with Adobe Photoshop v7.0 (Adobe 

Systems, San Jose, CA). 
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B-cell anti-apoptotic assay 

Purified FL malignant B cells were cultured in IMDM 10% FCS in round bottom 96-

well plates alone or in presence of purified T-cell subsets (ratio 1:1). After 24 hours, 

cells were harvested and B-cell apoptosis was assessed on gated CD20posCD4neg B 

cells using active caspase-3 PE apoptosis kit (Becton Dickinson), according to 

manufacturer’s instructions. In addition, B-cell activation was evaluated in the same 

culture conditions after 40 hours of culture, by the ratio of the mean fluorescence 

intensity (RMFI) obtained with phycoerythrin-conjugated CD86 mAb and its isotype-

matched negative control (Beckman Coulter). 

 

Suppression assay 

Effector T cells were stained with 5µM of carboxyfluorescein diacetate succinimidyl 

ester (CFSE, Invitrogen) and resuspended in IMDM 10% AB human serum (HS), 0.2 

µg/mL anti-CD3 (Sanquin, Amsterdam, The Netherlands) and 0.1 µg/mL anti-CD28 

(Becton Dickinson) mAbs. Cultures were performed in round bottom 96-well culture 

plates, in the presence or not of TFH, nonTFH, Treg, or TFR (ratio of 1:1) for 5 days. 

CFSEposTOPRO-3neg viable effector T cells were analyzed. Percentages of cells in 

each generation were identified using the ModFit software (Verity Software, 

Topsham, ME). 

 

Rituximab-induced cell death assay 

Purified FL malignant B cells were plated in round bottom 96-well plates in IMDM 

50% AB HS, and stimulated or not for 3 hours with 50 ng/mL CD40L, 35 ng/mL 

enhancer polyhistidine mAb, and 50 ng/mL IL-4 (RD Systems, Abingdon, UK) before 

21 hours of culture in the presence or not of 25 µg/mL anti-CD20 mAb Rituximab 

(MabtheraTM, Roche, Basel, Switzerland). The absolute number of TOPRO-3neg 

viable FL B cells was evaluated using Flowcount beads. 

 

Statistical analyses 

Statistical analyses were performed with the GraphPad Prism software using non-

parametric Kruskal-Wallis test, Wilcoxon test for matched pairs, or Mann Whitney U 

tests. 
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RESULTS 

 

Phenotypic description of CXCR5hiICOShiCD4pos T cells in reactive and 

malignant secondary lymphoid organs 

We first quantified by flow cytometry CXCR5hiICOShiCD4pos T cells in dissociated 

samples of reactive LN and tonsils, as well as in infiltrated LN from patients with FL 

and de novo DLBCL. As previously described (17), we found a similarly high 

proportion of TFH in tonsils (median: 30% [5-57]) and FL LN (median: 32% [10-57]). 

The percentage of CXCR5hiICOShi cells among CD4pos T cells was low in the majority 

of reactive LN, with the exception of few samples with major follicular hyperplasia, as 

evaluated by morphological analysis of tissue sections. Interestingly, TFH were not 

detected in the majority of DLBCL samples (median: 0.2% [0-20]) (Figure 1A). PD-1 

is another well-known TFH marker (14). Interestingly, whereas the percentage of TFH 

among CD4pos T cells was the same using both the CXCR5hiICOShi and the 

CXCR5hiPD-1hi definitions in tonsils, the percentage of CXCR5hiPD-1hiCD4pos T cells 

represented only 78.8 ± 21% of that of CXCR5hiICOShiCD4pos T cells in FL, 

suggesting an additional level of heterogeneity within CXCR5hiICOShiCD4pos T-cell 

subset in this disease (Figure 1B). 

Because previous data suggested that Treg could be specifically recruited in follicles 

in FL context (9), we also decided to characterize more precisely this population. We 

evaluated the expression of CD25 and FOXP3 among CD4pos T cells within SLO. We 

revealed a higher frequency of FOXP3posCD25pos Treg among CD4pos T cells in FL, 

compared to tonsils, reactive LN, and DLBCL samples (Figure 1C). Interestingly, we 

noticed that FL LN samples were particularly enriched for CD4pos T cells harbouring 

both CXCR5hiICOShi and FOXP3posCD25pos phenotypes and were called thereafter 

follicular regulatory T cells (TFR) (Figure 2A). In order to evaluate if this phenotype 

was really associated to a follicular localization, double-immunostainings were 

performed on FL biopsies and confirmed the presence of numerous FOXP3pos cells 

co-expressing ICOS essentially within FL neoplastic follicles (Figure 3A). On the 

contrary, these cells were rare in GC of follicular hyperplasia, and were localized in 

the interfollicular areas or at the periphery of GC (Figure 3B), in accordance with their 

homogeneous low expression of CXCR5 in tonsils (Figure 2B). Finally, whereas no 

correlation was found between the proportions of total Treg and TFR in FL samples, 
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we revealed a strong correlation between FL TFR and TFH contents (p=0.02) (Figure 

2C). 

Overall, we pointed out three CD4pos T-cell subsets in FL LN: classical 

CD4posCXCR5hiICOShiCD25negFOXP3neg TFH, classical CD4posCXCR5negICOSneg 

CD25posFOXP3pos Treg, and a new CD4posCXCR5hiICOShiCD25posFOXP3pos TFR 

compartment. 

 

Definition of CXCR5hiICOShiCD4pos T cells in FL LN 

To further explore the complexity of follicular CD4pos T cells in FL, we compared by 

quantitative RT-PCR, the gene expression profile of ex-vivo sorted Treg, FL-derived 

TFR, and FL- and tonsil-derived TFH. We also included in our analysis Th1, Th2, and 

Th17 clones derived from chronically inflamed human tissues that were shown to be 

highly representative of T-cell polarization in humans (24, 27). This study involved 45 

genes that play a pivotal role in CD4pos T cell differentiation, localization and effector 

functions (Table S1). The results of a PCA analysis revealed that FL and tonsil-

derived TFH shared a very close gene expression signature, compared to Th1, Th2, 

Th17, Treg, and FL TFR (Figure 4A). In addition, an unsupervised clustering analysis 

allowed to properly classify FL- and tonsil-derived TFH, and ordered FL TFR closer to 

Treg than TFH (Figure 4B). More precisely, we then focused on the expression of the 

master regulators of each helper T-cell lineage, i.e. TBX21, GATA3, RORC, FOXP3, 

and BCL6 involved and over-expressed during the Th1, Th2, Th17, Treg and TFH cell 

differentiation, respectively. We confirmed that FL and tonsil-derived TFH expressed 

lower to undetectable levels of TBX21, GATA3, and RORC, compared to Th1, Th2, 

and Th17. In addition, TFR and Treg exhibited a similarly high level of FOXP3, unlike 

FL and tonsil-derived TFH. FL- and tonsil-derived TFH strongly expressed BCL6 and 

were devoid of PRDM1 expression, whereas FL TFR strongly expressed PRDM1 

(Figure 4C). Overall, when focusing on T-helper differentiation genes, our data 

highlighted that FL-derived TFH and TFR shared a highly similar gene expression 

pattern with tonsil TFH and Treg, respectively. However, TFR retained a higher BCL6 

expression than classical Treg and the amount of PDCD1 (encoding PD1) transcripts 

was intermediate in TFR, as compared to TFH and Treg. Finally, FL TFH displayed the 

classical PD-1hiCD200hiCD127lowCD57pos/neg phenotype, previously ascribed to 

normal LN TFH, whereas FL TFR could be defined as PD-1dimCD200dim 

CD127lowCD57pos/negCD4pos T cells (Figure S1). These data were helpful to reconcile 
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the discrepancy, within FL biopsies, between the percentages of CXCR5hiCD4pos T 

cells co-expressing high levels of ICOS (comprising TFH and TFR) versus high levels 

of PD-1 (comprising TFH only) (Figure 1B) and confirmed that TFR constitute a specific 

new cell subset distinct from both TFH and Treg. 

 

Functional characterization of CXCR5hiICOShiCD4pos T cells in FL LN 

TFH are defined by their capacity to support antigen-specific B-cell response by 

providing survival, activation, differentiation, and class switch recombination signals 

to normal B cells (14). We first explored malignant B cell activation and survival in 

coculture with CD4pos T-cell subsets. FL B cells upregulated the expression of the 

CD86 activation antigen when cultured with autologous TFH, and not with 

CXCR5negICOSnegCD4pos nonTFH (Figure 5A). Similarly, TFH, unlike both nonTFH and 

TFR, were able to rescue autologous malignant B cells from spontaneous apoptosis in 

vitro (Figure 5B).  

Furthermore, functional studies revealed that whereas TFR did not display a malignant 

B-cell supportive effect, they exerted a strong regulatory potential, as demonstrated 

by their capacity to inhibit CD4posCD25neg effector T-cell proliferation as efficiently as 

tonsil Treg used as a control (Figures 5B-C). In the same experiment, paired FL TFH 

displayed no regulatory properties (Figure 5C). These results convincingly 

demonstrated that TFR could be considered as bona fide regulatory T cells expressing 

the GC specific receptor CXCR5.  

In conclusion, our functional results convincingly demonstrated that, in FL, the 

CXCR5hiICOShiCD4pos T-cell definition included both functional 

CXCR5hiICOShiCD25negCD4pos TFH with anti-apoptotic activity on autologous 

malignant B cells, and CXCR5hiICOShiCD25posCD4pos functional Treg. 

 

CD40L/CD40 and IL-4/IL-4Rα are involved in FL B cell supportive activity of 

autologous TFH 

Despite the similarities between TFH obtained from FL LN and tonsils, we next tried to 

unravel the specificity of TFH in the malignant context. In fact, the unsupervised 

clustering analysis described above (Figure 4B) revealed some discrepancies 

between these two populations. Statistical analysis using combined SAM and Mann-

Whitney U-test highlighted a significant differential expression of 10 genes, including 

8 genes upregulated in FL-derived TFH (Table 1). We focused our attention on 3 of 
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them: the B-cell activating cell surface molecule CD40LG, and the prototypic Th1 and 

Th2 cytokines, IFNG and IL4, previously reported as secreted by murine and human 

TFH (17, 28, 29). We confirmed on a more important set of samples the significant 

over-expression of CD40LG and IL4 in TFH sorted from FL-LN, compared to those 

isolated from tonsils (Figure 6A). In addition, we found by flow cytometry that FL LN 

contained a higher frequency of IFN-γ secreting T cells than tonsils (median: 19.3% 

[14-32] and 10.8% [8-18] for FL LN and tonsils, respectively, p<0.05), in particular in 

the TFH compartment (median 8.3% [6-22] and 4.5% [3-10], respectively, p<0.05) 

(Figure 6B). Similarly, the frequency of T cells secreting IL-4 was also more important 

in FL LN (median 12.7% [7-15]), as compared to tonsils (median 1.2% [1-3], p<0.01), 

and this cytokine was predominantly produced by the TFH subset (Figure 6C). Taken 

together, these results prompted us to evaluate the role of CD40L and IL-4, two 

molecules implicated in normal B-cell growth, in the supportive effect of FL TFH. 

In order to answer this question, we first cultured FL LN samples in the presence of 

anti-CD40L and/or anti-IL-4Rα neutralizing mAbs, and evaluated the survival of 

malignant FL B cells. We were able to detect a slight but significant inhibition of 

malignant B-cell survival in the presence of each specific neutralizing antibody. 

Indeed, anti-CD40L and anti-IL-4Rα mAbs inhibited FL B cell survival by 11.5% [5.8-

16.3] and 10.4% [1.6-11.5], respectively (n=4, data not shown). In order to better 

underline the direct anti-apoptotic activity of CD40L and IL-4 on FL B cells, we 

evaluated their impact on the survival of purified FL B cells, in the presence of the 

specific anti-CD20 mAb Rituximab, commonly used in the treatment of FL patients. 

These experiments were performed in the presence of human serum with an 

undamaged complement activity in order to evaluate the Rituximab-mediated 

complement-dependent cytotoxicity. Malignant B cells displayed a heterogeneous 

response to Rituximab cytotoxicity (median survival: 34%, [19-85]), as previously 

described (30). Nevertheless, whereas CD40L+IL-4 did not increase spontaneous FL 

B cell survival during short term culture, we observed a significant but highly variable 

decrease (median: 45%, [3-100], n=9) of Rituximab-dependent cytotoxicity in the 

presence of CD40L+IL-4 (Figure 6D). Overall, these results demonstrated that 

CD40L and IL-4, which are both overexpressed by FL-derived TFH, contributed to FL 

B-cell survival. 
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DISCUSSION 

 

FL B cells are characterized by chromosomal aberrations, a strong dependence on 

BCR signaling, and a bidirectional and dynamic crosstalk with both stromal and 

hematopoietic microenvironment within follicular malignant niche. Several studies 

using gene expression profile or immunohistochemistry approaches have depicted 

the importance of CD4pos T cells, depending on their number, activation status, and 

localization within malignant follicles (5, 12). To date, in FL, only few functional 

studies have been performed essentially focused on Treg. These data prompted us 

to better characterize follicular CD4pos T cells. 

The primary goal of our study was to precisely define TFH in FL samples. We 

identified a high proportion of CXCR5hiICOShiCD4pos TFH in tonsils and reactive LN 

with a major follicular hyperplasia, correlated to the frequency of GC CD10pos B cells 

(data not shown), suggesting that TFH cells might be related to the level and/or 

duration of follicular activation. LN obtained from FL and de novo DLBCL, the two 

most frequent NHL, showed adverse proportions of CXCR5hiICOShi cells among 

CD4pos T cells, unrelated to the cancer-associated activation context. This 

observation reinforces the notion that FL cells might require stronger interactions with 

surrounding cells than DLBCL cells. Indeed, despite the influence of immune cell 

infiltration on DLBCL biology (31), clinical behaviour is primarily predicted by tumor 

cell molecular signatures in aggressive lymphomas (32), whereas FL patient 

outcome, including overall survival and risk of transformation, is essentially related to 

the gene signature of non-malignant infiltrating cells (4, 33). It will be interesting to 

evaluate the predictive value of TFH cell infiltration in a large cohort of homogeneously 

treated FL patients. 

Importantly, we demonstrated that CXCR5hiICOShiCD4pos T cells from FL LN 

comprised two distinct functional subpopulations, based on the expression of CD25 

and FOXP3: bona fide CD25posFoxp3pos Treg called TFR, and CD25negFOXP3neg TFH. 

Natural Treg expressing ICOS have already been described in healthy donors (22). 

In melanoma, accumulating Treg expressing high levels of ICOS have been reported 

among tumor-infiltrating T cells. This ICOShi Treg subset displayed strong 

suppressive functions, and induced the activation of IL-4-secreting T cells (34). In 

addition, we demonstrated the presence of these FL TFR within neoplastic follicles, in 

accordance with their expression of CXCR5. The specific homing of Treg within 
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neoplastic GC could result from two complementary processes: their specific 

recruitment, or their local induction/expansion. Interestingly, CCL22 secreted by FL B 

cells has been described as involved in the recruitment of Treg (9), and previous data 

reported that malignant B cells contributed to Treg differentiation (35, 36). 

Importantly, two recent papers identify in mice a subset of CXCR5hiPD1hiFoxp3pos 

suppressive T cells that localize to the GC, coexpress BCL6 and PRDM1, and arise 

from thymic-derived Foxp3pos precursors (37, 38). They called them TFR cells. Our 

study provides strong evidence that this new T-cell population actually exists in 

human and is expanded during lymphomagenesis. 

Here, we reported a strong correlation between TFR and TFH proportions, suggesting 

that CXCL13 secreted by TFH could contribute to the recruitment of CXCR5-

expressing TFR within neoplastic follicles. In agreement, CXCL13 was similarly highly 

expressed by tonsil and FL TFH (data not shown). Of note, no correlation between 

expression of CXCL13 and FOXP3 within FL microenvironment (data not shown), or 

between the proportion of TFH and total Treg have been found, reinforcing the 

specific relationship between TFH and TFR. Importantly, a recent report revealed the 

poor prognosis value of the follicular infiltration of FOXP3pos cells in FL biopsies (7). 

This may suggest that the TFR subset plays an important role in FL pathogenesis 

through the inhibition of anti-tumor immune response. However, the low 

representation of TFR in the FL microenvironment (median: 3% among CD4pos T cells) 

hampered us to perform more detailed functional investigations on this subset. 

Beside this TFR subpopulation, we demonstrated the presence of 

CXCR5hiICOShiCD25negCD4pos T cells sustaining FL B cell survival and activation, 

and therefore matching the functional definition of TFH. In addition, this subset 

brought all the phenotypic features of human tonsil TFH. We were able to show that 

FL TFH, like tonsil TFH, expressed less TBX21, GATA3, RORC, and FOXP3 than Th1, 

Th2, Th17 clones, and natural Treg, and a higher BCL6/PRDM1 ratio. FL and tonsil 

TFH also expressed similar levels of IL21, and BTLA. Importantly, no regulatory 

function was associated to CXCR5hiICOShi FL TFH, contrary to previous data obtained 

with tonsil CD57pos TFH (21). This apparent discrepancy may result from the different 

phenotypic definitions of TFH. It has been demonstrated that CD57, unlike the 

CXCR5/ICOS combination, is not an appropriate marker of functional TFH (20). In 

addition, we shown here that it could be more appropriate to define TFH among 
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CD4posCD25neg T cells, as previously hypothesized (39), in order to reduce the 

potential contamination by Treg. 

A more detailed analysis on selected genes revealed discrepancies between tonsil 

and FL TFH. In particular, we demonstrated that FL-derived TFH expressed more 

IFNG, TNF, and LTA than tonsil-derived TFH. In a previous work, we reported an 

increased expression of these 3 genes in the entire microenvironment of FL B cells 

compared to normal tissues; and owing to the correlation between IFNG, GRZA, 

GRZB, and CD8A expression, we suggested the implication of cytotoxic cells in this 

secretion (23). Here, we demonstrated by quantitative RT-PCR experiments and flow 

cytometry strategies that TFH were also involved in this overexpression of IFN-γ. Of 

note, this secretion of IFN-γ, TNF-α and LT-α by TFH may have an influence on the 

FL B cell supportive effect of stromal cells, as described previously (23, 40). In 

addition, these inflammatory cytokines could also stimulate macrophages, which 

were shown to have an adverse effect on the outcome of FL patients (41, 42). We 

also observed an increased expression of the transcription factor aryl hydrocarbon 

receptor (AhR) in FL TFH, compared to tonsil TFH. AhR have been reported to regulate 

Th17, to induce the differentiation of Treg, and to enhance CYP1A1, IL10, or IL22 

expression (43-45). In the present study, gene expression data did not reveal an 

increased expression of these 3 genes in FL TFH. However, it has also been reported 

that AhR could physically interact with c-Maf (43, 46), the transcription factor that 

specifically promotes IL-4 synthesis in Th2 cells. These two transcription factors 

could have a key role in the development and the functionality of IL4-producing TFH in 

FL context. 

Finally, FL TFH showed an increased expression of three B-cell growth factors, i.e. 

IL2, IL4 and CD40LG, compared to tonsil TFH. Flow cytometry analyses revealed a 

higher proportion of IL-4 secreting cells within FL TFH. The CD40/CD40L pathway is 

central to multiple steps of B-cell survival, activation, and differentiation. The growth 

activity of CD40L has already been demonstrated on neoplastic mature B cells (23) 

and IL-4 exerts an antiapoptotic activity on normal B cells (47, 48). Nevertheless, a 

dual role for IL-4 was demonstrated on DLBCL malignant cells, with an increased 

sensitivity of GCB-like DLBCL to doxorubicin and Rituximab, whereas IL-4 protected 

ABC-like DLBCL from drug-induced apoptosis (49). In addition, a previous report 

demonstrated that IL-4 slightly and irregularly enhanced the proliferation of FL B cells 

in vitro (50). In our study, we highlighted a strong anti-apoptotic activity of CD40L and 
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IL-4 on FL B cells treated in vitro with Rituximab. Interestingly, this anti-apoptotic 

effect was inversely correlated to the sensitivity of malignant FL B cells to Rituximab. 

Of note, beside its survival potential, IL-4 was also able to drive macrophages toward 

a TAM phenotype endowed with tumor invasion, immunoregulatory and pro-

angiogenic properties (51). 

In summary, our results depict new facets of the complex cellular interactions in FL 

and highlight the important supportive role of TFH in the tumor microenvironment of 

FL malignant B cells. Targeting TFH and their survival factors in combination with 

direct antitumor agents might be a promising strategy to provide new therapeutic 

schemes for FL patients. 
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FIGURE LEGENDS 

 

Figure 1: Phenotypic characterization of CD4pos T cells in malignant and 

reactive SLO.  

Frequency of CXCR5hiICOShi (A, B), CXCR5hiPD-1hi (B), and FOXP3posCD25pos (C) 

among CD4pos T cells from tonsils (Tons), reactive LN (rLN), FL LN, and DLBCL LN 

samples. (A) Open squares represent rLN samples with a strong follicular 

hyperplasia. Bars: median. *p<0.05; **p<0.001; ***p<0.0001. 

 

Figure 2: Phenotypic characterization of FL TFR. 

(A) Left: Representative plots of CD25 and FOXP3 expression among 

CXCR5hiICOShiCD4pos T cells in FL. Right: Frequency of CD25posFOXP3pos subset 

among CD4posCXCR5hiICOShi T cells from tonsils (Tons) and FL LN. (B) CXCR5 

expression of CD25posFOXP3pos cells among CD4pos T cells in Tons and FL LN. (C) 

Correlation between the percentage of TFR, and the percentages of Treg or TFH in FL 

LN. 

 

Figure 3: FOXP3posICOSpos cells in FL LN and reactive SLO. 

Immunohistochemistry in biopsies of (A) two cases of FL (1,2; respectively x100 and 

X400; 3,4; respectively X100 and X400), and (B) a reactive tonsil (1,2; respectively 

x100 and X250) and a LN with follicular hyperplasia (3,4; respectively X100 and 

X250). Double staining for FOXP3 (nuclear, blue) and ICOS (membrane, brown) 

show only very few cells expressing both markers in reactive tonsils and LN, mainly 

surrounding reactive GC (arrows) whereas a significant proportion of cells – either 

scattered or in small clusters - in the neoplastic follicles of FL are double stained for 

FOXP3 and ICOS. 

 

Figure 4: Gene expression of FL TFH and TFR.  

(A) PCA of data resulting from the gene expression analyses of Th1, Th2, Th17, 

Treg, tonsil-derived TFH (Tons), FL-derived TFR and TFH. (B) Hierarchical clustering of 

Treg, FL TFH and TFR, and Tons TFH. (C) TBX21, GATA3, RORC, FOXP3, BCL6, 

PRDM1, and PDCD1 gene expression in FL TFH and TFR, and Tons TFH were 

compared to that in Th1, Th2, Th17 and Treg (n=4 for Tons TFH, FL TFH and TFR, n=3 
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for Th1, Th2, Th17, and Treg). The arbitrary value of 1 was assigned to blood naive 

CD4pos T cells. Bars: mean+/-SD. 

 

Figure 5: Functional characterization of FL TFH and TFR.  

(A,B) Purified FL B cells were cultured alone or with autologous TFH, nonTFH, or TFR. 

(A) Left: representative plots of CD86 (line) or isotype-matched (grey) staining on 

gated B cells. Right: CD86 expression fold change after coculture with TFH or nonTFH. 

The RMFI for each coculture condition was compared to the RMFI of B cells cultured 

alone, allowing the calculation of the ratio of RMFI (RRMFI). Bars: mean+/-SD (n=3). 

(B) Left: representative plots of active caspase-3 staining on gated B cells. Right: 

Percentages of inhibition of B-cell apoptosis in coculture with T subsets. Bars: 

mean+/-SD (n=3). (C) Activated (A) or non-activated (NA) CFSE-labelled effector T 

cells (Teff) were cultured alone or in presence of Teff, Treg, or TFR, TFH, and nonTFH 

isolated from FL LN. Left: representative plots of CFSE staining. Right: Bars: 

percentages of CFSEpos Teff displaying less (<G2, black) or more (• G2, white) than 2 

cell divisions (n=3). 

 

Figure 6: CD40L and IL-4 involvement in FL B-cell survival.  

(A) IL4 and CD40LG expression of Tons and FL TFH. The arbitrary value of 1 was 

assigned to blood naive CD4pos T cells. Bars: mean+/-SD (n=6). *p<0.05, **p<0.01. 

(B,C) Left: representative plots of IFN-γ (B) or IL-4 (C) expression of activated (A) or 

non-activated (NA) PD1pos FL TFH. Right: expression of IFN-γ •(B) or IL-4 (C) by TFH or 

CD3pos T cells from Tons or FL LN. Bars: median. *p<0.05, **p<0.01. (D) Relative 

number of viable FL B cells after culture in presence or not of Rituximab and 

CD40L+/-IL-4. Number of viable FL B cells obtained without CD40L+IL-4 and without 

Rituximab was assigned to 100. Bars: median (n=9). **p<0.01.  
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Table 1: List of the 10 genes differentially expressed by sorted FL TFH, compared to tonsil (Tons) TFH.  

     

     
Gene Symbol Median of expression in 

FL TFH 
Median of expression in 

Tons TFH 

Ratio of median 
expression (FL TFH / 

Tons TFH) 

 IL4 171.1 4.3 39.8 
 IL2 76.4 3.4 22.3 
 IFNG 10.1 1.8 5.5 
 TNF 29.6 6.8 4.3 
 CD200 56.7 21.1 2.7 
 CD40LG 6.5 2.5 2.6 
 AHR 2.6 1.1 2.4 
 LTA 2.8 1.4 2.0 
 RORC 0.05 2.1 0.02 
 IL26 0.41 36.0 0.01 
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Figure 5
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Figure 6
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Table S1: List of the genes analyzed by quantitative RT-PCR using TaqMan Gene Expression Assays 

Gene symbol Name
Unigene 

reference

TaqMan® Gene expression 

Assay Reference

18S Eukaryotic 18S rRNA - Hs99999901_s1

AHR aryl hydrocarbon receptor Hs.171189 Hs00169233_m1

B2M beta-2-microglobulin Hs.534255 Hs99999907_m1

BCL6 B-cell CLL/lymphoma 6 Hs.478588 Hs00277037_m1

BTLA B and T lymphocyte associated (CD272) Hs.445162 Hs00699198_m1

CASC3 cancer susceptibility candidate 3 Hs.725173 Hs00201226_m1

CCR4 chemokine (C-C motif) receptor 4 Hs.184926 Hs99999919_m1

CCR6 chemokine (C-C motif) receptor 6 Hs.46468 Hs00171121_m1

CCR7 chemokine (C-C motif) receptor 7 Hs.370036 Hs00171054_m1

CCR8 chemokine (C-C motif) receptor 8 Hs.113222 Hs00174764_m1

CD200 CD200 molecule Hs.79015 Hs01033303_m1

CD40LG CD40 ligand (CD154) Hs.592244 Hs00163934_m1

CTLA4 cytotoxic T-lymphocyte-associated protein 4 (CD152) Hs.247824 Hs00175480_m1

CXCL13 chemokine (C-X-C motif) ligand 13 Hs.100431 Hs00757930_m1

CXCR3 chemokine (C-X-C motif) receptor 3 Hs.198252 Hs00171041_m1

CXCR5 chemokine (C-X-C motif) receptor 5 Hs.113916 Hs00173527_m1

CYP1A1 cytochrome P450, family 1, subfamily A, polypeptide 1 Hs.72912 Hs00153120_m1

ENTPD1 ectonucleoside triphosphate diphosphohydrolase 1 (CD39) Hs.576612 Hs00169946_m1

FOXP3 forkhead box P3 Hs.247700 Hs00203958_m1

GATA3 GATA binding protein 3 Hs.524134 Hs00231122_m1

ICOS inducible T-cell co-stimulator (CD278) Hs.56247 Hs00359999_m1

IFNG interferon, gamma Hs.856 Hs00174143_m1

IL10 interleukin 10 Hs.193717 Hs99999035_m1

IL13 interleukin 13 Hs.845 Hs00174379_m1

IL17A interleukin 17A Hs.41724 Hs00174383_m1

IL17F interleukin 17F Hs.272295 Hs00369400_m1

IL2 interleukin 2 Hs.89679 Hs00174114_m1

IL21 interleukin 21 Hs.567559 Hs00222327_m1

IL22 interleukin 22 Hs.287369 Hs00220924_m1

IL25 interleukin 25 Hs.302036 Hs00224471_m1

IL26 interleukin 26 Hs.272350 Hs00218189_m1

IL27 interleukin 27 Hs.528111 Hs00377366_m1

IL4 interleukin 4 Hs.73917 Hs00174122_m1



LTA lymphotoxin alpha (TNF superfamily, member 1) Hs.36 Hs00236874_m1

LTB lymphotoxin beta (TNF superfamily, member 3) Hs.376208 Hs00242737_m1

MAF v-maf musculoaponeurotic fibrosarcoma oncogene homolog Hs.134859 Hs00193519_m1

MME membrane metallo-endopeptidase (CD10) Hs.307734 Hs00153510_m1

OSM oncostatin M Hs.248156 Hs00171165_m1

PDCD1 programmed cell death 1 (CD279) Hs.158297 Hs00169472_m1

PRDM1 PR domain containing 1, with ZNF domain Hs.436023 Hs00153357_m1

RC3H1 ring finger and CCCH-type zinc finger domains 1 Hs.30258 Hs02577215_m1

RORA RAR-related orphan receptor A Hs.560343 Hs00536545_m1

RORC RAR-related orphan receptor C Hs.256022 Hs01076112_m1

SH2D1A SH2 domain protein 1A Hs.349094 Hs00158978_m1

TBX21 T-box 21 Hs.272409 Hs00203436_m1

TGFB1 transforming growth factor, beta 1 Hs.645227 Hs99999918_m1

TNF tumor necrosis factor (TNF superfamily, member 2) Hs.241570 Hs00174128_m1

TNFRSF18 tumor necrosis factor receptor superfamily, member 18 Hs.212680 Hs00188346_m1



 
Table S2: Antibodies used for flow cytometry 

 
Anti-human 

antibody 
Conjugation* Supplier**

Caspase 3 PE BD 
CD2 PC7 BC 
CD3 ECD BC 
CD4 FITC BC 
CD4 PC7 BC 
CD19 FITC BC 
CD20 FITC BC 
CD25 APC BD 
CD25 PC5.5 BD 
CD25 PC7 BD 
CD57 FITC BC 
CD86 PE BC 

CD127 A647 BD 
CD200 A647 S 
CXCR5 PE RD 
FOXP3 PE EB 
ICOS BIOT EB 
IFN-γ PE BD 
IL-4 PE BD 

kappa FITC BC 
lambda FITC BC 
PD-1 A647 EB 
PD-1 FITC EB 

 
 

* FITC: fluorescein isothiocyanate; PE: phycoerythrin; PC5.5: phycoerythrin cyanin 5.5; PC7: 
phycoerythrin cyanin 7; APC: allophycocyanin; ECD: energy-coupled-dye; A647: AlexaFluor 647; 
BIOT: biotinylated monoclonal antibody (revealed by streptavidin-ECD, PC5 or PC7 from Beckman 
Coulter) 
** BC: Beckman Coulter (Fullerton, CA); BD: BD Biosciences (San Diego, CA); EB: eBioscience (San 
Diego, CA); RD: R&D Systems (Abingdon, UK); S: AbD Serotec (Oxford, UK). 
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