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Abstract

Magnetic resonance (MR) provides a non-invasive way to investigate changes in the brain
resulting from aging or neurodegenerative disorders such as Alzheimer's disease (AD).
Performing accurate analysis for population studies is challenging because of the interindividual
anatomical variability. A large set of tools are found to perform studies of brain anatomy and
population analysis (FreeSurfer, SPM, FSL). In this paper we present a newly developed surface-
based processing pipeline (milxCTE) that allows accurate vertex-wise statistical comparisons of
brain modifications, such as cortical thickness (CTE). The brain is first segmented into the three
main tissues: white matter, gray matter and cerebrospinal fluid, after CTE is computed, a
topology corrected mesh is generated. Partial inflation and non-rigid registration of cortical
surfaces to a common space using shape context are then performed. Each of the steps was
firstly validated using MR images from the OASIS database. We then applied the pipeline to a
sample of individuals randomly selected from the AIBL study on AD and compared with
FreeSurfer. For a population of 50 individuals we found correlation of cortical thickness in all
the regions of the brain (average r =0.62 left and r =0.64 right hemispheres). We finally
computed changes in atrophy in 32 AD patients and 81 healthy elderly individuals. Significant



differences were found in regions known to be affected in AD. We demonstrated the validity of
the method for use in clinical studies which provides an alternative to well established
techniques to compare different imaging biomarkers for the study of neurodegenerative
diseases.

Keywords: Cortical mapping; Surface registration; Partially inflated surfaces; Cortical thickness;
Brain Atrophy; Shape context; Statistical analysis of populations ; Alzheimer's disease;
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1 Introduction

Non-invasive imaging techniques such as magnetic resonance imaging (MRI) allow the
investigation of many of the functional and morphological changes in the brain occurring with
age or during pathological processes. However, reliable statistical analysis of available data over
a large number of individuals are required before detecting subtle differences over time or
between individuals and groups. The distribution differences of specific tissues such as white
matter (WM), gray matter (GM) or cerebrospinal fluid (CSF), volume changes, or any other
signal coming from imaging devices or intermediate pre-processing stages have been used in
the past, unravelling some of the complex pathological changes. Statistical analysis per region
(Lerch et al. 2005), voxels (Ashburner and Friston 2000), (Ziolko and textitet al 2006) or vertices
in a surface representation of the brain (A.M. Dale, B. Fischl, and M.I. Sereno 1999), (B.
Fischl, M. I Sereno, and A. M Dale 1999) can be used to assess the differences between groups
using, for instance, a general linear model (GLM) to the available data (intensity distribution,
deformation, etc.) from all subjects at each region (voxel or vertex) with different covariates
such as age, years of education, gender, diagnosis, cognitive scores, etc. Some of these
techniques have quantitatively demonstrated different biomarkers or predictors for Alzheimer's
Disease (AD), showing a specific pattern of atrophy (Hua et al. 2008), (Querbes et al. 2009),
hypometabolism (Chételat et al. 2007), ﬁ—amyloid load (Mikhno et al. 2008) or combined
hypometabolism and atrophy (Kawachi et al. 2006), (Villain et al. 2008) and sulcal
modifications (Zhan et al. 2009) using MRI or Positron Emission Tomography (PET).

Different software tools, grouping a wide range of methods to perform studies of
cortical and subcortical anatomy are nowadays available. Most of them are also able to carry
out further population analysis. Statistical Parametric Mapping (SPM)* or FreeSurfer (FS)?

represent two of those automated tools largely referenced in the literature. Although they

! http://www.fil.ion.ucl.ac.uk/spm/
2 http://surfer.nmr.mgh.harvard.edu/



share the same goals, the comparisons are performed in different ways. SPM is a voxel-based
approach in which the images are realigned, spatially normalised into a standard space, and
smoothed before performing statistical analysis at a voxel level (Ashburner and Friston 2000). In
contrast, FreeSurfer is a surface-based approach performing first the reconstruction of the
brain cortical surface from structural MRI data (B. Fischl, M. I Sereno, and A. M Dale 1999).
FreeSurfer provides many anatomical analysis tools, including the representation of the cortical
surface, segmentation of the brain, skull stripping, bias field correction, nonlinear registration
of the cortical surfaces into a standard space, labelling of regions and statistical analysis of
populations. Comparison of those different tools has been performed in the past for specific
tasks such as segmentation (Klauschen et al, 2009). Overall, they face similar methodological

challenges for interindividual comparisons.

The primary issue for interindividual comparison is the mapping or registration of a
given population to a common space. This is a particularly challenging task because of the brain
convoluted geometry and the high interindividual variability (J.-F. Mangin et al. 2004). Various
registration approaches have been proposed, including intensity-based in the voxel space
(Rueckert et al. 1999), (T. Vercauteren et al. 2007) or shape-based in a surface representation
of the brain (Yeo et al. 2008, 2010), (Eckstein et al. 2007). Although intensity-based non-rigid
registration methods work well in intrasubject registration, cortical folds do not match well and
may not effectively address the issues arising from the variability across a population (Hellier et
al. 2003). Alternatively, cortical surfaces registration allows anatomically meaningful features to
constrain the transformations (Tosun et al. 2004), which improves the reliability of the
registration and rather favors the alignment of functional regions. Although variability in high
level foldings, gyri and sulci, exists, the cortical shapes tend to present similar patterns at
coarse levels (Tosun, Rettman, and Prince 2004). A good matching may be consequently found
by the alignment of the lobes and major folding patterns at a coarse level across the brains,

thereby registering cortical surfaces instead of volumetric data.

Reliable cortical surface registration for statistical comparisons raises different



methodological questions which constrain any pre-processing step. The main issues are
related with i) the preservation of gyri and sulci and with ii) the topology correction. Firstly,
since the folding patterns correlate well with functional and anatomical regions between
individuals (Fischl et al. 2008) a reliable detection of gyri and sulci during the segmentation
step is required. Various methods have been proposed: Hutton (Hutton et al. 2008) used a
layering method in the voxel space based on mathematical morphology to detect deep sulci. In
(Acosta et al., 2008), a method is proposed to improve sulci detection by using a distance
based cost function from WM in a post processing step, but no verification of topology is done.
In (Rueda et al. 2010) the approach is improved by introducing topology constraints but also in
a post-processing step, obtaining both reliable pure tissue and partial volume images
segmentations. In (Cardoso et al. 2011) an explicit model of partial volume classes is introduced
within the segmentation step and a locally varying MRF-based model is used to locally modify
the priors for enhancement of gyri, but the topology is not guaranteed yet. Secondly, the GM
can be considered as a folded sheet built upon the WM and it is often assumed that if the
midline hemispheric connections were artificially removed, the cortex would have the topology
of a hollow sphere (neither handles nor tunnels). This assumption must be preserved
throughout all the processing pipeline. Topological operators and constraints have to be used
to correct and achieve accurate cortical tissue representations either in the voxel space during
the segmentation or in the surface representations (Ségonne and Fischl 2007), (Ségonne 2008),
(Bazin and Pham 2005), (Han et al. 2002), (Kriegeskorte and Goebel 2001). The main drawback
of correcting topology in the voxel space lies in the modifications introduced by adding or
removing voxels compared to the size of the structures, besides the non unicity of the handle
definition. Some other approaches used a combined voxel-based strategy (Jaume, Rondao, and
Macq 2005), (Zhou, Ju, and Hu 2007) and, as we mentioned before, other operates directly
with the surfaces (CLASP (J. S Kim et al. 2005), BrainVISA (J-F. Mangin et al. 1995), so as
Freesurfer (A.M. Dale, B. Fischl, and M.I. Sereno 1999), (B. Fischl, M. I Sereno, and A. M Dale
1999), (B. Fischl and A. M Dale 2000)). FreeSurfer incorporates mechanisms to prevent self-
intersection of surfaces or topology correction, additionally imposing smoothness constraints,

but at expense of computational cost.



The goal of topology correction in surface-based methods is the elimination of defects
appearing in the mesh such as tunnels and handles after the mesh generation (B. Fischl, M. |
Sereno, and A. M Dale 1999), (Florent Ségonne and Bruce Fischl 2007), (Jaume, Rondao, and
Macq 2005), (Zhou, Ju, and Hu 2007), (Hong et al. 2006). Some of them inflate the surface to
detect the topological incoherences (B. Fischl, M. | Sereno, and A. M Dale 1999), (Florent
Ségonne and Bruce Fischl 2007). Nevertheless, the optimization step for spherical inflating is
non-deterministic and its complexity cannot be evaluated. Moreover, the corrections are not
optimal from the topological point of view as the surfaces are not corrected according to the
shortest loops that corresponds to the handles and tunnels. In this paper we addressed the
issue of topology correction with a method based on the detection and optimal cutting of non-

separating loops in the mesh.

Concerning the surface based non-rigid registration, some of the previously proposed
approaches have used a parametric representation on a sphere, obtained either through
iterative relaxation like in Freesurfer (B. Fischl, M. I Sereno, and A. M Dale 1999) or conformal
mapping (Angenent et al. 1999), (Gu et al. 2004). In the spherical domain, the registration
strategy relies on features such as sulcal landmarks or mean curvature, or convexity (Yeo et al.
2010), (Yeo et al. 2008) , (Ziolko et al 2006). In those approaches the global shape information
is not explicit and the registration is dependent on the selected features. Shi et al. (Shi et al.
2007) proposed the computation of a direct map from the source to the target constrained by
the sulcal landmark curves avoiding any parameterization. It assumes nevertheless that the
sulcal landmarks curves are known and can be matched, which is not always the case. An
intermediate unfolded (inflated) representation of the brain provides an alternative to expose
hidden sulci and to simplify the geometry for cortical mapping preserving its global shape at a
coarse level such as the main lobes and folds. Known as partially flattened surfaces (PFS) (Drury
et al. 1996), (B. Fischl, M. I Sereno, and A. M Dale 1999), (Pons, Keriven, and Faugeras 2004)
they can also provide an intermediate step to further conformal mapping (Tosun, Rettman, and

Prince 2004). In a previous work we compared different methods for obtaining PFS in terms of



their ability to preserve areas and angles (Bonner et al, 2009). Compared to the original brain
surface representations, the PFS simplifies the determination of shape correspondences
between subjects while avoiding the spherical mapping procedure (Eckstein et al. 2007). A
meaningful descriptor of shape in terms of brain anatomy may be used, thereby, as a similarity

criterion.

In this paper we present a new cortical surface processing pipeline for vertex-wise inter-
individual analysis. We provide a comprehensive approach which performs the surface cortical
mapping steps through MRI segmentation, surface generation, topology correction, inflation
and surface matching, yielding a representation of a whole population in a common space. The
matching between individuals' flattened surfaces (PFS) is based on the highly discriminative
scale-invariant properties of the shape context (SC) (S. Belongie and J. Malik 2000), previously
explored in (Acosta et al., 2010). The similarity between points is a combination of shape
context and the information of sulci automatically extracted during an inflation step (sulci
depth). The interpolation is obtained with the Thin Plate Spline (TPS) (Bookstein 1989). The
major contribution of the shape context lies in the global shape characterization at a local level
for each single point. Our method produces an anatomically meaningful and scale-invariant

matching between the lobes and the major folding patterns.

The C++ code and binaries for segmentation, cortical thickness estimation (CTE)
proposed in (Acosta et al, 2009) and the topology correction are fully available at our CSIRO
software website®. The proposed pipeline, allows also the comparison of different imaging
biomarkers for other neurodegenerative diseases. In the remainder of the paper we explain
the following steps: generation of genus zero surfaces (Section 2.1), PFS (Section 2.2) and a
description of the shape context (Section 2.3.1). The validation experiments using real MRI are
then described and a clinical application in an Alzheimer's disease study is also presented
(Section 3.4) where we tested the ability of cortical thickness as a biomarker for atrophy to

compare two populations.

3 http://research.ict.csiro.au/software/milxview



[ Figure 1 : Overall process for cortical mapping]



2 Materials and Methods

The proposed method consists of several stages as summarized in Fig. 1: Firstly, 3D T1-
weighted MR images are classified into GM, WM and CSF in their original space using an
expectation maximisation segmentation (EMS) algorithm (Van Leemput et al. 1999), as
described in (Bourgeat et al. 2009). The EMS computes probability maps for each tissue type,
which are then discretized by assigning each voxel to its most likely tissue type. This scheme has
been improved in (Bourgeat et al. 2009) allowing the use of multiple (n) atlases for subsequent
segmentations and parcellations, in order to improve the reliability of the priors. Thus, each
individual scan is segmented n times, once for each of the n atlases. The resulting n
segmentations per patient are then combined using a voting scheme to provide consensus
segmentation according to (Aljabar et al. 2009). Similarly, for each patient, the n propagated
Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al. 2002) and the Internet Brain
Segmentation Repository (IBSR) labeling®, are also combined using the same voting scheme.
This step ensures that outliers resulting from poor spatial normalization are excluded, and only
regions of high confidence are preserved. Secondly, based on these pure tissue segmentations,
a further maximum a posteriori classification of voxels into pure tissues WM, GM and CSF and
mixed tissues WM/GM and GM/CSF along the previously computed GM interface is performed,
which results in a GM partial-volume coefficients (GMPVC) image used for further cortical
thickness estimation (Acosta et al. 2009). Topology-constraints are introduced in the voxel
classification assuming that the GM is a continuous layer covering a WM, homotopic to a filled
sphere as presented previously in (Rueda et al. 2009). A topology preserving dilation of the WM
over the GM improves the robustness of delineation of mixed GM/CSF voxels in deep sulci. The
propagated IBSR labeling is then used as a mask to separate left and right hemispheres, after
which the generation of 3D polygon meshes representing the WM/GM interface is performed
with the marching cubes algorithm (Lorensen and Cline 1987). Tunnels and handles resulting
from the meshing are removed with a method based on the detection and correction of non-

separating loops (Fig. 3). In order to reduce the surface convolution and the inter-individual



variability, the surfaces are then inflated to a similar shape (Fig. 4). The inflated surfaces,
referred to as PFS, are finally elastically registered towards the common template using the
shape context-based non rigid registration (Fig. 5). The registration imposes a standardized
coordinate system on both surfaces, allowing the vertex-wise comparison of the whole
population. In this paper, we detail and validate the steps 5 to 7 in Fig. 1 and illustrate the
results with an example of clinical application in which the cortical thickness was computed
using our voxel-based approach (Acosta et al. 2009) propagated to the registered meshes. We
compared the differences in cortical thickness between a population of Alzheimer's disease

(AD) patients and a control group of healthy elderly individuals (HC).

2.1 Correction of topology and generation of genus zero surfaces

After the surfaces are generated by the Marching Cubes algorithm (Lorensen and Cline
1987) the topology is corrected to meet the assumed topological properties of the brain,
homeomorphic to a sphere. Handles and tunnels appear as topological defects to be removed.
To this end, we implemented an iterative topological correction inspired by (Erickson and Hard-
Peled 2002) allowing to remove one by one the unwanted handles and tunnels.

Let g be the genus of the surface M, defined as the number of handles and tunnels in

, Where

M. g can be easily computed using the Euler's characteristic (M) as g = @

M) =VM)-EM)+T(M) and (M), E(M) and T(M) are respectively the number of
vertices, edges and trianglesin M .
The algorithm (Algorithm 1) iteratively corrects the topology, reducing the genus of M

by one at each step. After g corrections, filling the tunnels and cutting the handles, the new

surface is homeomorphic to a sphere.

Observe that in a first step the global algorithm is applied aimed at closing all the

http://www.cma.mgh.harvard.edu/ibsr
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possible boundaries of the original surface. The removal of a handle or a tunnel is performed
by first computing an approximation of the shortest non-separating loop at each topological
defect (detailed below and summarized in the Algorithm 2). A non-separating loop is a
connected path that does not divide the surface into two connected components. The surface
M is cut along the n edges of this identified loop, therefore adding n edges and n vertices to
the mesh. At this step, two new boundaries are created but the Euler's characteristic is not
modified. The final correction is performed by sealing the created boundaries with small discs,
thus adding n edges n triangles and one vertex (we add an umbrella). This increases the Euler's

characteristic by one, globally reducing the genus by one.

Algorithm 2 describes the computation of the shortest non-separating loop. We first
compute a set of basepoints B by propagating a wavefront from a randomly selected vertex (a
seed point) in M. B is defined as the set of vertices where the two wavefront boundaries
meet (Figure 2a). The complement of B in Mis a disc, implying that any non-separating loop
on M contains at least one point of B. Figure 2b is an example of cut locus on a 2-genus

surface.

Using this property we compute the non-separating loops from all the vertices
contained in the path B. This has been proved by (Erickson and Hard-Peled 2002) as a good
approximation of the shortest non-separating loop in M. Unlike the original approach, in
which each point of B is used to compute a non-separating loop, we perform this computation
using propagations from a non-trivial set of points, which speeds-up the computation. As
illustrated in Figure 2b, the cut locus B is subdivided into a finite (and small) number of paths,

like S, in Figure 2c. For each of these paths, we compute a wavefront from the contained

points into the complement of B in M. When the two boundaries of this wavefront meet, an
associated loop is computed from the junction point going back to the initial wavefront seed.
This, at each side of the junction. The non-separating property of this loop is verified by
checking the number of connected components of the complement. Selecting a good

approximation of the shortest non-separating loop at each step guarantees a minimal structural
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modification of the surface M. Figure 3 shows topological corrections applied to a tunnel

(figure 3a, 3b) and to two handles (figure 3c, 3d).

[Figure 2]
[Figure 3]

2.2 Partially flattened surfaces

A number of methods have been proposed in the literature for unfolding or flattening cortical
surfaces (Drury et al. 1996), (B. Fischl, M. I Sereno, and A. M Dale 1999) , (Pons, Keriven, and
Faugeras 2004). In order for a flattening to be useful, it must preserve local and global metrics
such as triangle angles and areas. For our purposes we implemented a method based upon
CARET (Drury et al. 1996), (Tosun, Rettman, and Prince 2004). This method was compared with

the method implemented in Freesurfer (Bonner et al, 2009). In our implementation, a cortical

surface is iteratively deformed at each vertex according tom.™ = (1-A)m! + Am/, where m! is
the position of vertex i for iteration ¢, A is a scalar in the range [0, 1] and m, represents the

average vertex position of ml’ , given by

= e XS] &

t
ZSJ JeN;
where N, is the set of all triangles containing m,, c; is the center of triangle j and §, is its

area. Typically a factor of 0.9 is chosen for A, giving more weigh to the averaged vertex

position. This process moves all mesh vertices towards the weighted average of the centers of

their surrounding triangles. The deformation progresses until the global mean curvature k&
drops below a predefined threshold (Tosun, Rettman, and Prince 2004) or in our case using a
predefined number of iterations (we used typically 400), obtaining similar shapes between
moving and fixed surfaces. Fig. 4 (Top) shows the different steps in the evolution of the PFS

with the sulcal depth maps computed at each step. The color coded sulcal depth map allows

12



the visual localization of the main folding patterns. The sulcal depth map is computed as the

cumulative path length at each point i as

depth, = Y [m" —m|] (2)

t=[1,..,N]

where N is the number of iterations. Fig 4 Bottom depicts the comparison of Area distortion

after inflation using CARET and Freesurfer.
[Figure 4]
2.3 Surface-based non-rigid registration

Surface based non-rigid registration methods face several challenges including: i) the
choice of similarity criterion and ii) the matching and global optimization procedure (Audette,
Ferrie, and Peters 2000). The first one refers to the type of information extracted from the 3D
surface, namely the description of local or global shape to represent the similarity. The latter
challenge concerns the exploitation of the similarity information to find the best matching
between the two surfaces. In this context, the goal of the registration is to determine the
transformation such that for a finite set of control points, any control point of a moving surface

M, is mapped onto the corresponding control point of a fixed surface M .
[Figure 5]

Fig. 5 illustrates the method used to register the moving M ={m,},_, = and fixed

F= {fj} PFS surfaces, respectively. F may be a template towards which we register the

Jj=l.q
whole population. Let M, ={m,},, , and F={f,},, A  be the corresponding simplified

surfaces, represented in two subsets of characteristic points (control points) of M and F, such

that M, € M, F, c F. After establishing bijective correspondences between the sets M_ and

13



F,, exploiting a given similarity metric (in this paper the shape context), the mapping is
computed as a set of transformations T={T },  , (T, € R®—>R’) such that

f, =T, om,, Vm,.

2.3.1 Shape context

The shape context is a shape descriptor that, for a single surface, captures the
distribution of points over relative positions of the global shape points. This characterization is
invariant to scale and rigid transformations, naturally leading to a highly discriminative and
robust score for measuring shape similarities. The shape context was first introduced in (S.
Belongie and J. Malik 2000) within the 2D pattern recognition field, and aimed to match point
clouds representing similar patterns. Further modifications to the method appeared in (G.
Mori, S. Belongie, and J. Malik 2005) and 3D matching of features have been extended to work
with thoracic images (Urschler and Bischof 2004). A first implementation of 3D Shape Context

for brain registration was presented in (Acosta et al, 2010).

Let M, and F, the two simplified PFS surfaces corresponding to the meshes M and
F to be registered. M and F, constitute the u control points (typically u = 3000 points) of

the moving and fixed surfaces, respectively, to be matched and for which the shape context is
computed (Fig. 5). Here, they are obtained using an algorithm that iteratively contracts vertex
pairs while minimizing geometric errors (Garland and Heckbert 1997). For a given point
{m,},, ,€M,, its shape context is the 3D histogram of the relative 3D polar
coordinates (7,8, ¢) of the remaining u—1 points. As in (Belongie et al 2002), in order to be
more sensitive to nearby points, we use a log-polar coordinate system. In our case we build a
3D histogram with R. equally spaced log-radius bins and u,and v, equally spaced angle bins.
Since the intracranial volume may considerably differ across a population, an additional
normalization of the shape context is performed to obtain scale invariance. To this end, all the

radial distances dist(m,,m,), ., ,, tk#[}, are normalized by the mean distance between all

the point pairs in the shape:

14



iZdist(mk,ml) (3)

k#l

2.3.2 Cost function and matching

The shape context cost ijc of matching the point m. from the simplified surface M

with the point fj from F, is given by the ;(2 statistic as

SC

15 lw-g,mF -2, (0F )
lj 25 h (k)+g (k)

where £, (k) and g, (k) are the histograms (shape context) at the points i and j of the

moving M and fixed F, shapes, respectively, and K is the total number of bins.

In addition to the description given by the shape context, we use the sulcal depth map
computed at each point according to equation (2) to enrich the matching between the points
with local information about sulci and gyri. Thus, in a second iteration we recompute the depth

map cost function ij’? as

(5)

Where s, and r; are the sulcal depths at points i and j of the moving M and fixed F shapes

respectively. Both are normalized by the brain size. N is the highest difference between the
floating and the fixed normalized sulcal depths; this enables the comparison between the sulcal

depth and the shape context cost. The global cost function becomes then:

— sC SD
C,=aC; +ﬁCiJ (6)
where f=1—a, and in practical terms 0=0.8, resulting in the best trade-off for a good

matching of the folds. Given the individual costs C,, € [0,...,1] between all pairs of points, the

15



next step is to find the perfect matching by minimizing the total cost of the bijective

correspondences H= ) C. This is done within a one to one point matching step with the
Y

Hungarian algorithm (Kuhn 1955). After the correspondences are found, the set of

transformations T ={T, },_, ,for each point are computed. Finally, a transformation using a

thin plate spline model (TPS) (Bookstein 1989) calculated from the control points, achieves the
interpolation of the corresponding moving shape M ontoF. In our implementation, the

number of points in M _ is lower than in F, to avoid miscorrespondences or topological errors
due to crossing points between M_ and F,. Fig. 6 shows an example of labeling, propagated

from a template to a single individual's surface after registration of the corresponding PFS.
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3 Experiments and results

This section describes the experiments performed to validate each step of the pipeline
using real data and shows with an example the application on clinical data for quantifying
atrophy in Alzheimer’s Disease using cortical thickness. We also compared the results with
Freesurfer (A.M. Dale, B. Fischl, and M.I. Sereno 1999), (B. Fischl, M. I Sereno, and A. M Dale
1999), (B. Fischl and A. M Dale 2000). All the methods were implemented in C++, incorporated
in a plugin called milxCTE devised to compute the cortical thickness as described in (Acosta et
al. 2009), and is part of our downloadable software platform milxView >, and TAGLUT
(Topological And Geometrical Library - a Useful Toolkit)® (Favreau 2009) , which provides the
topological and geometrical tools for genus zero mesh generation. Milxview utilises the open

source ITK’ and VTK® libraries.

3.1 Data

3.1.1 Cross sectional MR scans

From the Open Access Series of Imaging Studies (OASIS) database (Marcus et al. 2007)°,
we randomly selected 30 young healthy individuals. The scans were T1-weighted Magnetization
Prepared RApid Gradient Echo (MP-RAGE) in sagittal orientation with isotropic 1mm? resolution
(256x256x128 pixels). For the first set of experiments, inflation and registration parts, the
segmentations of the WM/GM interface were computed using Freesurfer. Thus, for each
individual we obtained separated surface representations for left and right hemispheres. The SC
was used to register the surfaces to a common template, which was obtained after
segmentation of the Colin atlas(D.L. Collins et al. 1998) with Freesurfer. The resulting meshes

contained an average of 300000 vertices.

http://aehrc.com/biomedical imaging/milx.html
http://www.jmfavreau.info/?q=en/taglut
http://www.itk.org/

http://www.vtk.org/
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3.1.2 Clinical data in Alzheimer's disease: the AIBL study

For the application of the proposed method to the study of Alzheimer's disease, MR
images from AD patients, individuals with mild cognitive impairment (MCl), and HC were
included. They were randomly selected from the individuals enrolled in the Alzheimer Imaging
Biomarkers and Lifestyle longitudinal (AIBL) study (Kathryn A Ellis et al. 2009). The AD
participants met NINCDS-ADRDA criteria for probable AD (McKhann et al., 1984 ) while all the
MCI subjects met the Petersen criteria (Petersen et al., 1999) of subjective and objective
cognitive difficulties, in the absence of dementia or significant functional loss. The remaining
participants in the study were healthy elderly volunteers. All patients were recruited from the
Austin Health Memory Disorders and Neurobehavioural Clinics. All of the subjects were
scanned with a standardized protocol. Thus, sagittal T1 weighted MR images were acquired
using a standard 3D MPRAGE sequence at 3T, with in-plane resolution 1x1mm, slice thickness
1.2mm, TR/TE/T1=2300/2.98/900, flip angle 9° and field of view of 240x256 voxels and 160
slices. The protocol of acquisition and demographics are fully detailed in (P. Bourgeat et al.
2009). The SC was used to register the surfaces to a template, which was obtained as an

average of a subsample (20 individuals) randomly selected from the whole population.

3.2 Partially inflated surfaces

Using the 30 young healthy individuals randomly selected from the OASIS database
(Marcus et al. 2007), we first compared the results of the inflation step with Freesurfer. In this
experiment, segmentations of the WM/GM interface were computed using Freesurfer. Thus,
for each individual we obtained separated surface representations for left and right
hemispheres. We evaluated the computation of PFS separately in terms of area preservation. A
thorough comparison of different methods using local and global area, angle and length
distortions was presented in (Bonner et al. 2009). In this paper we only report the measured
local metric distortion in the 1-neighbourhood surrounding each mesh vertex. The local area

distortion was defined for each vertex i as
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whereT is the set of triangles containing vertex i, N, is the set vertices in the 1-

1
neighbourhood of i, A(t) is the area of triangle ¢ and A°(¢) is the area of triangle ¢ on the
original mesh. This is a measure of the average absolute change in area per triangle on the

mesh. d; and d, are the distances between vertex iand n on the original and modified

surfaces, respectively. In our experiments, the implemented method for computation of PFS
has been proven (Bonner et al, 2009) to perform better than FreeSurfer (B. Fischl, M. I Sereno,
and A. M Dale 1999). Fig 4 Bottom depicts a comparison of the local area distortion after
inflation using CARET and Freesurfer. Averaging over the 30 individual brains surfaces, it
produced substantially fewer area and distance distortions. 45.89% of vertex distortions
ranged within[0.8,1.2] (1.0 represents no distortion), compared to 34.83% for FreeSurfer.
Table 1 shows the average portion of vertices within this range for each method, computed for
all 30 subjects in the sample space per lobe. Overall, the distance metric was distorted nearly
equally by both CARET and FreeSurfer (23.03 + 0.86% for CARET vs 23.11 + 1.05% for
FreeSurfer) whereas the area was distorted by 32.7 + 1.42% using CARET vs 39.09 + 1.71 with

Freesurfer.

3.3 Shape context-based non rigid registration
The overall method was used to register the obtained surfaces to a common template.
For the experiments described using OASIS the template was obtained as a surface

representation of the Colin atlas (D.L. Collins et al. 1998). This template was obtained with
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Freesurfer applying the segmentation pipeline to the initial Colin's T1-W MRI. For the
experiments using clinical data a different template was obtained as an average surface
representation of the population being studied.

In the first experiment using the OASIS database, we investigated the effect of the

number of control points (u) employed to represent the simplified surfaces M and F, on the

registration quality. Mean absolute (MAD) and Hausdorff (HD) distances (Gerig, Jomier, and
Chakos 2001) between moving and target surfaces were used to assess the accuracy of our
method to register two PFSs. Table 2 presents a summary of these results. By Increasing u
from 500 to 1000 control points the accuracy accuracy in terms of mean absolute distance
(MAD) was improved by 33% ( p <0.0001) and by 32% ( p <0.0001) when varying from 1000 to
2000 points for the left hemisphere and 23% ( p <0.0001) and 27% ( p <0.01) respectively for

the right hemisphere. As expected, surface alignment is better when using more control points.
A trade-off between computational requirements and accuracy exists and must be defined

depending on the application.

3.3.1 Overlap with Freesurfer labeling

In this experiment, we compared the localization of Freesurfer labeled regions (obtained
as described in (Desikan et al. 2006)) after registration to the same template (Fig. 6). The
Jaccard coefficient measured as the relation between the intersection and union of areas of
labelled regions was used as the similarity metric. Overall, our method is comparable with the
registration provided with Freesurfer. Averaging for the 30 individuals, in 6 regions of the left
hemisphere and 6 of the right hemisphere the overlap (Jaccard) obtained with our method was
higher than with Freesurfer. In other regions the accuracy was lower than with Freesurfer but in
most of them these differences they were not statistically significant, except for the entorhinal
cortex, middle temporal, pars triangularis and transverse temporal (Desikan et al. 2006) in both
hemispheres. Table 3 shows some examples of the jaccard coefficient averaged on the 30
individuals. The worst values were obtained in the smallest regions, where the overlap is highly

affected by misregistration errors. Conversely in larger areas the overlap was fairly good, and
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the main folds were well aligned. It is important to notice that the statistical analysis will be
performed later at a voxel basis. Fig. 6 illustrates an example of propagated labels between an
individual and the template. It can be observed that although there is a high interindividual
variability, the regions are well transferred through all the foldings representing different
anatomical regions.

[Figure 6]

3.4 Clinical data: AIBL study

Following the procedure detailed in Section 2, consensus segmentations were obtained
as described in (Bourgeat et al. 2009) using nine atlases for initialization. Subsequently, cortical
thickness maps were computed using our voxel-based approach (Acosta et al. 2009). The
individuals' Automated anatomical labeling (AAL) (Tzourio-Mazoyer N, et al 2002) and cortical
thickness were propagated to the resulting mesh and then to the average template after the SC
registration.

As an example to describe the matching of similar regions of the brain, we randomly
selected 26 individuals. Their consensus AAL labelings, obtained in the previous step, were
propagated towards the template applying the whole pipeline. The labelings were then
combined in a voting scheme to obtain a final AAL labeling in the template space (Fig. 9). After
the registration, consistency in the coincidence of the major folding patterns was obtained

across the individuals.

3.4.1 Cortical thickness comparison with Freesurfer

Cortical thickness maps from 50 individuals obtained with FS and milxCTE (Acosta et al.
2009) were compared. After registration and mapping to the common template, the thickness
maps were regionally compared. Cortical thickness was comparable in all the regions. Similar
patterns for thickness in gyri and sulci were obtained. Overall, a strong correlation between the
results using both methods FS and milxCTE was found. In average, for all the regions the
absolute computed difference was 0.23mm (7=0.63) for the left hemisphere and 0.17mm

(r=0.65) for the right. Table 4 shows the results for some of the regions, left and right
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hemispheres.

[Figure 7]
[Figure 8]

Figure 7 shows the results of the correlations (7 ) for all the regions. Similar results were
obtained in both hemispheres. Some examples of the individuals' thickness computed with
milxCTE and FS are depicted in Fig. 8. As suggested in (Klauschen et al. 2009) Fresurfer tends to
underestimate gray matter, therefore the computed thickness with our method tends to be
higher. Although the slope on Fig. 8 is leaning towards the higher values of CTE, the
correlations are still high as shown in table 4. In milxCTE the thickness estimation is entirely
voxel-based with a sub-voxel initialization using partial volume maps (Acosta et al. 2009). This
makes it very fast and accurate whereas FS is based on meshes deformations which may be
computationally expensive. Not surprisingly, larger regions: Supramarginal (2400 vertices),
Inferior parietal (4200), superior temporal (2600), superior frontal (4500) presented the highest
correlations as opposed to smaller regions such as rostral anterior cingulate (400), frontal pole

(60) or caudal anterior cingulate (813) where small overlap differences may affect the measure.

3.4.2 Study of cortical thickness in Alzheimer's disease

We also investigated the ability of our method to detect cortical thickness differences
between 81 healthy elderly individuals HC, and 32 AD patients. Fig. 9 shows an example of
cortical thickness maps from two individuals, one from each group, propagated to the common

template.

[Figure 9]
[Figure 10]

After applying the whole pipeline to all the individuals, vertex-wise t-tests were
performed between NC-AD to identify regions where a significant atrophy existed. The cortical

thickness values were corrected for age and False Discovery Rate (FDR) corrected p-values were
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obtained (5% threshold). In our experiments, the analysis was performed using the thickness
maps with a Laplacian smoothing (5mm Full Width at half of the Maximum-FWHM) over the
scalar cortical thickness maps to reduce the effects of discontinuities. The obtained differences
between the two groups are illustrated in Fig. 10 and demonstrated qualitatively the
consistency of the results. The results show significant differences between the two groups,
with lowest thickness for the AD group with both methods. Significant differences were found
in the hippocampus, parahippocampus, cingulate and in the temporal and frontal lobes
between the two groups. In average, the absolute differences in cortical thickness for some
regions were higher by using our method, as it can be seen in Figure 10 and in Table 4. These
results corroborate what has been previously reported in the literature for Alzheimer's disease

(Lerch and A. C Evans 2005), (Querbes et al. 2009).
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4 Conclusion

In this paper we presented a new cortical surface processing pipeline, milxCTE, for
accurate statistical regional analysis. It offers an alternative to traditional methods using surfac
representations of the brain such as Freesurfer. It involved several steps, namely MRI
segmentation, surface generation, topology correction, inflation and surface matching, yielding
a representation of a whole population in a common space. In addition to the shape context
which provides a global description at a local level, we included additional local landmarks, such
as the sulcal depth map, to iteratively adjust the registration, yielding a meaningful matching
between lobes. An update of the binary distribution of milxCTE and milxView is available'®.

We demonstrated the validity of the method for use in clinical studies, by evaluating
each step separately on real data, and then comparing the overall technique against Freesurfer.
This comparison showed that the labeling of major folding patterns is preserved and the
cortical thickness computed by using our method is regionally consistent. In average, with
Freesurfer the obtained values of cortical thickness were lower than with milxCTE for single
individuals. This is not a surprising finding as it has been previously shown and reported in
larger studies. Our method performs the computation of cortical thickness in the voxel domain,
which is very fast. Additionally, it uses advantageously the partial volume information to
initialize at a subvoxel level, thereby yielding a very accurate result. However, a good
correlation between both measures were found and different experiments comparing
averaged cortical thickness between two populations allowed to measure the relative
differences of atrophy. This preliminary study on clinical data showed regional differences
between healthy elderly individuals and Alzheimer's disease patients. The most significant
atrophy was measured in the temporal lobe, which is consistent with the published literature.

We intend to perform longitudinal clinical studies on Alzheimer's disease and other
neurological disorders. As similar results were found in regional comparisons with Freesurfer,
our method represents an alternative for the study of cortical thickness estimation across a
population.

As the method allows the mapping of a whole population in a common space, in future
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work we will perform multi-feature comparison of additional imaging biomarkers for
Alzheimer's disease. Thus, not only cortical thickness is compared but also other features from

different modalities such as sulcal depth, WM/GM MRI contrast, GM volume, [ -Amyloid

burden or WM integrity in the same vertex-wise common space.

10 http://aehrc.com/biomedical imaging/milx.html
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Algorithms

Data: a mesh M
Result: M homeomorphic to a sphere
Foreach be boundaries (M) do
be boundaries (M) Close the surface on b by adding a disc;
While genus (M) # 0 do
I = an approximation of the shortest non-separating loop;
Cut M according to [;

Close the surface on each side of the created boundaries by adding a disc;

Algorithm 1: Topological correction

Data: a mesh M non homeomorphic to a sphere
Result: a non-separating loop /
B reduced cut locus ;
Foreach: path p c B do
Ip = shortest no-separating loop containing p;
if / not defined or length (/p) < length (I) then
I=lp;

Algorithm 2 : Non-separating loop detection
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TABLES

Table 1: Average percentage of vertices with MA in range [0.8,1.2]

Hemisphere CARET FreeSurfer

Left Frontal 49.31 38.67
Temporal 45.77 37.69
Occipital 39.94 31.92
Parietal 46.67 32.86
Total 42.41 32.94

Right Frontal 49.59 39.00
Temporal 45.13 37.49
Occipital 39.50 32.91
Parietal 46.76 32.44
Total 42.47 3291

Table 2: Averaged Hausdorff Distance (HD), Mean Absolute Distance (MAD) and area

relation (% A M - F') betweeen moving M and fixed I surfaces after shape context

registration. Mean (standard deviation), as the number of sampling control points varies. 30 left

and 30 right hemispheres.

lefth right h
NPts 500 1000 2000 500 1000 2000
HD [mm] 8.45(1.9) | 7.25(1.97) | 6.29(1.71) 14.97 13.24 13.11
(7.13) (7.83) (8.25)
MAD [mm] | 0.74 (0.05) | 0.49(0.04) | 0.35(0.03) | 1.17(0.58) | 0.86(0.61) | 0.74(0.83)
% A 98.08% 98.45% 98.72% 97.02% 97.72% 98.8%
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Table 3: Averaged (standard deviation) jaccard coefficient on some anatomical labels

computed after registration with Shape Context (SC) and with Freesurfer (FS).

SC FS
Region Hemisphere Average St Dev | Average | StDev
5 cuneus Left 0,54 0,08 0,66 0,06
5_cuneus Right 0,62 0,08 0,55 0,18
7_fusiform Left 0,55 0,10 0,58 0,13
7_fusiform Right 0,60 0,08 0,58 0,10
10_isthmuscingulate [Left 0,36 0,10 0,46 0,09
10_isthmuscingulate [Right 0,54 0,11 0,51 0,08
11 _lateraloccipital Left 0,66 0,04 0,63 0,06
11_lateraloccipital Right 0,62 0,06 0,53 0,08
12_lateralorbitofrontal |Left 0,77 0,03 0,68 0,06
12_lateralorbitofrontal [Right 0,76 0,05 0,71 0,04
17 _paracentral Left 0,69 0,06 0,71 0,07
17 _paracentral Right 0,65 0,08 0,68 0,12
20_parstriangularis Left 0,42 0,09 0,60 0,09
20_parstriangularis Right 0,46 0,12 0,59 0,09
24 precentral Left 0,71 0,06 0,82 0,03
24 precentral Right 0,73 0,05 0,68 0,14
25 precuneus Left 0,69 0,05 0,78 0,04
25 precuneus Right 0,71 0,05 0,70 0,08
30_superiortemporal |Left 0,69 0,05 0,77 0,03
30_superiortemporal |Right 0,67 0,06 0,72 0,05
34 transversetemporal|Left 0,56 0,11 0,76 0,07
34 transversetemporal|Right 0,43 0,11 0,70 0,11
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Table 4: Average (standard deviation) cortical thickness, computed with milxCTE and

Freesurfer and correlation between both methods in the AAL Regions.

milxCTE Freesurfer Comparison
Structure St Dev St Dev r
Average(mm) Average(mm) Difference
(mm)
Supramarginal L 2.38 0.20 2.45 0.13 0.07 0.69
Supramarginal R 2.38 0.17 2.45 0.14 0.07 0.65
Superiorfrontal L 2.49 0.17 2.59 0.12 0.01 0.64
Superiorfrontal R 2.54 0.20 2.54 0.11 0 0.73
Rostralmiddlefrontal L 2.32 0.18 2.28 0.11 -0.04 0.72
Rostralmiddlefrontal R 2.36 0.18 2.25 0.10 -0.11 0.67
Rostralanteriorcingulate 2.62 0.32 2.64 0.21 0.02 0.68
L
Rostralanteriorcingulate 2.67 0.29 2.52 0.18 -0.15 0.78
R
Precuneus L 2.53 0.27 2.28 0.15 -0.25 0.79
Precuneus R 2.45 0.26 2.28 0.14 -0.17 0.8
Precentral L 2.21 0.28 2.43 0.13 0.22 0.72
Precentral R 2.26 0.27 2.38 0.15 0.12 0.83
Posteriorcingulate L 2.57 0.24 2.38 0.14 -0.19 0.57
Posteriorcingulate R 2.49 0.21 2.33 0.12 -0.16 0.72
Pericalcarine L 2.29 0.29 1.74 0.12 -0.55 0.65
Pericalcarine R 2.2 0.25 1.76 0.12 -0.44 0.72
Pars triangularis L 2.41 0.15 2.32 0.11 -0.09 0.65
Pars triangularis R 2.3 0.16 2.34 0.12 -0.04 0.62
Inferior temporal L 2.87 0.36 2.67 0.15 -0.2 0.6
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Inferior temporal R 2.76 0.29 2.77 0.18 -0.01 0.55
Inferior parietal L 2.48 0.24 2.38 0.14 -0.10 0.86
Inferior parietal R 2.35 0.22 2.39 0.15 0.04 0.86
Superiorfrontal L 2.45 0.17 2.59 0.12 0.14 0.80
Superiorfrontal R 2.50 0.20 2.54 0.11 0.04 0.75
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Figure Legends

Figure 1: Overall pipeline for cortical mapping with milxCTE. After WM/GM segmentation (1-4),
topology is corrected on each separated hemisphere (5), partial inflation is performed (6) and

eventually surfaces are registered towards a common coordinate system (7).

Figure 2: Cutting and patching of non-separating loops. a) Computation of the cut locus B
associated to a point p on a 1-genus surface M. b) Cut locus B associated to a point p on a 2-
genus surface M. ¢) Computation of the shortest non-separating loop associated to a point on

the path Sg, subpart of the cut locus B associated to the point p.

Figure 3: Example of topological correction of a,b) a tunnel, c,d) two handles.

Figure 4: Top: Original cortical mesh is flattened to a PFS and color coded sulcal depth. (Eq. 2) is
mapped over each point in the surface as inflation progresses (20,50 and 100 iterations). a)
Original Mesh b) 20 iterations c) 50 iterations d) 100 iterations. Bottom : Local Area distortion

map after inflation using CARET and Freesurfer.

Figure 5: Finding correspondences between two individuals. After PFS are obtained, the surface

M is registered towards the fixed I target. Ms and Fs are the control points to match.

Figure 6: Propagated labels from the template d) to the patient c) after the registration of both
PFS surfaces a), b).

Figure 7: Regional mapping of the correlation ( r ) between cortical thickness computed with

both methods: milxCTE and Freesurfer, left and right hemispheres.

Figure 8: Example of correlations in some regions left/right hemispheres. a,b) SFG: superior
frontal gyrus and c,d) IPG: Inferior parietal gyrus [SFG (left H), »=0.80] [SFG (right H), r
=0.75] [IPG (left H), »=0.86] [IPG (right H), »=0.86] (corrected values)
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Figure 9: Top: Resulting AAL labelling after voting using a population labels mapped to a
common template. Right and left hemispheres, lateral and medial views. Middle: Cortical
thickness mapped onto a common template: a HC individual, bottom: an AD patient. The

pronounced generalized atrophy in AD compared to a HC is visible, mainly in temporal areas.

Figure 10: Top: Vortex-wise differences in averaged cortical thickness between the two groups

AD and HC. Bottom: Statistical p-values Map after two sampled t-test.
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