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Abstract: Prevention of adverse cardiac remodeling after myocardial infarction (MI) remains 

a therapeutic challenge. Angiotensin-converting enzyme inhibitors (ACE-I) are a well-

established first-line treatment. ACE-I delay fibrosis, but little is known about their molecular 

effects on cardiomyocytes. We investigated the effects of the ACE-I delapril on 

cardiomyocytes in a mouse model of heart failure (HF) after MI. Mice were randomly 

assigned to three groups: Sham, MI, and MI-D (6 weeks of treatment with a non-hypotensive 

dose of delapril started 24h after MI). Echocardiography and pressure-volume loops revealed 

that MI induced hypertrophy and dilatation, and altered both contraction and relaxation of the 

left ventricle. At the cellular level, MI cardiomyocytes exhibited reduced contraction, slowed 

relaxation, increased diastolic Ca
2+

 levels, decreased Ca
2+

-transient amplitude,
 
and diminished 

Ca
2+

 sensitivity of myofilaments. In MI-D mice, however, both mortality and cardiac 

remodeling were decreased when compared to non-treated MI mice. Delapril maintained 

cardiomyocyte contraction and relaxation, prevented diastolic Ca
2+

 overload and retained the 

normal Ca
2+

 sensitivity of contractile proteins. Delapril maintained SERCA2a activity through 

normalization of P-PLB/PLB (for both Ser
16

-PLB and Thr
17

-PLB) and PLB/SERCA2a ratios 

in cardiomyocytes, favoring normal reuptake of Ca
2+

 in the sarcoplasmic reticulum. In 

addition, delapril prevented defective cTnI function by normalizing the expression of PKC, 

enhanced in MI mice. In conclusion, early therapy with delapril after MI preserved the normal 

contraction/relaxation cycle of surviving cardiomyocytes with multiple direct effects on key 

intracellular mechanisms contributing to preserve cardiac function. 

 

 

Key Words: Angiotensin-converting enzyme inhibitors, excitation-contraction coupling, heart 

failure, hypertrophy, myofilaments, sarcoplasmic reticulum Ca
2+

 ATPase. 

  



3 
 

INTRODUCTION 

 

Over-activation of the renin-angiotensin system (RAS) plays a critical role in the progression 

of cardiac remodeling after myocardial infarction (MI) [1]. Evidences for the cardiovascular 

benefits of angiotensin-converting enzyme inhibitors (ACE-I) have emerged from long-term 

studies (CONSENSUS, SAVE, AIRE, TRACE, SOLVD) [2]. Indeed, ACE-I lower mortality 

rates and hospital admissions in patients with left ventricular (LV) dysfunction and 

progressive heart failure (HF) [3]. Benefits occur mainly via blood pressure reduction, yet 

there is evidence of blood pressure independent protective effects in coronary disease ([4]. 

Experimental studies have shown that ACE-I therapy delays myocardial remodeling, thus 

inhibiting the transition to HF [5-7]. At the clinical level, short-term studies (e.g., 

CONSENSUS-II, AIRE) suggest that early ACE-I therapy provides significant and rapid 

benefits [2]. Long-term therapy attenuates morphological and functional alterations related to 

hypertrophy and fibrosis [8, 9]. In particular, ACE-I therapy blocks the fibrogenic action of 

angiotensin both in experimental models and in patients. However, the pure anti-remodeling 

effects of ACE-I through normalization (or prevention) of impaired intracellular Ca
2+

 

signaling and excitation-contraction coupling as observed in HF (i.e. independent of the blood 

pressure reduction) at the molecular level have been poorly explored.  

 

 

After MI, the sustained activation of compensatory neurohormonal systems, coupled with the 

alteration of various cell signaling and gene expression pathways, triggers a domino effect that 

leads to severely compromised cardiac function. Changes in cardiomyocyte phenotype are 

responsible for significant alterations in excitation-contraction (E-C) coupling and pro-

arrhythmogenicity, due to the modification of cellular ion currents and Ca
2+

 handling [10-12]. 

Specific therapeutic options to optimize healing and prevent adverse post-MI remodeling are 
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currently lacking [13]. Several studies have shown that ACE-I modify the expression of genes 

coding for Ca
2+

 handling proteins during HF [14-16] but the functional consequences are not 

well-established. In addition, no study has evaluated the effects of ACE inhibition on 

myofilament Ca
2+

 sensitivity, a key determinant of contraction, during HF. 

 

 

The ACE-I delapril is an old molecule but still currently used, in combination with Ca
2+

 

antagonist manidipine, as a therapeutic option to control hypertension complicated by diabetes 

and microalbuminuria, and to reduce cardiovascular morbidity and mortality in high-risk 

patients [17]. Interestingly, all ACE-I do not have exactly the same molecular effects and 

pharmacological properties. The affinities of the enzymatic carboxyterminal and 

aminoterminal regions (C-site and N-site) of ACE for ACE-I drugs differ according to the 

organ involved and the two catalytic sites may control different functions [18, 19]. Delaprilat, 

the active metabolite of delapril, binds with higher affinity to the C-site than to the N-site, in 

particular in the left ventricle (LV) and reduces cardiac hypertrophy [20]. By comparison, the 

ACE-I captopril displays a high affinity for the N-site and has less affinity for the myocardium 

[18, 19]. In the present work, we focused on the independent blood pressure effects of a 

chronic treatment with delapril, started 24 hours after MI in mice, on surviving LV 

cardiomyocytes. The study focused on the molecular effects of delapril not only on Ca
2+

 

handling but also on Ca
2+

 sensitivity of myofilaments which, to our best knowledge, has never 

been studied before. Delapril preserved the contractile properties of cardiomyocytes by 

reducing the Ca
2+

 transient alterations and by preventing the alterations of myofilament 

contractile properties in HF after MI.  
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MATERIALS AND METHODS 

 

MI model and experimental groups     

 

Experimental protocols were approved by the institutional standing committee for animal 

research and conformed to European directives (86/609/CEE) and the standards set forth in 

the Guide for the Care and Use of Laboratory Animals (published by the National Academy 

of Science, National Academy Press, Washington, D.C.). Male Swiss mice (Janvier, France), 

aged 8 weeks and weighing 34.5±1.5 g (n=102) were randomly assigned to one of three 

experimental groups: Sham-operated (Sham), subjected to MI, or subjected to MI and treated 

with delapril (MI-D). MI was induced by left coronary artery ligation [21]. Briefly, a left 

thoracotomy was performed in anesthetized mice (2% inhaled isoflurane in O2, Aerrane®, 

Baxter, France). The artery was ligated 1-2 mm beyond the point of emergence from the top 

of the left atrium, using an 8-0 Sofsilk suture (Syneture, USA). A unique subcutaneous 

injection of 0.01 ml buprenorphine solution (0.3 mg.ml
-1

) for postoperative analgesia was 

administered. Sham animals were subjected to the same surgical procedure but without 

coronary artery ligation. The MI-D group received a daily dose of 6 mg.kg
-1

 of delapril 

(kindly supplied by Chiesi Farmaceutici, Parma, Italy) provided in drinking water, starting 24 

hours after surgery and lasting for 6 weeks. This dose was chosen because delapril given for 3 

weeks did not lower BP in conscious PMI rats [22]. A complete morphological and functional 

cardiac evaluation was performed at this stage as described [23] before cellular and molecular 

studies. 

 

Echocardiography 

 

Longitudinal transthoracic echocardiography was carried out in awake mice using a 

sonographic apparatus equipped with an i13L 14 MHz linear array transducer designed
 
for the 
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examination of small rodents (Vivid 7, GE Medical systems, USA). Mice were trained for 

several days before the examination in order to decrease the stress due to handling. No 

difference in heart rate (bpm) was observed within the 3 groups (701±10, 702±10, 715±11, in 

Sham, Mi and MI-D respectively). Only mice with a large infarct and an atrial diameter of 

more than 1.9 mm were used to ensure the transition to HF.  

 

Pressure-volume (P-V) analysis 

 

Briefly, a 1F dual-field combination pressure-conductance catheter (model PVR-1045, Millar 

Instruments) connected to a pressure-conductance unit (MPVS-300, Millar) was inserted in 

the right carotid artery and advanced into the LV of anesthetized mice (isoflurane 1.5-2%). 

Changes in LV function were visualized through the use of ventricular pressure-volume (P-V) 

loops. Measurements were acquired at rest and after dobutamine infusion (5 g.kg
-1

.min
-1

). 

Steady-state LV pressure levels were determined during suspended ventilation, and signal-

averaged data from 5-10 consecutive beats were used. Parallel conductance from surrounding 

structures was calculated by injecting a 10 µL bolus of 15% NaCl through the femoral vein. 

Load-independent parameters of contractility were derived from the P-V relationship as 

described [24]. The mean arterial pressure and the maximal (+dP/dt) and minimal (-dP/dt) first 

derivatives of LV pressure were calculated with IOX v1.8.9.4 software (EMKA Technologies, 

France).  

 

Quantification of fibrosis 

 

Interstitial fibrosis was measured in 10 μm thick transverse sections of mouse hearts in the 

peri-infarcted area [25] to assess the effect of delapril on this parameter. Briefly, after cervical 

dislocation, hearts were excised from mice, rapidly frozen in liquid nitrogen and stored at -80 

°C. Collagen distribution was determined using picrosirius red-stained sections and expressed 

as a percentage of total LV surface area (Histolab, Gothenburg, Sweden). 
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Cell Contractility and Ca
2+

-Transient Measurements 

 

LV myocytes were freshly isolated from the non-infarcted free wall and recorded as 

previously described [26]. For measurements of intracellular Ca
2+

, confocal images were 

obtained by line scanning (1.5 ms/line) cells
 
loaded with fluo-4-AM (4 µmol/L) [26]. The time 

course
 
of Ca

2+
 transients was assessed by measuring the time constant

 
(τ) of the exponential 

part of the decay phase.
 
Sarcoplasmic reticulum (SR) Ca

2+
 content was assessed by measuring 

the peak amplitude
 
of the cytosolic Ca

2+
 transient induced by the rapid application of

 
caffeine 

(10 mmol/L). Sarcomere length (SL)
 

and fluorescence (405 and 480 nm) were also 

simultaneously recorded
 
using an IonOptix system (Milton, MA) and used specifically for the 

measurement of diastolic Ca
2+

. To do this, LV myocytes were incubated for 30 min with indo-

1 AM (10 μmol/L Invitrogen inc. France) as previously described [27]. Cells were field 

stimulated to contract at 1 Hz. All experiments
 
were performed at room temperature. 

 

Force Measurements in Permeabilized Cardiomyocytes 

 

Isometric force was measured in single permeabilized cardiomyocytes
 
at different Ca

2+
 

concentrations at an SL of 1.9
 
µm as described [27]. Force was normalized to the cross-

sectional area measured from
 
imaged cross-sections, and the force-pCa relation fitted

 
to a Hill 

equation.
 
In some

 
experiments, myofilaments have been incubated with the catalytic domain 

of PKA (100 U/mL; Sigma-aldrich, Paris, France) or PKC (0.25 U/mL; Sigma) for 50 min at 

room temperature.
  

 

Real-time PCR 

 

RNA was isolated and analyzed using standard methods. Tissue from the non-infarcted free 

wall of LV was dissected (n=6 in each group) and flash-frozen in liquid nitrogen. Gene 

expression levels were determined by RT-PCR (LightCycler, Roche,
 
Meylan, France). The 
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sequences of the specific primers for collagen I and collagen III were: Collagen I 5’-

TGGTACATCAGCCCGAAC-3’ (sense), and 5’-GTCAGCTGGATAGCGACA-3’ 

(antisense); collagen III 5’-GACAGATTCTGGTGCAGAGA-3’ (sense), and 5’-

CATCAACGACATCTTCAGGAAT-3’(antisense). Results are expressed as a function of β-

tubulin expression level.
  

 

Protein Analysis  

 

Ca
2+

 handling: Proteins extracted from the non-infarcted free wall of the LV were separated 

using 2-20 % SDS-PAGE and blotted onto a PVDF membrane (Protran, Schleichen and 

Schuele, Dassel, Germany). Membranes were incubated overnight at 4°C with the following 

primary antibodies: Anti-RyR2 (Affinity Bioreagents, Neshanic Station, NJ), NCX antibody 

(R3F1, SWANT, Switzerland), Phospho Ser
2809

-RyR2 antibody (A010-30, Badrilla, Leeds,  

UK), SERCA2a antibody (A010-20, Badrilla, UK), Ser
16

-PLB and Thr
17

-PLB and PLB 

antibody (Badrilla, UK). RyR2, SERCA2a and PLB levels were expressed relative to GAPDH 

(Chemicon International, CA, USA) on the same membrane. Immunodetection was carried out 

using the ECL Plus system (Amersham Pharmacia, Little Chalfont Buckinghamshire, UK). 

 

Myofilament proteins: Myofibrillar proteins were analyzed in skinned muscle strips from the 

non infarcted area of the LV. The heart was pre-skinned by perfusion with a relaxing solution 

containing 1% Triton X-100 and protease inhibitors, for 10 min. Phosphorylated and non-

phosphorylated forms of myosin light chain 2 (MLC-2) were separated on a 10% urea gel and 

detected with an antibody specific to cardiac MLC-2 (Coger SA, Paris, France). TnI and PKC-

α was separated by 15% SDS-PAGE and membranes were incubated with specific antibodies 

against total cardiac TnI (Cat#4T21, Hytest, Turku, Finland), the PKA-phosphorylated form of 

cardiac TnI (Cat#4T45, Hytest), PKC-α ((Upstate, Biotechnology, Milton Keynes, UK) or the 

phospho- Ser657 PKCα (Santacruz, Heidelberg,Germany). All gels were run in triplicate.  
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Statistical analysis   

 

All data are expressed as means ± S.E.M. Statistical tests included the Mann–Whitney U test, 

a one-way analysis of variance (ANOVA) when more than two groups were compared, and a 

Newman-Keul's multiple comparison test for paired values. Differences were considered 

significant when the P-value was less than 0.05. 

 

 

 

RESULTS 

 

Survival, myocardial function and remodeling 

 

We compared survival in Sham, MI and MI-D mice. Survival declined rapidly in the MI group 

compared to Sham, while Delapril (MI-D) prevented the high mortality observed in the MI 

group (Fig.1A). Kaplan-Meier analysis showed that the survival of MI-D mice (87%, n=29) 

was higher than that of MI mice (62%, n= 49; P < 0.05) but not different from the survival of 

Sham animals (92%, n=24). The body weights (BW, g) of Sham, MI and MI-D mice were 

indistinguishable (Table 1). However, the heart weight (HW, mg) to BW ratio (HW/BW) was 

higher in MI than in Sham mice, confirming cardiac hypertrophy, which was reduced by 

delapril (Table 1). The mean arterial blood pressure was similar in Sham (89.3±2.6 9 mmHg, 

n=4) and MI (87.9±10.6 9 mmHg, n=4) mice, as reported before (28), and was not modified 

by delapril in MI-D animals (88.3±2.9 mmHg, n=4), suggesting that the cardiac effects of 

delapril were independent of blood pressure reduction. 

 

In terms of cardiac morphology and function, 2D echocardiography in vivo (Fig.1B) showed 

that MI mice had an augmented LVM (Fig.1C) and LV dilation as assessed by the end-

diastolic diameter (LVEdD) (Table 1). Posterior wall thickness (PWT) was reduced in MI and 
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MI-D mice as compared to Sham mice (Table 1). Delapril treatment prevented the increase of 

the LVM (Fig.1C) and attenuated LV dilation (Table 1). At the functional level, MI hearts 

exhibited a dramatic reduction of the shortening fraction (SF) (Table 1), reflecting a major 

alteration of ventricular function. Although MI-D mice exhibited signs of improved systolic 

function, the benefit was small (Table 1), consistent with the extensive cardiomyocyte 

necrosis caused by the large infarct of the LV in this model. 

 

We further evaluated cardiac function based on LV pressure-volume relationships in vivo. In 

MI mice, the LV end-diastolic pressure (LVEdP) and LV end-systolic pressure (LVEsP) were, 

respectively, higher and lower than in Sham mice (Table 1). Furthermore, the maximal slope 

of the increment of systolic pressure (dP/dt max), an index of myocardial contractility, was 

decreased whereas the maximal slope of the increment of diastolic pressure (dP/dt min), an 

index of relaxation, was increased (Table 1). MI mice also exhibited larger LV cavity volumes 

(end systolic and diastolic) than Sham animals. Delapril treatment had no effect on LVSP, 

confirming that the dose of delapril used did not reduce blood pressure (Table 1). However, it 

attenuated the effect of MI on LV cavity volume with a remarkable benefit in terms of 

diastolic pressure (Table 1). Picrosirius red staining showed interstitial and scar fibrosis in the 

hearts of MI mice (vs. Sham) (Fig.1D,E). The expression of both collagen I and collagen III 

mRNAs (Fig.1F) was higher, consistent with the phenotype of HF at the molecular level. 

Delapril treatment attenuated both fibrosis and collagen I mRNA expression.  

 

Cell contraction and Ca
2+

 transients 

We next investigated the effect of delapril on cardiomyocytes isolated from the non-infarcted 

area comprised of viable cells subjected to cardiac remodeling following the MI. In unloaded 

intact single cardiomyocytes from MI mice (vs. Sham), sarcomere length (SL) shortening, 

reflecting cell contraction during field stimulation, was decreased (Fig.2A,B). Contraction and 
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relaxation velocities were also reduced (Fig.2C). Delapril treatment prevented all of these 

changes. Notably, the diastolic SL was larger in MI-D than in MI or even Sham mice, 

consistent with the remarkable effect of delapril on cell relaxation (Fig.2D).      

We measured the Ca
2+

 transients of field-stimulated cardiomyocytes loaded with fluo-4 AM. 

The amplitude of Ca
2+

 transients was smaller in MI mice (2.3±0.1, n=25) than in Sham mice 

(3.2±0.2, n=33; P < 0.05) (Fig.3A). Their time to peak and decay (τ) were delayed in MI mice 

(Fig.3A). In parallel, we determined that the Ca
2+

 content of the SR, assessed by a challenge 

with caffeine leading to full Ca
2+

 release, was lower in MI mice than in Sham mice (Fig.3B), 

which could account for the decrease in the Ca
2+

-transient amplitude. All these alterations 

were partially prevented by treatment with delapril, which had a astonishing effect on Ca
2+

-

transient decay kinetics (Fig.3A). We further investigated diastolic Ca
2+

 using the ratiometric 

indicator indo-1. Diastolic Ca
2+

 was higher in MI mice than in Sham mice, an increase that 

was completely prevented by delapril (Fig.3C). Delapril treatment thus, had a notable effect 

on cell relaxation, Ca
2+

-transient decay and diastolic Ca
2+

.     

 

Expression of Ca
2+

 handling proteins  

 

We measured the expression level of Ca
2+

 handling proteins involved in E-C coupling (Fig.4). 

The abundance of the voltage-gated L-type Ca
2+

 channel (LTCC) protein, responsible for Ca
2+

 

entry into cardiomyocytes, and of the NCX protein was similar in Sham, MI and MI-D mice. 

The abundance of the ryanodine receptor (RyR), responsible for Ca
2+

 release from the SR, 

following Ca
2+

 entry via LTCCs, was decreased in MI (vs. Sham) mice, a change that was 

prevented by delapril (Fig.4A). In contrast, its phosphorylated form (P-RyR) was increased, 

and this increase was resistant to delapril treatment (Fig.4A). 

 

The slowing of Ca
2+

-transient decay, as seen in MI cells (Fig.3), usually reflects impaired Ca
2+

 

reuptake due to the weakened activity of the SR Ca
2+

 ATPase 2 (SERCA2a). Immunoblot 
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analysis showed that SERCA2a expression was decreased in MI (vs. Sham) mice (Fig.4B). 

Since SERCA2a activity is regulated by the inhibitory protein phospholamban (PLB) [29, 30], 

we also investigated the effect of MI on this protein. Both protein expression and 

phosphorylation of phospholamban (P-PLB) at the serine 16 and threonine 17 residues (Ser
16

-

PLB and Thr
17

-PLB), were increased in MI hearts (Fig.4B). Delapril treatment had no effect 

on the reduction of SERCA2a abundance but remarkably, prevented the increase of PLB 

protein and phosphorylation levels. Importantly, both the decrease in the P-PLB/PLB ratio (for 

both Ser
16

-PLB and Thr
17

-PLB) and the increase in the PLB/SERCA2a ratio induced by MI 

were abolished by delapril (Fig.4C).  

 

Ca
2+

 sensitivity of myofilaments  

 

Cardiomyocyte force development depends on both the amount of Ca
2+

 released by the SR and 

the Ca
2+

 sensitivity of the contractile machinery. To determine the effect of delapril on LV 

myofilament function, we measured the relationship between intracellular Ca
2+

 concentration 

and maximal isometric tension normalized to the cross-sectional area in single permeabilized 

LV myocytes, as described previously [31]. Cross-sectional area was greater in the MI group 

(248±16 µm
2
, n=20) than in Sham mice (203±18 µm

2
, n=16), consistent with cardiomyocyte 

hypertrophy. This effect was prevented by delapril (198±14 µm
2
, n=22, P<0.05). In 

permeabilized cardiomyocytes, the resting SL was unchanged in MI (1.88±0.01 µm) and MI-

D (1.89±0.01 µm) mice when compared to the Sham group (1.90±0.01 µm). In contrast, in MI 

mice (when compared with Sham animals), the maximum Ca
2+

-saturated force (Fmax) was 

decreased, and the curve representing the tension–pCa relationship was shifted to the right due 

to a reduction in myofilament Ca
2+

 sensitivity (pCa50: 5.66±0.01, n=20 in MI, vs. pCa50: 

5.72±0.02, n=16 in Sham mice, P<0.05; Fig.5A,B). Delapril treatment had a powerful 
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preventive effect on changes in both maximal active tension and myofilament Ca
2+

 sensitivity 

(pCa50: 5.74±0.02, n=22; P<0.05 for MI-D vs. MI).  

 

The Ca
2+

 sensitivity of myofilaments is regulated by the phosphorylation status of sarcomeric 

proteins such as MLC2 and TnI [32]. The phosphorylation level of MLC2 was unchanged in 

the ventricles of MI mice when compared with Sham mice, as well as after delapril treatment 

(Fig.5C). In contrast, the phosphorylation level of TnI at the protein kinase A (PKA) sites 

Ser
23/24

, known to result in decreased Ca
2+

 sensitivity, was increased in MI hearts, an effect 

prevented by delapril (Fig.5D) suggesting post-translational modifications of regulatory 

contractile proteins mediated by kinases. We next evaluated the contribution of kinases such 

as PKA and protein kinase C (PKC) to modulation of Ca
2+

 sensitivity in MI and MI-D mice by 

incubating myofilaments with the two activated kinases. PKA had no effect on maximal 

tension in the three groups (Fig.6A). PKA decreased myofilament Ca
2+

 sensitivity in both 

Sham and MI mice by 0.09 and 0.06 pCa unit, respectively (Fig.6B). In contrast, PKA had no 

significant effect in MI-D mice (decrease of 0.04 pCa unit). Overstimulation with PKA 

normalized myofilaments Ca
2+

 sensitivity in Sham and MI myocytes but not in MI-D cells, 

where it remained higher than in Sham and MI, suggesting that delapril protects myofilament 

Ca
2+

 sensitivity by a pathway independent of PKA signaling. Next, we explored the PKC 

signaling pathway known to be involved in angiotensin II effects through AT1R binding [24], 

and to regulate the myofilament function during HF [33]. Incubation of the myofilaments with 

activated PKC decreased the maximal tension in the three groups to a similar level (Fig.6A). 

PKC also decreased the pCa50 in Sham and MI-D mice by 0.18 and 0.12 pCa unit, 

respectively, but had no effect in MI mice with a non-significant decrease of pCa50 of 0.03 

pCa unit (Fig.6B). Altogether the results indicate that myofilament function is affected by both 

PKA and PKC pathways in MI mice while PKC signaling is downregulated in MI-D mice. We 

thus determined the expression level of PKC-α and its activation evaluated by the level of 
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phosphorylation at Ser
657

 (Fig.6C). The expression and activation of PKC-α increased in MI 

mice. Delapril treatment prevented the increase in PKC-α expression and did not affect the 

level of activation compared with MI animals (Fig.6C).  

 

DISCUSSION 

 

ACE-I have been studied extensively over the last three decades and their clinical benefits are 

well-established. However, their molecular effects are complex and unclear. In particular, all 

cardiac therapeutical benefits are not supported exclusively by blood pressure reduction. Our 

study provides novel information about delapril effects at the cardiomyocytes level. We 

showed the strong benefits of delapril treatment on the contraction and relaxation of viable 

cardiomyocytes after MI in a model of cardiac remodeling in mice, which occurred 

independently of blood pressure reduction. Chronic treatment, started 24 hours after 

infarction, prevented the intracellular Ca
2+

 overload that occurs following MI and preserved 

the relaxation of cardiomyocytes. We also show for the first time that, in addition, delapril 

maintained the Ca
2+

 sensitivity of contractile myofilaments at normal levels. Both effects 

resulted in a remarkable preservation of cellular contraction and attenuated the typical 

transition toward HF after MI. Ours results were also consistent with the modulation of PKC 

expression. 

  

Our experimental mice model reproduced critical features of post-ischemic HF, including 

depressed myocardial contraction and relaxation, chamber dilation, increased LV mass, and 

akinesia of the anterior wall due to a large infarcted area. Structural remodeling and functional 

alterations of the non necrosed tissue were accompanied by fibrosis and the increased 

expression of mRNAs for HF markers (Collagen I and III). At the cardiomyocyte level, 

contraction was depressed due to reduced SR Ca
2+

 load and systolic Ca
2+

 release, relaxation 
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was slowed owing to blunted Ca
2+

 reuptake that resulted in a diastolic Ca
2+

 overload, and the 

Ca
2+

 sensitivity of myofilaments was reduced [12, 34, 35]. At the protein level, HF remodeling 

was associated with changes in the abundance and/or phosphorylation levels of Ca
2+

-handling 

proteins, including SERCA2a, PLB and RyR2, consistent with earlier reports [12, 34, 35].  

 

ACE-I are among the most beneficial drugs used in HF patients. ACE-I therapy improves 

survival after MI, and large clinical trials point to the importance of initiating therapy as early 

as possible [3, 36]. In our MI mouse model, chronic treatment with a non-hypotensive dose of 

delapril (6 mg/kg) reproduced the expected cardiac effects of ACE-I, including attenuated LV 

chamber dilation, increased LVM, reduced myocardial fibrosis and collagen production [37]. 

Similar beneficial effect has been described with perindopril, which prevents cardiac 

hypertrophy without affecting systemic blood pressure in the rat with HF after MI [38]. The 

anti-fibrotic effects of delapril were also comparable to those of a non-hypotensive dose of 

fosinopril (1 mg/kg; compared to a 25 mg/kg antihypertensive dose), which has also been 

shown to restore the ß-adrenergic signal transduction pathway independently of the regression 

of hypertrophy [39]. Our data are consistent with ACE inhibition delaying the transition from 

hypertrophy to HF by targeting mechanisms intrinsic to cardiomyocytes, in addition to its anti-

fibrotic effects [40].    

 

A major finding of our study, focused on the post-MI remodeling of cardiomyocytes, was that 

delapril preserved the normal contraction/relaxation cycle and attenuated SR dysfunction in 

the surviving cells. Delapril stabilized the amplitude and the onset of contraction through the 

normalization of Ca
2+

-transient amplitude and kinetics, in line with reports showing improved 

cell shortening, Ca
2+

-transient amplitude and SERCA2a activity in aortic-banded rats and 

guinea-pigs treated with the ACE-I ramipril [40, 41]. In our model, delapril did not affect the 

level of expression of SERCA2a and NCX. We propose that delapril promotes efficient 
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reuptake of Ca
2+

 into the SR by maintaining  SERCA2a activity through normal P-PLB/PLB 

(for both P
S16

-PLB and P
T17

-PLB) and PLB/SERCA2a ratios [29, 30, 42]. In addition, delapril 

attenuated the reduction in RyR2 abundance in viable cardiomyocytes (see also [43]), thereby 

favoring Ca
2+

 release in systole. Surprisingly, the higher PKA-phosphorylation level of RyR2, 

which has previously been associated with Ca
2+

 leakage from the SR in HF [44], was not 

prevented by delapril. Therefore, if we were to assume that RyR2 was still leaky in the 

presence of delapril, which might explain the lower SR Ca
2+

 content, the beneficial effect of 

delapril on SERCA2a activity was enough to maintain the normal decay of the Ca
2+

 transient 

(and relaxation) and normal diastolic cytoplasmic Ca
2+

. Several group proposed an increase of 

NCX expression as an important mechanism to rescue the compromised SERCA2a function in 

HF in both human [45-47] and experimental models [48, 49]. Surprisingly, we noted no 

change in the NCX expression in MI and MI-D mice, which may be in line with evidence for 

different phenotypes in HF (hearts with increased NCX and unchanged SERCA2a; and hearts 

with decreased SERCA2a and unchanged levels of NCX) [45] although other groups reported 

a decrease of NCX during HF [50-52].    

 

Another key finding of our study was that delapril treatment preserved the maximum Ca
2+

-

saturated active force and Ca
2+

 sensitivity of myofilaments in surviving cardiomyocytes after 

MI. In MI mice, the altered Ca
2+

 sensitivity of myofilaments involves the increased activity of 

both PKA and PKC (Fig.6B), leading notably to the phosphorylation of cTnI, as previously 

shown in other rodents [33, 53]. In the present study, the abnormal function of the troponin 

complex, related to the augmented phosphorylation of cTnI in MI, was prevented by delapril. 

Interestingly, delapril limited the impact of exogenous PKA in decreasing the pCa50 in MI-D 

mice, which may indicate that delapril does not prevent PKA activation but rather affects 

protein phosphorylation of TnI by another pathway. The large decrease of pCa50 by exogenous 

activated PKC in MI-D mice suggests a downregulation of PKC signaling. This is consistent 
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with the decrease in PKC expression reported in the present study and with other works 

showing that imidapril and/or ramipril can block early cardiac remodeling via angiotensin 

receptor (AT1)-dependent mechanisms [54-56]. It has been recently proposed that during HF 

downregulation of β-receptor signaling and PKA phosphorylation of cTnI exposes sites for 

phosphorylation to an already hyperactive PKC-α, which then hyperphosphorylates cardiac 

troponin I at Ser 23, 24 and thus promotes myofilament decompensation [57]. Previous studies 

in reconstituted filaments showed that PKC isozymes can cross phosphorylate cTnI at Ser 23, 

24 sites [58, 59]. Therefore, delapril may change phosphorylation level of TnI by decreasing 

PKC signaling pathway. These mechanisms warrant further investigation.       

 

In conclusion, the beneficial effect of ACE-I therapy with delapril on adverse cardiac 

remodeling occurs by limiting both the fibrosis, with consequences on myocardial wall 

stiffness, and the loss of contraction of viable cardiomyocytes. Normal contractility and 

relaxation were preserved due to the prevention of diastolic Ca
2+

 overload and the loss of 

myofilament Ca
2+

 sensitivity. The mechanisms underlying these effects seem to be related to 

the maintenance of SERCA2a activity and the reduction of PKCα expression, respectively, in 

cardiomyocytes. Our data support a major role for ACE-I in the regulation of the functions of 

SERCA2a and PKC in the post-ischemic failing heart. Associated with a reduction in fibrosis, 

this may explain the survival benefits of ACEI therapy in clinical studies, through the 

improvement of cardiac function, by maintaining excitation-contraction coupling of viable 

cells.  
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ABBREVIATIONS 

 

ACE   = angiotensin-converting enzyme 

ACE-I  = angiotensin-converting enzyme inhibitor 

Max dP/dt =  maximum rate of increase in pressure during contraction (positive slope) 

Min dP/dt  = minimum rate of decrease in pressure during relaxation (negative slope) 

E-C   = excitation contraction 

Fmax   = maximum Ca
2+

-saturated force 

HF   = heart failure 

LTCC  = L-type calcium channel 

LV  = left ventricle 

LVEdP  = left ventricle end-diastolic pressure 

LVEsP  = left ventricle end-systolic pressure 

LVM   = left ventricular mass 

MI   = myocardial infarction 

MI-D   = myocardial infarction mice treated with delapril 

MLC2  = myosin light chain 2 

PKA  = protein kinase A 

PKC   = protein kinase C 

PLB   = phospholamban 

P-PLB  = phosphorylated phospholamban 

P-RyR  = phosphorylated ryanodine receptor 

PV  = pressure volume 

SERCA2a  = SR Ca
2+

 ATPase 2 

SL   = sarcomere lenght 

SR   = sarcoplasmic reticulum 

RAS   = renin angiotensin system 

RYR   = ryanodine receptor 
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FIGURE LEGENDS 

 

 

Figure 1: Effects of delapril on survival, cardiac morphology and function 

A. Kaplan-Meier survival curve of MI mice (n=49) compared to Sham (n=24) and MI-D 

animals (n=29). B. Representative M-mode echocardiographic images of the left ventricular 

parasternal short axis in awake Sham, MI and MI-D mice. C. Left ventricular mass (LVM) 

assessed by the Devereux formula from M-mode images. There is a significant increase in 

LVM in MI mice (n=18) compared to Sham mice (n=18), which is prevented in MI-D mice 

(n=21). D.  Representative images showing levels of fibrosis in Sham, MI and MI-D mice in 

10µm-thick heart slices (LV free wall) after Sirius red staining. E. Quantification of Sirius red 

staining in Sham, MI and MI-D hearts (n=6 in each group). Fibrosis increases 5 fold in MI 

mice vs. Sham mice. This increase is prevented by delapril. F. Expression of mRNAs for 

collagen I and III. Expression is increased in MI hearts (n=6) vs. Sham mice (n=6). The 

increase in collagen I is partially prevented by delapril treatment (MI-D, n=6). *P<0.05 in 

comparison with Sham mice. †P<0.05 in comparison with MI mice. 

 

Figure 2: Effects of delapril on cardiomyocyte sarcomere length  

A. Representative contraction, indexed by sarcomere length (SL) shortening at 1 Hz, of intact 

myocytes isolated from Sham, MI and MI-D mice. B. Mean ± S.E.M. of the amplitude of SL 

shortening from Sham, MI and MI-D mice. C. Mean ± S.E.M. of the kinetics of contraction 

and relaxation from Sham, MI and MI-D mice. D. Mean ± S.E.M. of diastolic SL. Delapril 

treatment in MI-D cells increases diastolic SL when compared to Sham and MI cells. In B, C 

and D: Sham (n=26), MI (n=31) and MI-D (n=23). *P<0.05 in comparison with Sham mice. 

†P<0.05 in comparison with MI mice.  
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Figure 3: Effects of delapril on Ca
2+

 transients in LV myocytes  

A . Top left panel: Representative Ca
2+

transients from Sham (n=33), MI (n=27) and MI-D 

cardiomyocytes (n=41) loaded with Fluo-4 AM, observed by confocal microscopy. Top center 

and right panels: Average Ca
2+

-transient amplitude and Ca
2+

 reuptake kinetics (tau). B: SR 

Ca
2+ 

content in Sham (n=9), MI (n=10) and MI-D cells (n=8) after caffeine application (100 

µM). C. Mean ± S.E.M. of diastolic Ca
2+ 

concentrations from Sham (n=23), MI cells (n=27) 

and MI-D cells (n=18) from the LV loaded with the fluorescent indicator Indo-1 AM. *P<0.05 

in comparison with Sham mice. †P<0.05 in comparison with MI mice. 

 

Figure 4: Effect of delapril on excitation-contraction coupling proteins 

Top: Representative Western blot for LTCC: L-type Ca
2+

 channel; NCX: Na
+
/Ca

2+
 exchanger; 

RyR: ryanodine receptor 2; P-RyR: phosphorylated ryanodine receptor; SERCA2a: SR Ca
2+

 

ATPase 2a; Total PLB: total phospholamban; P
S16

-PLB: PLB phosphorylated by PKA at 

Serine 16; P
T17

-PLB: phospholamban phosphorylated by CaMKII at the threonine-17 site. A. 

Mean ± S.E.M. of LTCC, NCX, RyR and P-RyR/RyR protein expression levels in Sham 

(n=5), MI (n=6), and MI-D mice (n=6). B. Mean ± S.E.M. of SERCA2a, Total PLB, P
S16

-PLB 

and P
T17

-PLB protein expression levels. C. Mean ± S.E.M. of P
S16

-PLB/PLB, P
T17

-PLB/PLB 

and PLB/SERCA2a ratio. Molecular Weight in kDa. *P<0.05 in comparison with Sham mice. 

†P<0.05 in comparison with MI mice. 

 

Figure 5: Effects of delapril on contractile machinery in permeabilized cardiomyocytes  

A. Relationship between Ca
2+

-activated tension and intracellular Ca
2+

 content measured at an 

SL of 1.9 µm in permeabilized cardiomyocytes from Sham (n=16), MI (n=20) and MI-D mice 

(n=22). The relationship was fitted to a modified Hill equation and the pCa at which half the 

maximal tension is developed (pCa50) was determined as an index of myofilament Ca
2+
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sensitivity (see Methods for more details). B. Mean ± S.E.M. of maximal tension (top) and 

pCa50 (bottom) obtained from permeabilized Sham, MI and MI-D cells C. Effect of delapril on 

the phosphorylation level of MLC-2 in permeabilized cardiac strips from Sham (n=5), MI 

(n=11) and MI-D hearts (n=11). Phosphorylation levels were determined by Western blotting 

using a P-MLC2 antibody as described in methods. D. Effect of delapril on the 

phosphorylation level of TnI in permeabilized cardiac strips from Sham (n=7), MI (n=8) and 

MI-D hearts (n=8). Results are expressed as the mean ± S.E.M. *P<0.05 in comparison with 

Sham mice. †P<0.05 in comparison with MI mice. 

 

Figure 6: Effects of delapril on contractile machinery in permeabilized cardiomyocytes: 

involvement of the PKA and PKC pathways  

A. Maximal tension developed by isolated Sham (n=12), MI (n=9) and MI-D (n=9) 

cardiomyocytes, under control conditions and after PKA or PKC incubation. B. The pCa50 

developed by isolated cardiomyocytes under control conditions and after PKA or PKC 

incubation. C. Top panel: representative Western blot for PKC, P-PKC and GAPDH; 

Molecular Weight in kDa. Bottom panel: PKC expression levels, relative to GAPDH 

content, and P-PKC/PKC ratio. Results are expressed as means ± S.E.M (n=5 mice). 

*P<0.05 in comparison with Sham mice with the same treatment (panel C). ‡ P<0.05 in 

comparison with non-treated cells within each group. 
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Table 1: Morphological and functional parameters in vivo 

 

 Sham MI % Sham MI-D 

 
% Sham 

Weight n=9 n = 9 
 

n = 18 
 

BW (g) 39.2 ± 2.6 38.9 ± 3.0 
 

39.7 ± 2.5 
 

HW/BW (mg/g) 5.4 ± 0.3 7.6 ± 0.4   * +41 6.3 ± 0.3    *† +17 

      

Echocardiography n = 18 n = 18  n = 21  

Systole      

PWT (mm.10
-1

) 14.9 ± 0.6 11.5 ± 1.1   * -23 12.6 ± 1.0 -15 

LVEsD (mm.10
-1

) 19.4 ± 0.6 56.4 ± 3.2   * +191 44.9 ± 1.4   *† +131 

Diastole      

PWT (mm.10
-1

) 7.58 ± 0.27 6.33 ± 0.29 * -16 6.34 ± 0.42 * -16 

LVEdD (mm.10
-1

) 40.7 ± 1.0 65.0 ± 2.7   * +60 54.4 ± 1.4   *† +34 

SF (%) 52 ± 1 13 ± 2         * -75 17 ± 1         *† -67 

      

Haemodynamic  n = 14 n = 14  n = 15  

Pressure      

LVEsP (mmHg) 83 ± 3 67 ± 3        * -19 65 ± 4         * -22 

LVEdP (mmHg) 0 ± 3 7 ± 2          *  -3 ± 1  †  

      

Max dP/dt 

(mmHg/s) 

5223 ± 551 4129 ± 198 * -21 4518 ± 380 -13 

Min dP/dt 

(mmHg/s) 

-3934 ± 460 -3037 ± 157 * -23 -3401 ± 226 -14 

      

EDV (µl) 23 ± 1 29 ± 1         * +21 27 ± 1         *† +17 

SV (µl) 17 ± 1 26 ± 1         * +53 23 ± 1         *† +35 

 

BW: body weight; HW: heart weight; PWT: posterior wall thickness; LVEsD: LV end-

systolic diameter; LVEdD: LV end-diastolic diameter; SF: shortening fraction; LVEsP: LV 

end diastolic pressure; LVEsP: LV End systolic pressure; Max dP/dt: maximum rate of 

increase in pressure during contraction (positive slope); Min dP/dt: Minimum rate of decrease 

in pressure during relaxation (negative slope); EDV: end-disatolic volume; SV: systolic 

volume. Values given are means ± S.E.M.; *P<0.05 MI compared to Sham. †P<0.05 MI-D 

compared to MI. 

 

 

 

 

 

 


